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Abstract

A schemefor performing generalized convolutionsis presented. A flexible con-
volver, which runs on standard workstations, has been implemented. It is de-
signed for maximum throughput and flexibility. The implementation incorpo-
rates spatio-temporal convolutions with configurable vector combinations. It
can handlegeneral multi-linear operations, i.e. tensor operationson multidimen-
sional data of any order. Theinput dataand the kernel coefficients can be of ar-
bitrary vector length. The convolver isconfigurablefor IR filtersinthetimedi-
mension. Other featuresof theimplemented convolver are scattered kernel data,
region of interest and subsampling. The implementation is done as a C-library
and a graphical user interfacein AV'S (Application Visualization System).

1. Introduction

A procedureto perform convolutions on multi-dimensional datawith arbitrary filter kernels
isabasic tool in image and signal processing [2, 3]. Typical input data are 1D signals, 2D
images, 3D volumes, 3D spatio-temporal image sequences and 4D volume sequences. Each
coordinate, (pixel, voxel, toxel), can contain ascalar value or a vector.

If the kernel and/or theinput datahasavector lengthlarger than one, ageneralized con-
volution is needed. In this case the multiplication in the convolution is changed to a vector
combination. This type of multilinear convolutionisin this paper termed generalized con-
volution. Examplesof vector valued input dataare color (RGB), 2D vector fields, 3D vector
fields, tensor fields etc.

A flexible convolver hasbeenimplemented that can perform generalized spatio-temporal
convolutions with arbitrary kernel data. The kernel coefficients can be scattered, i.e they
don’t need to be uniformly placed inside a box. The computational cost increases lineary
with the number of kernel coefficients, it does not depend on the size of the kernel bounding
box. A region of interest (ROI), e.g. a spatial rectangle in the input over which the convo-
[ution should be applied, can be defined. Subsampling is user selectable and decreases the
computational cost for the convolution.

There are two basic classes of filters, FIR (finite impulse response) and IR (infinite



impulse response) [1]. Both types of filters are supported by the convolver.

2. Generalized convolution

Convolutionis defined asaproduct sum of akernel K and input data I over aneghbourhood
m:

out(n) = > K(m)I(n —m) (1)

wherem isthe spatio-temporal coordinatein the kernel and . isthe spatio-temporal coordi-
nate in the input.

In amore general case the kernel and/or the input data has a vector length larger than
one. Thisis common when working with multilinear operators, i.e. tensors. In this case the
multiplicationin the convolutionis changed to avector combination defined by the operation
matrix M:

out,(n) =Y Moki Y Kr(m) Ii(n —m) )
k,i m

where subscripts meansvector componentsand parametersin parenthesismeans spatio-temporal
coordinates.

n isan index indicating the spatio-temporal coordinate in the input and output data.
m isan index indicating the spatio-temporal coordinate in the kernel.

out, isvector component o in the output data.

K, isvector component & of the kernel coefficients.

I; is vector component ¢ in the input data.

M, ..; definesthe operation structure, i.e. the vector combination to use between input data
vectorsand kernel coefficient vectors, for each output vector component.

2.1. Operation structure

Theoperationstructurematrix M definesthetype of operationto performinthe convolution.
The summation over the spatio-temporal neighbourhood (equation 2) is independent of the
structure matrix. It defines how the vector componentsin the kernel shall be combined with
the vector componentsin the input data. Currently the only allowed valuesin the operation
matrix are —1, 0 and 1. Thisrestriction hasthe effect that no extramultiplicationsare needed
in the convolution computations (equation 2).

There are a number of predefined operation matrices that can be selected, i.e complex
multiplication, inner product and outer product. It is also possible to specify a user defined
matrix.

Inthe complex multiplication mode, both theinput dataand the kernel coefficientscon-
sists of a two-component vector. The first component corresponds to the real part and the
second component corresponds to the imaginary part of a complex number. The operation



matrix that defines complex convolution looks like this:
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which corresponds to a complex multiplication of cartesian components:
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If the input data or the kernel data just contains one component, i.e it is a scalar value, half
of the multiplications are unnecessary. The convolver detects such cases and skips those
multiplications, which leads to an increase of the speed with a factor of two. If both kernel
and input data are scalar, the computation collapses to an ordinary scalar convolution. In
this case the speed increases with a factor of four compared to a complex convolution. It
will, however, still produce complex output, with theimaginary part being zero. To perform
scalar convolutions, the inner product is used.

Intheinner product mode, theinput dataand kernel datavector lengthshasto beequal.
The output data becomes scalar. Equation 2 can be rewritten as

out(n) = Z > Ki(m) Ii(n —m) ©)

In the outer product mode, the output data vector length equal sthe product of the input
data and the kernel data vector lengths. In this case, equation 2 can be rewritten as

outy, ;(n) = Z Ky(m) Ii(n —m) (4)

This mode gives the scalar convolution result for each component in the kernel with each
conponent in the input data.

More elaborate operations can be defined by defining a suitable structure matrix and
give it as input to the convolver. As example, consider a matrix multiplication where the
kernel and input datahasfour componentseach, K, = [abcd] and I; = [e f g h], producing
an output vector out, = [p ¢ r s]. Let the elementsin these three vectors constitute 2 x 2

matrices:
p g\_[a b e f\ _( ae+bg af+bh
r s ) \e d g h ) \ ce+dg cf-+dh

This operation is defined by the following structure matrix M:

100 0 0100
0010 00 0 1
Moki=1 0 0 0 o Miki=19 0 0 0
0000 000 0
0000 00 0 0
0000 00 0 0
My i 1000 M i 01 0 0
0010 00 0 1




3. Convolution with IIR filters
The convolver is capable to deal with IIR filters in the time dimension. The reason for not
implementing 1R functionality in the spatial dimensionsis that there seems not to be any
obvious advantages to use such filters spatially. Futhermore, IIR implementation in more
than one dimension can be a problem.

An [IR filter may be implemented in direct form by expressing one output samplein
terms of the input samples and previously computed output samples.

y(k) :Zciu(k_i)_zdiy(k_i) )

Infigure 1, aredization of an IR filter is shown.

u(k)

Figure 1: Realization of IR filter, direct form 1.

Infigure 2, arealization of the samefilter is shown that only needs half the number of
delays. Thisrealization is called direct form Il and is described by the following equations:

w(k) = u(k)—Zdiw(k—i) (6)

y(k) = Zcz'w(k — 1)

Thedirect form Il structure reduces the amount of storage required by allowing stor-
age to be shared between the feedback and feedforward loops. This realization schemeis
used in the convolver, because it minimizes the size needed for the spatio-temporal buffer.
Futhermore, it makesit possible to implement IR convolution as an add-on to the FIR con-
volution. Consider equation 6; if the weights d; is zero, then the equationissimilar to aFIR
convolution. Thismeansthat allR filter isimplemented astwo parts; onefeedback part (first
row in equation 6) and one feedforward part (second row in equation 6).
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Figure 2: Redlization of IIR filter, direct form 1I.

4. Convolver structure

Figure 3 shows the structure of the generalized convolver. The input data, scalar or vec-
tor valued, is shifted into the spatio-temporal buffer. The feedback part of the IIR-filter (if
present) operates on this buffer, and the result is added to the input at the beginning of the
buffer. Then the FIR-filter is applied and the final result is stored on the outpuit.

FIR

In || I~ Spatio—Temporal buifer Out

Figure 3: Convolver structure

Thesize of the spatio-temporal buffer isdecided by the size of the kernel and the size of
theinput data. Thespatial size equalsthesize of theinput plusthe bordersneeded to keep the
kernel inside the buffer during the convolution. The temporal size equalsthe kernel spanin
the time dimension. The number of frames from the current frameto the origin in the kernel
definesthe delay in thefilter. It is possibleto increase the delay. This has shown to be useful
when different parallel convolutions with different delays has to be synchronized. Thisis
implemented by adding space for additional frames to the beginning of the spatio-temporal
buffer.

The design decision to keep the whole frames, for the time span needed, in memory
is based on efficiency and simplicity. It is efficient because the frames are never moved be-
tween different memory locations, they stay in place until they are not needed anymore. It
is simple because there is no need for swapping part of framesin to and out from memory.



Even concerning memory usage it isfeasible, atypical application may be seven 512 x 512
framesin the buffer which equals 7 Mb. The spatio-temporal buffer is maintained automat-
ically and adaptsto the present kernel and input data.

5. Implementation

The convolver is implemented as a number of library functions. Some of these maintains
multi-dimensional arraysin memory asefficient aspossible. Othersdeal with theactual con-
volution and format conversions. Input data can be byte, short, int or float type. All compu-
tationsisdonein float precision. Thishasshown to befaster than performingthe convolution
in integer precision on standard platforms. Another important advantage with calculations
in float precision isthat normalizationis straight forward and there is no problem with over-
flow or resolution in the product sum. Thelibrary iswrittenin C. The convolver application
isimplementedin AVS (Application Visualization System) [4], in which the user interfaceis
defined. AV Sisan interactive visualization environment, in which algorithms easily can be
designed and tested using visual programming, i.e. by choosing and interconnecting program
modules graphically.
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Figure 4: Input parameter interface for the convolver.

Figure 4 shows the user interface for the parameters that controls the behaviour of the
convolver. This control panel is connected to the module “Convolve ST” in figure 5. This

Lowpass filter imf crop
Convolve ST

image viewer
|

Figure 5: AVS network including the convolver.




network consists of four modules, “Lowpassfilter” creates an averaging kernel, “imf crop”
readsimage datafromfile and “image viewer” displaystheresultin awindow on the screen.

6. Performance tests

A number of tests has been carried out to get timing information for different convolution
modes, image and kernel sizes. The tests has been performed on a SUN Sparc 10 with one
40Mhz cpu. To be able to compare the different timing results, a convolution rate measure
has been calculated. The convolution rate (C'.) is defined as:

K.y 1,

Cr
t

()
where
C, isthe convolution rate.
K. isthe number of kernel coefficients. The coefficients can be scalar or vector-valued.
I, isthe height of the output image.
I, isthe width of the output image.
t is the convolution time in micro-seconds.

The convolution rate is a similar measure as Mflops (Million floating point operations per
second). It could be described as Million vector combinations per second.

| Convolutiontime (seconds) | | Convolution rate |

Imagesize | Coefficients Imagesize | Coefficients
widxhgh | 9 25 widxhgh | 9 | 25

512 x 512 | 0.67 184 512 x 512 | 3.52 | 3.56
512 x 256 | 0.36 | 0.95 512 x 256 | 3.28 | 3.45
512 x 128 | 0.18 | 0.48 512 x 128 | 3.28 | 341
256 x 512 | 0.37 | 0.95 256 x 512 | 3.93 | 345
128 x 512 | 0.19 | 0.49 128 x 512 | 3.10 | 3.34

Table 1: Convolution performance, scalar kernel coefficients and scalar image data.

In table 1 the performance for scalar convolution is shown. As can be seen, the con-
volution rate is independent of the number of coefficients in the kernel and the size of the
image. This means that the speed is proportional to the number of multiplications needed.

Table 2 shows the performance for complex convolution. Three different cases can
occur:

¢ Real kernel, real image. The same case as scalar convolution. This case requires one
multiplication per coefficient.

¢ Real kernel, compleximage (or viceversa). Thiscase requirestwo multiplicationsper
coefficient. One for thereal part and one for the imaginary part.

e Complex kernel, complex image. This case requires four multiplications per coeffi-
cient. Two for the real part and two for the imaginary part.



| Convolution time (seconds) | | Convolution rate

Imagesize | red real complex Imagesize | rea real complex
widxhgh | rea | complex | complex widxhgh | rea | complex | complex
512 x 512 | 4.04 8.10 16.41 512 x 512 | 3.17 158 0.78
512 x 256 | 2.02 4.05 8.29 512 x 256 | 3.17 159 0.77
512 x 128 | 1.04 2.04 411 512 x 128 | 3.09 157 0.78
256 x 512 | 2.02 4.04 8.14 256 x 512 | 3.17 159 0.79
128 x 512 | 1.05 2.08 4.14 128 x 512 | 3.06 154 0.78

Table 2: Complex convolution performance.

Subsampling performance |

Output size | performance
widxhgh | time | rate
512 x 512 | 5.06 | 3.57
512 x 256 | 252 | 3.59
512 x 128 | 1.29 | 351
512x 64 | 0.64 | 3.53
256 x 512 | 2.89 | 3.13
128 x 512 | 1.79 | 2.52
64 x 512 | 1.25 | 1.81

Table 3: Subsampling performance, scalar convolution.

As can be seen the convolution rate only depends on the type of complex operation; theratio
between the cases are 4:2:1.

In table 3 the performancefor subsampling of a512 x 512 scalar image using ascalar
kernel with 69 coefficientsis shown. Thereisadecrease of the convolution rate for subsam-
pling along the x-axis, the reason is not clear.

7. Software availability

The software described is available viaanonymousftpati sy. | i u. se, inthefile
pub/ bb/ convol ver.tar. gz.
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