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Addition Aware Quantization for Low Complexity
and High Precision Constant Multiplication

Oscar Gustafsson, Member, IEEE, and Fahad Qureshi, Student Member, IEEE

Abstract—Maultiplication by constants can be efficiently realized
using shifts, additions, and subtractions. In this work we consider
how to select a fixed-point value for a real valued, rational, or
floating-point coefficient to obtain a low-complexity realization. It
is shown that the process, denoted addition aware quantization,
often can determine coefficients that has as low complexity as
the rounded value, but with a smaller approximation error by
searching among coefficients with a longer wordlength.

Index Terms—Addition, constant multiplication, quantization,
subtraction.

1. INTRODUCTION

N many DSP algorithms multiplier coefficients are either

floating-point numbers (e.g., from filter design algorithms),
rational numbers (e.g., 1/3), or real numbers (e.g., V2orm /8).
However, when implementing digital signal processing (DSP)
algorithms fixed-point computations are often preferred over
floating-point due to lower complexity and power consump-
tion.The conversion from floating-point, rational, or real valued
numbers to fixed-point can be seen as quantization of an infin-
itely long fixed-point representation. To avoid lengthy repetition
we will in the following use floating-point, rational, and real
numbers interchangeably to denote numbers that can not be ex-
actly represented using fixed-point representation.

It should be noted that typically, one distinguishes between
quantization of the data and quantization of the multiplier coeffi-
cients. Data quantization leads to round-off noise, which is usu-
ally modeled as an additive error signal, where the error signal is
characterized as a stochastic process with properties depending
on the type of quantization used. Coefficient quantization on
the other hand leads to a static deviation from the ideal transfer
function. It should be noted that data quantization is also often
performed within the algorithm implementation to reduce the
wordlength of the computations. Especially, for recursive algo-
rithms this is required as, otherwise, the wordlength would grow
indefinitely.

In this work we consider multiplication by a constant fixed-
point number approximating a number that can not be exactly
represented with the same number of bits (or possibly not at all).
Consider the case where we have a real valued number A that
we want to approximate with a fixed-point value A. For ease
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of presentation we will without loss of generality assume that
0 < A < 1. Using N fractional bits and proper rounding the
approximation error, €, is

¢ — ‘A—A’ < 9~ (N+1), (1)

It is throughout this work assumed that we should meet an
approximation specification of N fractional bits, as in (1),
although other measures can be dealt with in a similar way.

An unsigned fractional fixed-point coefficient, A, represented
using N fractional bits can be written as

N

A=Y a2 @
=1

where a; € {0,1}. Now, assume that a multiplication with a
data, X is performed. The result is

N
Y = AX = Z a;i2”'X. (3)
=1

The multiplication can then be performed as a sum where the
input is shifted and multiplied by either 0 or 1, once for each bit
of A. In total there are N — 1 additions to compute the result.
Note that for bit-parallel computation the shifts can be hard-
wired, and, I}ence, no logic cells are required for shifting. If the
coefficient A is known in advance the multiplication by O or 1
can be simplified to either O or X. Zero-valued data does not
contribute to the sum. Therefore, the number of additions is di-
rectly proportional to the number of nonzero bits of A.

Using a signed-digit (SD) representation we have
a; € {—1,0,1}. Hence, each bit is now a ternary digit. As for
the constant coefficient multiplier case we do not represent the
coefficients explicitly as inputs to the multiplier, the complexity
does not increase by introducing a third alternative for each
position. Instead, it just leads to that some of the additions may
be replaced by subtractions. As a subtraction has about the
same complexity as an addition, for simplicity throughout this
work we will refer to both as additions. The potential benefit of
using a SD representation is that it is often possible to find a
representation with fewer nonzero positions compared to using
a binary representation. An SD representation with the smallest
possible number of nonzero digits is referred to as a minimum
signed-digit (MSD) representation. One MSD representation
of special interest is the canonic signed-digit (CSD) represen-
tation. For a CSD representation we have a;a;11 = 0, Vi. For
each coefficient there are several possible SD representations.
There may also be several MSD representations. However, the
CSD representation is unique (hence, the name canonic), so if
a CSD representation is found we know that it is also an MSD
representation and the minimum number of nonzero positions is
well established. The average number of nonzero positions in a
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CSD representation is asymptotically N/3 compared with N /2
for binary, while the maximum number of nonzero positions is
N/2 for CSD compared with N for binary. Hence, the number
of additions are on average reduced by using MSD/CSD rep-
resentation compared to binary.

Over the years several algorithms have been proposed to de-
sign DSP algorithms with a few number of nonzero SD terms,
often referred to as sum-of-powers-of-two (SOPOT) or signed-
power-of-two (SPT) terms. Examples include specific digital fil-
ters [1], [2] and transforms [3], [4], as well as general DSP al-
gorithms [5], [6]. The resulting realization is often called mul-
tiplierless as general multiplications are replaced by shifts and
additions. In [2] the statistical properties of SD representations
are investigated for multiplier coefficients. There has also been
investigations on using SD representations with a low number
of nonzero digits for data [7].

Despite the fact that the CSD representation is minimal it is
still possible to find constant multiplication realizations using
fewer additions compared to a straightforward shift-and add re-
alization based on CSD [8]-[10]. In [8] an optimal approach
was introduced and it was shown that all constant multiplica-
tions with coefficients with up to 12 bits can be realized using
at most four additions. In [9] that approach was simplified and
it was shown that at most five additions were required for up
to 19 bits coefficients. In addition to the optimal approach, a
heuristic was also introduced in [9] based around the idea that
it is sometimes worthwhile to increase the number of nonzero
signed-digit terms to reduce the number of additions. The gen-
eration of all signed-digit representation for a coefficient can be
obtained as in [11]. Finally, in [10] an efficient heuristic was
proposed, based on the heuristic in [9], to allow low complexity
multiplication with arbitrary wordlength. In terms of theoretical
results it has been shown that the maximum number of additions
grows as N/log, N, where N is the coefficient wordlength
[12], [13], while at least [log, C(A)] additions are required,
where C'(A) denote the number of nonzero SD terms for the
coefficient A [9], [14].

The discussion in this paper is based on carry-propagation
addition, i.e., addition of two numbers to yield a single result.
A similar approach can be used for different types of additions,
e.g., using high-speed redundant carry-save additions where the
constant multiplications structures in [15] should be used in-
stead. It should also be noted that the number of bits involved
in each addition, and, hence, the number of full adder cells
required, differs between the additions [9]. Furthermore, the
number of cascaded additions may also be of interest to con-
sider. It is possible to consider this as well during the search
process described in the paper by simply adopting a different
cost measure when selecting the best solution. The presented
results focus on the number of additions only.

II. ADDITION AWARE QUANTIZATION

If the allowed wordlength is increased with E fractional
bits, the approximation error can be guaranteed to meet
e < 2-(N+E+D However, another way of using the additional
fractional bits is to realize that there are exactly 2 different
representable coefficients for which ¢ < 2-(V+1 including
the one obtained by rounding to N fractional bits. The basic
idea in this work is to search these 2F and select the coefficient
value that has the smallest approximation error for the allowed
complexity. The allowed complexity is typically assumed to
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Fig. 1. Possible coefficients with IV correct fractional bits using (a) N frac-

tional bits, (b) IV 4 1 fractional bits, and (c) NV + E fractional bits.

be the same number of additions as required by the coefficient
rounded to N fractional bits. We refer to this scheme as addi-
tion aware quantization. It should also be noted that in some
cases it is possible to find valid representations that require a
lower complexity compared to the rounded N fractional bits
coefficient. This is further illustrated in Section III.

To further illustrate the fact that there are 2 different solu-
tions consider Fig. 1(a) where the possible alternatives for NV
fractionalAbits are illustrated. Clearly, there is only one value,
denoted Ay, that meets the requirements. Now, increasing the
resolution with one bit gives the case in Fig. 1(b), where an ad-
ditional possible solution is available. The fact that it here hap-
pened to have a smaller approximation error is not crucial. In-
stead, we are interested in the fact that we have a second, al-
ternative, approximation. Finally, the general case with F extra
fractional bits is illustrated in Fig. 1(c).

There will be K g extra coefficients where k - 2= (N+E) L —
{1,2,3,...,K §} are subtracted from the N fractional bits ap-
proximation, Ay; see Fig. 1(c). Similarly, there will be K 4
extra coefficients where k - 2=(NH+E) | = (1,23, ... K4}
are added to /AlN. If AN > A (as in Fig. 1(a)), then

Ay — A
__ oE-1 N
Ks=2"""+ P (NTE) “)
otherwise we have
A-A
__oE-1 N
Ka=2"""+ 3= (NTE) )

where the other term can be determined by Kg+ K 4 = 2E 1.

III. DESIGN EXAMPLES

In this section, we provide a number of examples illustrating
the concept and results of addition aware quantization. The de-
sign examples also illustrate various ways of applying the addi-
tion aware quantization concept. For the addition costs we use
the optimal results in [9] for up to 19-bits coefficients. For longer
wordlengths the heuristic in [10] is used. The number of correct
fractional bits, CFB, is defined as

CFB = —log,[A— 4| 1= ~logye = 1. (6)

Clearly, there is a tradeoff between the number of extra bits

to search, and, hence, the offline computational complexity, and
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Fig. 2. Required number of additions for some rational coefficients.

TABLE I
RESULTS FOR CONSTANT MULTIPLICATION USING THREE ADDITIONS

Rounding Addition aware quantization
Coeflicient

CFB  Value | CFB Value

N .| 887 709
sinT =2 | 12693 181 | 12693 181
1629 13039
tan {5 [3] 13.029 &5 | 13.377 T
13367 32649 32649
2cos 500 [16] | 18.082 5522 | 18.082 I
1477 409 26163
2cos Fgag- [16] | 11219 55 | 11.385 Sres

the possible obtainable results, and, hence, the online computa-
tional complexity. It should be noted that eventually all newly
introduced coefficients will have such a large number of nonzero
positions that it is not possible to find realizations with the re-
quired number of additions [9], [11]. However, it is yet not
known if there exists such a bound based on the number of frac-
tional bits.

A. Rational Numbers

Multiplication with rational numbers (or division with inte-
gers) occurs frequently in some DSP algorithms. As many ra-
tional numbers have a repeating base-2 representation it means
that when the pattern has a suitable length it is possible to use
fewer additions compared to having a shorter wordlength. The
results of this are illustrated in Fig. 2. This also provides a good
example of that increasing the wordlength sometimes can de-
crease the addition complexity; the multiplication with 1/7 re-
quires five additions when rounded to 23 fractional bits, but only
three additions when rounded to 24 fractional bits.

B. Trigonometric Constants

Trigonometric constants occur in, e.g., FFTs, DCTs, and Go-
ertzel filters [3], [4], [16]. Furthermore, it is notable that con-
stants such as \/2 and /3 are special cases of trigonometric
constants. Here, we consider the best obtainable approximation
using three additions. The results are shown in Table I for a
number of different trigonometric constants found in the litera-
ture.

As can be seen the proposed methodology sometimes in-
creases the precision for a given complexity. However, it is not
always the case that coefficients exist with the same complexity
but higher precision, as illustrated for some of the coefficients.
With the proposed method this can be verified.

C. Cordic Scale Factor Compensation

The CORDIC algorithm is a method to compute certain
trigonometric and hyperbolic elementary functions based on
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TABLE II
RESULTS FOR CORDIC GAIN COMPENSATION MULTIPLICATION
Coeflicient  Additions CFB Value
155
2 8.130 556
9951
) 3 12.178 6381
Goo 39797
4 18.802 5536
326016439
5 27024 S3gsr0012
155
2 7.183 o8
9889
L 3 10.506 S193
o 4 20.167 158258
: 131072
162067517
5 24.000  {355177es

rotating vectors. However, each rotation introduces a magnitude
gain of the vector. This gain, after & iterations, is

k
Gy = H V14272 (7
i=0
for trigonometric operations and

k
Gp =[] V1-2-26-h) (8)
1=1

for hyperbolic operations!, cf. [17].

We consider compensation of the asymptotic gain factors, i.e.,
multiplication with 1/G}, and 1/G}, when k — oo. The results
are given in Table II and show the best possible approximations
using a given number of additions. The results for five additions
are given by the heuristic from [10], and, hence, those can not
be guaranteed to be optimal. As a final note, it can be seen that
1/G}, is almost two times larger than 1 A G'.. Hence, the number
of total correct bits is one more for 1/G}, for the same number
of correct fractional bits.

D. Joint Optimization of Several Factors

Sometimes a cascade of two or more constant multiplica-
tions are used. Then, the approximations of the individual mul-
tiplications are accumulated. While this may lead to cancella-
tion of approximation errors having negative signs, it may also
lead to that the total approximation error is larger than the in-
dividual approximation errors. The straightforward way of han-
dling this is to increase the wordlengths of the individual multi-
plications until the total error meets the specification. Addition
aware quantization provides a better way of obtaining this ac-
curacy increase.

This is illustrated using a reconfigurable double constant
multiplier for certain types of FFT algorithms as proposed
in [18]. The multiplier structure is shown in Fig. 3 and
it can multiply a single input with any of the coefficient
pairs  {(1,0), (sinw/8,cosm/8), (sinw/4,cosw/4)} using
only constant multiplications with sinzw/8 and cosw/8
by using that sinw/4 = cosw/4 = 2sinw/8cosm/8.

IThe factor %2; in (8) is defined as the largest integer such that 3"i+1 4+ 2k, —
1 < 2n. In practice this leads to that certain iteration angles, such that : =
(3m*1 —1)/2, are used twice to obtain convergence [17].
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Fig. 4. (a) Maximum approximation errors and (b) addition counts for the re-
configurable double constant multiplier is Fig. 3. Rounding (black), increasing
fractional bits (gray), and addition aware quantization (white).

The approximation error for the sinz/4 multiplication is
€sinm/a = 2COST/8€ginr/s + 28N T /8€cos r/s. Hence, it is
possible that even though the multiplications with sin 7/8 and
cos /8 are correct to N bits, the multiplication with sin /4
is only correct? to N — 2 bits.

To reduce the approximation error to the required level we
will use addition aware quantization. For each precision require-
ment we select the solution with smallest maximum approx-
imation error among those solutions with the smallest addi-
tion count. For comparison we will also use a straightforward
scheme based on increasing the number of fractional bits and
rounding, as discussed above. The results in terms of approxi-
mation error is shown in Fig. 4(a), where it can be seen that in
seven out of the 14 considered precisions, the rounded version
actually breaks the precision requirements for the sin 7 /4 multi-
plication. The results in terms of required number of additions is
shown in Fig. 4(b). Here, it can be seen that the proposed method
in rare cases even decrease the number of additions. The reason
that more additions are sometimes required is due to the fact that
in these cases the rounded version do not meet the specification
(compare to Fig. 4(a)). A benefit of the addition aware quanti-
zation scheme that is manifested in this example is the ability to
select coefficient values such that the signs and magnitudes of
the approximation errors cancel.

IV. CONCLUSION

In this work we have proposed addition aware quantization as
a way to find fixed-point coefficients suitable for shift-and-add

2 sinw/8 + cosw/8 = 1.3065629648763 > 1.
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realization of the corresponding multiplication. By searching
nearby coefficients it is often possible to find values that either
have a smaller approximation error with the same addition count
or, in some cases, a smaller addition count still meeting the error
specification. Several examples illustrated the usefulness and
the properties of the method.
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