
A Generalized Convolver

Johan Wiklund Hans Knutsson

Computer Vision Laboratory
Linköping University

581 83 Linköping, Sweden
email: jowi@isy.liu.se

Abstract

A scheme for performing generalized convolutions is presented. A flexible con-
volver, which runs on standard workstations, has been implemented. It is de-
signed for maximum throughput and flexibility. The implementation incorpo-
rates spatio-temporal convolutions with configurable vector combinations. It
can handle general multi-linear operations, i.e. tensor operations on multidimen-
sional data of any order. The input data and the kernel coefficients can be of ar-
bitrary vector length. The convolver is configurable for IIR filters in the time di-
mension. Other features of the implemented convolver are scattered kernel data,
region of interest and subsampling. The implementation is done as a C-library
and a graphical user interface in AVS (Application Visualization System).

1. Introduction
A procedure to perform convolutions on multi-dimensional data with arbitrary filter kernels
is a basic tool in image and signal processing [2, 3]. Typical input data are 1D signals, 2D
images, 3D volumes, 3D spatio-temporal image sequences and 4D volume sequences. Each
coordinate, (pixel, voxel, toxel), can contain a scalar value or a vector.

If the kernel and/or the input data has a vector length larger than one, a generalized con-
volution is needed. In this case the multiplication in the convolution is changed to a vector
combination. This type of multilinear convolution is in this paper termed generalized con-
volution. Examples of vector valued input data are color (RGB), 2D vector fields, 3D vector
fields, tensor fields etc.

A flexible convolver has been implemented that can perform generalized spatio-temporal
convolutions with arbitrary kernel data. The kernel coefficients can be scattered, i.e they
don’t need to be uniformly placed inside a box. The computational cost increases lineary
with the number of kernel coefficients, it does not depend on the size of the kernel bounding
box. A region of interest (ROI), e.g. a spatial rectangle in the input over which the convo-
lution should be applied, can be defined. Subsampling is user selectable and decreases the
computational cost for the convolution.

There are two basic classes of filters, FIR (finite impulse response) and IIR (infinite

impulse response) [1]. Both types of filters are supported by the convolver.

2. Generalized convolution
Convolution is defined as a product sum of a kernelK and input data I over a neghbourhoodm:

out(n) =Xm K(m) I(n�m) (1)

where m is the spatio-temporal coordinate in the kernel and n is the spatio-temporal coordi-
nate in the input.

In a more general case the kernel and/or the input data has a vector length larger than
one. This is common when working with multilinear operators, i.e. tensors. In this case the
multiplication in the convolution is changed to a vector combination defined by the operation
matrix M :

outo(n) =Xk;i Mo;k;iXm Kk(m) Ii(n�m) (2)

where subscripts means vector components and parameters in parenthesis means spatio-temporal
coordinates.n is an index indicating the spatio-temporal coordinate in the input and output data.m is an index indicating the spatio-temporal coordinate in the kernel.

outo is vector component o in the output data.Kk is vector component k of the kernel coefficients.Ii is vector component i in the input data.Mo;k;i defines the operation structure, i.e. the vector combination to use between input data
vectors and kernel coefficient vectors, for each output vector component.

2.1. Operation structure
The operation structure matrixM defines the type of operation to perform in the convolution.
The summation over the spatio-temporal neighbourhood (equation 2) is independent of the
structure matrix. It defines how the vector components in the kernel shall be combined with
the vector components in the input data. Currently the only allowed values in the operation
matrix are�1; 0 and 1. This restriction has the effect that no extra multiplications are needed
in the convolution computations (equation 2).

There are a number of predefined operation matrices that can be selected, i.e complex
multiplication, inner product and outer product. It is also possible to specify a user defined
matrix.

In the complex multiplication mode, both the input data and the kernel coefficients con-
sists of a two-component vector. The first component corresponds to the real part and the
second component corresponds to the imaginary part of a complex number. The operation

matrix that defines complex convolution looks like this:M0;k;i = � 1 00 �1 �M1;k;i = � 0 11 0 �
which corresponds to a complex multiplication of cartesian components:

outre = Kre � Ire �Kim � Iim
outim = Kre � Iim +Kim � Ire

If the input data or the kernel data just contains one component, i.e it is a scalar value, half
of the multiplications are unnecessary. The convolver detects such cases and skips those
multiplications, which leads to an increase of the speed with a factor of two. If both kernel
and input data are scalar, the computation collapses to an ordinary scalar convolution. In
this case the speed increases with a factor of four compared to a complex convolution. It
will, however, still produce complex output, with the imaginary part being zero. To perform
scalar convolutions, the inner product is used.

In the inner product mode, the input data and kernel data vector lengths has to be equal.
The output data becomes scalar. Equation 2 can be rewritten as

out(n) =Xi Xm Ki(m) Ii(n�m) (3)

In the outer product mode, the output data vector length equals the product of the input
data and the kernel data vector lengths. In this case, equation 2 can be rewritten as

outk;i(n) =Xm Kk(m) Ii(n�m) (4)

This mode gives the scalar convolution result for each component in the kernel with each
conponent in the input data.

More elaborate operations can be defined by defining a suitable structure matrix and
give it as input to the convolver. As example, consider a matrix multiplication where the
kernel and input data has four components each,Kk = [a b c d] and Ii = [e f g h], producing
an output vector outo = [p q r s]. Let the elements in these three vectors constitute 2 � 2
matrices: � p qr s � = � a bc d �� e fg h � = � ae+ bg af + bhce+ dg cf + dh �
This operation is defined by the following structure matrix M :M0;k;i = 0BB@ 1 0 0 00 0 1 00 0 0 00 0 0 0 1CCA M1;k;i = 0BB@ 0 1 0 00 0 0 10 0 0 00 0 0 0 1CCAM2;k;i = 0BB@ 0 0 0 00 0 0 01 0 0 00 0 1 0 1CCA M3;k;i = 0BB@ 0 0 0 00 0 0 00 1 0 00 0 0 1 1CCA

3. Convolution with IIR filters
The convolver is capable to deal with IIR filters in the time dimension. The reason for not
implementing IIR functionality in the spatial dimensions is that there seems not to be any
obvious advantages to use such filters spatially. Futhermore, IIR implementation in more
than one dimension can be a problem.

An IIR filter may be implemented in direct form by expressing one output sample in
terms of the input samples and previously computed output samples.y(k) = nXi=0 ci u(k � i)� nXi=1 di y(k � i) (5)

In figure 1, a realization of an IIR filter is shown.

:
:
:

:
:
:

u(k)

c0

c1

cn−1

cn +

y(k)

T T T T T T

d1

d2

dn

Figure 1: Realization of IIR filter, direct form I.

In figure 2, a realization of the same filter is shown that only needs half the number of
delays. This realization is called direct form II and is described by the following equations:w(k) = u(k)� nXi=1 di w(k � i) (6)y(k) = nXi=0 ci w(k � i)

The direct form II structure reduces the amount of storage required by allowing stor-
age to be shared between the feedback and feedforward loops. This realization scheme is
used in the convolver, because it minimizes the size needed for the spatio-temporal buffer.
Futhermore, it makes it possible to implement IIR convolution as an add-on to the FIR con-
volution. Consider equation 6; if the weights di is zero, then the equation is similar to a FIR
convolution. This means that a IIR filter is implemented as two parts; one feedback part (first
row in equation 6) and one feedforward part (second row in equation 6).

c0 c1 c2 cn

y(k)

u(k)
T T T

d1 d2 dn

+

+

w(k)

.

.

Figure 2: Realization of IIR filter, direct form II.

4. Convolver structure
Figure 3 shows the structure of the generalized convolver. The input data, scalar or vec-
tor valued, is shifted into the spatio-temporal buffer. The feedback part of the IIR-filter (if
present) operates on this buffer, and the result is added to the input at the beginning of the
buffer. Then the FIR-filter is applied and the final result is stored on the output.

FIR

In Spatio−Temporal buffer Out

IIR

Figure 3: Convolver structure

The size of the spatio-temporal buffer is decided by the size of the kernel and the size of
the input data. The spatial size equals the size of the input plus the borders needed to keep the
kernel inside the buffer during the convolution. The temporal size equals the kernel span in
the time dimension. The number of frames from the current frame to the origin in the kernel
defines the delay in the filter. It is possible to increase the delay. This has shown to be useful
when different parallel convolutions with different delays has to be synchronized. This is
implemented by adding space for additional frames to the beginning of the spatio-temporal
buffer.

The design decision to keep the whole frames, for the time span needed, in memory
is based on efficiency and simplicity. It is efficient because the frames are never moved be-
tween different memory locations, they stay in place until they are not needed anymore. It
is simple because there is no need for swapping part of frames in to and out from memory.

Even concerning memory usage it is feasible, a typical application may be seven 512� 512
frames in the buffer which equals 7 Mb. The spatio-temporal buffer is maintained automat-
ically and adapts to the present kernel and input data.

5. Implementation
The convolver is implemented as a number of library functions. Some of these maintains
multi-dimensional arrays in memory as efficient as possible. Others deal with the actual con-
volution and format conversions. Input data can be byte, short, int or float type. All compu-
tations is done in float precision. This has shown to be faster than performing the convolution
in integer precision on standard platforms. Another important advantage with calculations
in float precision is that normalization is straight forward and there is no problem with over-
flow or resolution in the product sum. The library is written in C. The convolver application
is implemented in AVS (Application Visualization System) [4], in which the user interface is
defined. AVS is an interactive visualization environment, in which algorithms easily can be
designed and tested using visual programming, i.e. by choosing and interconnecting program
modules graphically.

Figure 4: Input parameter interface for the convolver.

Figure 4 shows the user interface for the parameters that controls the behaviour of the
convolver. This control panel is connected to the module “Convolve ST” in figure 5. This

Convolve ST

Lowpass filter

image viewer

imf crop

Figure 5: AVS network including the convolver.

network consists of four modules, “Lowpass filter” creates an averaging kernel, “imf crop”
reads image data from file and “image viewer” displays the result in a window on the screen.

6. Performance tests
A number of tests has been carried out to get timing information for different convolution
modes, image and kernel sizes. The tests has been performed on a SUN Sparc 10 with one
40Mhz cpu. To be able to compare the different timing results, a convolution rate measure
has been calculated. The convolution rate (Cr) is defined as:Cr = Kc � Ih � Iwt (7)

whereCr is the convolution rate.Kc is the number of kernel coefficients. The coefficients can be scalar or vector-valued.Ih is the height of the output image.Iw is the width of the output image.t is the convolution time in micro-seconds.

The convolution rate is a similar measure as Mflops (Million floating point operations per
second). It could be described as Million vector combinations per second.

Convolution time (seconds)

Image size Coefficients
wid�hgh 9 25512� 512 0.67 1.84512� 256 0.36 0.95512� 128 0.18 0.48256� 512 0.37 0.95128� 512 0.19 0.49

Convolution rate

Image size Coefficients
wid�hgh 9 25512� 512 3.52 3.56512� 256 3.28 3.45512� 128 3.28 3.41256� 512 3.93 3.45128� 512 3.10 3.34

Table 1: Convolution performance, scalar kernel coefficients and scalar image data.

In table 1 the performance for scalar convolution is shown. As can be seen, the con-
volution rate is independent of the number of coefficients in the kernel and the size of the
image. This means that the speed is proportional to the number of multiplications needed.

Table 2 shows the performance for complex convolution. Three different cases can
occur:� Real kernel, real image. The same case as scalar convolution. This case requires one

multiplication per coefficient.� Real kernel, complex image (or vice versa). This case requires two multiplications per
coefficient. One for the real part and one for the imaginary part.� Complex kernel, complex image. This case requires four multiplications per coeffi-
cient. Two for the real part and two for the imaginary part.

Convolution time (seconds)

Image size real real complex
wid�hgh real complex complex512� 512 4.04 8.10 16.41512� 256 2.02 4.05 8.29512� 128 1.04 2.04 4.11256� 512 2.02 4.04 8.14128� 512 1.05 2.08 4.14

Convolution rate

Image size real real complex
wid�hgh real complex complex512� 512 3.17 1.58 0.78512� 256 3.17 1.59 0.77512� 128 3.09 1.57 0.78256� 512 3.17 1.59 0.79128� 512 3.06 1.54 0.78

Table 2: Complex convolution performance.

Subsampling performance

Output size performance
wid�hgh time rate512� 512 5.06 3.57512� 256 2.52 3.59512� 128 1.29 3.51512� 64 0.64 3.53256� 512 2.89 3.13128� 512 1.79 2.5264� 512 1.25 1.81

Table 3: Subsampling performance, scalar convolution.

As can be seen the convolution rate only depends on the type of complex operation; the ratio
between the cases are 4:2:1.

In table 3 the performance for subsampling of a 512� 512 scalar image using a scalar
kernel with 69 coefficients is shown. There is a decrease of the convolution rate for subsam-
pling along the x-axis, the reason is not clear.

7. Software availability
The software described is available via anonymous ftp at isy.liu.se, in the file
pub/bb/convolver.tar.gz.

References
[1] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing.

Prentice-Hall signal processing series. Prentice-Hall, 1984. ISBN 0-13-604959-1.

[2] G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer Aca-
demic Publishers, 1995. ISBN 0-7923-9530-1.

[3] B. Jähne. Spatio-Temporal Image Processing: Theory and Scientific Applications.
Springer Verlag, Berlin, Heidelberg, 1993. ISBN 3-540-57418-2.

[4] C-J Westelius, J. Wiklund, and C-F Westin. Prototyping, visualization and simulation
using the application visualization system. In H. I. Christensen and J.L. Crowley, editors,
Experimental Environments for Computer Vision and Image Processing, volume 11 of
Series on Machine Perception and Artificial Intelligence, pages 33–62. World Scientific
Publisher, 1994. ISBN 981-02-1510-X.

