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Abstract

In this paper we propose a new operator which combines advantages of
monogenic scale-space and Gaussian scale-space, of the monogenic signal
and the structure tensor. The gradient energy tensor (GET) defined in
this paper is based on Gaussian derivatives up to third order using dif-
ferent scales. These filters are commonly available, separable, and have
an optimal uncertainty. The response of this new operator can be used
like the monogenic signal to estimate the local amplitude, the local phase,
and the local orientation of an image, but it also allows to measure the
coherence of image regions as in the case of the structure tensor.

1 Introduction

In this paper we define a way to compute features of the monogenic scale-space
[6] of an image from Gaussian derivatives. The advantages of the proposed
method are:

• Many people have implementations of Gaussian derivatives available so
that they can use monogenic features without implementing new basis
filters.

• The Gaussian derivatives are separable and decay faster than the Poisson
filter and its Riesz transform resulting in more efficient computational
schemes.

• The additional feature (coherence) of the derivative-based method directly
indicates the validity of the monogenic phase model which is based on the
assumption of locally 1D signals.

A key assumption of this paper is of course that the local phase is useful for the
processing and analysis of images. Although most of the discussions focus on
images, the reflections about phase based signal processing generalize to signals
of arbitrary dimension.

∗This work has been supported by EC Grant IST-2002-002013 MATRIS and EC Grant
IST-2003-004176 COSPAL.
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1.1 The 2D Energy Tensor

For continuous, 2D bandpass signals b(x), the 2D energy tensor is defined as [4]

Ψc[b(x)] = [∇b(x)][∇b(x)]T − b(x)[Hb(x)] , (1)

where∇ = (∂x, ∂y)T indicates the gradient and H = ∇∇T indicates the Hessian.
Switching to the Fourier domain, this equals∫

Ψc[b(x)] exp(−i2πuT x) dx = 4π2{−[uB(u)]∗[uB(u)]T +B(u)∗[uuTB(u)]} ,

(2)
where B(u) (u = (u, v)T ) is the 2D Fourier transform of b(x). If the local signal
is approximated by an impulse spectrum B(u) = Aδ(u−u0) + Āδ(u + u0), the
left part of (2), i.e., the structure / orientation tensor according to [7, 1] (but
without spatial averaging), yields

−[uB(u)]∗ [uB(u)]T = −u0uT
0 (A2δ(u−2u0)−2AĀδ(u)+Ā2δ(u+2u0)) . (3)

The right part of (2) gives the same expression, but with a positive sign for the
second term,

B(u) ∗ [uuTB(u)] = u0uT
0 (A2δ(u− 2u0) + 2AĀδ(u) + Ā2δ(u + 2u0)) , (4)

such that ∫
Ψc[b(x)] exp(−i2πuT x) dx = 16π2u0uT

0 |A|2δ(u) . (5)

The energy tensor is a second order symmetric tensor like the structure
tensor. The latter is included in the energy operator, but it is combined with a
product of even filters, which assures the phase invariance as it can be seen in
(5). The energy tensor can hence be classified as a phase invariant, orientation
equivariant second order tensor [13]. Same as the 2D structure tensor, the energy
operator can be converted into a complex double angle orientation descriptor
[2]:

o(x) = Ψc[b(x)]11 −Ψc[b(x)]22 + i2Ψc[b(x)]12 (6)

which is equivalent to the 2D energy operator defined in [12]. As one can
easily show, |o(x)| = λ1(x) − λ2(x), where λ1(x) > λ2(x) are the eigenvalues
of the energy tensor. Since the trace of the tensor is given by the sum of
eigenvalues, we obtain 2λ1,2 = tr(Ψc[b(x)]) ± |o(x)|, which can be subject to
the same analysis in terms of coherence as suggested in [10, 8] or for the Harris
detector [9]. However, a minor problem might occur in the case of not well
defined local frequencies: the second term in (1), i.e., the tensor based on even
filters, can become positive, corresponding to reduced or negative eigenvalues
of the energy tensor. Furthermore, the operator (1) cannot be applied directly
since natural images I(x) are typically no bandpass signals b(x). For these
reasons and in order to compute the derivatives for discrete data, the operator
has to be regularized. This regularization gives rise to the GET operator, which
is defined in the subsequent section.
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2 The GET Operator

As pointed out above, the energy tensor needs to be regularized. For this
purpose, we prefer Gaussian functions due to their high localization in both
domains. However, Gaussian filters are not DC-free, which is a central require-
ment in context of the energy tensor. If we consider a difference of Gaussian
filters as in [4], we implicitly lift the level of differentiation by two. According
to the equation of linear diffusion [11], the scale derivative of a Gaussian filter
is equivalent to the Laplacian of the Gaussian, i.e., a combination of second or-
der derivatives. Applying the Hessian to the Laplacian of the Gaussian means
to consider fourth order derivatives instead of second order derivatives. The
operator that we propose below is a compromise between these two cases: it
makes use of Gaussian derivatives up to order three, but avoids the zeroth order
Gaussian, i.e., the DC-component is removed.

2.1 The Gradient Energy Tensor

The idea to define the gradient energy tensor (GET) is straightforward after the
previous considerations. We introduce the tensor in three steps. First, we plug
the gradient of the image into (1) and use tensor notation instead of matrix
notation:

GET {I(x)} = Ψc[∇I(x)]
= [∇⊗∇I(x)]⊗ [∇⊗∇I(x)] (7)

−1
2
([∇I(x)]⊗ [∇⊗∇⊗∇I(x)] + [∇⊗∇⊗∇I(x)]⊗ [∇I(x)])

where we symmetrized the tensor by replacing the second term by the corre-
sponding anticommutator term1. The obtained operator has 16 coefficients,
where 6 can be omitted due to symmetry and one further coefficient is a linear
combination of two others. Hence, 9 independent coefficients are left.

In a second step, we contract the tensor. This becomes possible, since there
is no gain from the coefficients that are omitted in the contraction:

GET {I(x)} = [∇⊗∇I(x)] · [∇⊗∇I(x)]

−1
2
([∇I(x)]⊗ [∇ · ∇ ⊗∇I(x)] + [∇⊗∇ · ∇I(x)]⊗ [∇I(x)])

= [HI(x)][HI(x)]− [∇I(x)][∇∆I(x)]T + [∇∆I(x)][∇I(x)]T

2
(8)

In this formula ∆ = ∇T∇ denotes the Laplacian. To understand why there is
no gain in preserving the other coefficients, one has to consider certain different
cases. Assuming that I(x) = cos(ux+ v y + φ), we obtain for the full tensor

GET {I(x)} =


[
u4 u3 v
u3 v u2 v2

] [
u3 v u2 v2

u2 v2 u v3

]
[
u3 v u2 v2

u2 v2 u v3

] [
u2 v2 u v3

u v3 v4

]
 =

u
2

[
u2 u v
u v v2

]
u v

[
u2 u v
u v v2

]
u v

[
u2 u v
u v v2

]
v2

[
u2 u v
u v v2

]


1We appreciate this suggestion given by Ullrich Köthe.
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and for the contracted tensor

GET {I(x)} =
[
u2

(
u2 + v2

)
u v

(
u2 + v2

)
u v

(
u2 + v2

)
v2

(
u2 + v2

)]
. (9)

Hence, no information is lost by the contraction under the assumed signal model.
If we extend the model to two different frequencies in the same direction, the
tensor coefficients are multiplied by a modulation factor. However, this mod-
ulation is the same for all coefficients, and therefore, the full tensor does not
provide additional information. By repeating this procedure for more frequen-
cies in the same direction, the result will always be the same, and hence, of
locally 1D signals there is no gain from the full tensor.

If we assume the signal to contain two perpendicular oscillations, i.e., I(x) =
cos(ux+ v y+ φ) + cos(l v x− l u y+ψ), the contracted tensor shows no modu-
lations:

GET {I(x)} =
[
u4 +

(
1 + l4

)
u2 v2 + l4 v4 −

((
−1 + l4

)
u v

(
u2 + v2

))
−

((
−1 + l4

)
u v

(
u2 + v2

)) (
u2 + v2

) (
l4 u2 + v2

) ]
,

(10)
but the full tensor does. Performing the contraction, the modulations exactly
compensate each other, which is a final and very strong argument to use the
tensor in its contracted form. As it can be seen from this example, the 2 × 2
tensor obtained from (8) allows to estimate two perpendicular oscillations with
different frequencies at the same time, i.e., it covers the same model as the
structure multivector in [3].

2.2 Regularization and Gaussian Derivatives

The results from the previous section are obtained for idealized, continuous
signals. In practice, however, we have to deal with non-ideal, noisy, and discrete
signals. The most common thing to do is therefore to regularize the derivative
operators from (8) with Gaussian kernels. A Gaussian regularization is the
optimal choice if nothing is known about the signal and its noise characteristic.
Therefore, we replace the derivatives in (8) with Gaussian derivatives of order
one to three.

2.3 Extraction of Monogenic Features

The monogenic signal provides three features: local amplitude, local phase,
and local orientation [5]. In case signals with intrinsic dimensionality one, i.e.,
I(x) = s(nT x) (s : R → R, |n| = 1), the GET is of rank one:

GET {I(x)} = [nnT s̈(nT x)][nnT s̈(nT x)]

− [nṡ(nT x)][n
...
s (nT x)]T + [n

...
s (nT x)][nṡ(nT x)]T

2
= nnT [s̈(nT x)2 − ...

s (nT x)ṡ(nT x)] .

The first eigenvector of this expression is ±n, i.e., the local orientation of the
signal. The first eigenvalue (or its trace, aka the second eigenvalue is zero) of
the GET is more difficult to analyze, except for the single-frequency case, where
we obtain according to (9) 16π4|u|4A2 for an oscillation with amplitude A.
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Much more interesting is the extraction of the local phase, which is obtained
in two steps. First, we consider the two addends of the GET separately. The
first one represents the symmetric (even) parts of the signal, whereas the second
one represents the antisymmetric (odd) parts of the signal. However, both parts
are quadratic expressions, such that we have to consider their square-roots:

qeven = ±
√

trace(Teven) and qodd = ±
√

trace(Todd) where
Teven = [HI(x)][HI(x)] and (11)

Todd = − [∇I(x)][∇∆I(x)]T + [∇∆I(x)][∇I(x)]T

2
. (12)

In a second step, the correct signs for both parts are selected, such that arg(qeven+
iqodd) gives the local phase of the signal. A careful comparison of the signs in
different quadrant results in the following procedure. Let T = Teven + Todd

denote the GET response, z = T11 − T22 + i2T12 its complex double angle
orientation representation [2], and o = (real(

√
z), imag(

√
z))T the orientation

vector. We then define the two signs as

seven = −sign (oT [HI(x)]o) and sodd = −sign (oT∇I(x)) (13)

such that

ϕ = arg(qeven + iqodd) = arg(seven
√

trace(Teven) + isodd

√
trace(Todd)). (14)

If the underlying signal is non-simple, i.e., it has intrinsic dimensionality two,
the analysis becomes more difficult. Following the strategy of the structure
multivector in [3], the first eigenvector is extracted from T. Then, the even
tensor and the odd tensor are projected onto the first eigenvector and onto the
orthogonal vector (aka the second eigenvector). This gives two even components
and two odd components, which are then combined with appropriate signs to
extract two phases for the two perpendicular orientations.

Note also that in the latter case not a single amplitude is obtained, but two
eigenvalues, which correspond to the local amplitudes of the two perpendicular
components. These eigenvalues can then be used for coherence analysis or corner
detection likewise the eigenvalues of the structure tensor.

3 Conclusion

In this paper we have described an alternative way of extracting the image
features of the monogenic signal, i.e., local amplitude, local phase, and local
orientation, by using a quadratic form. The proposed method of the gradi-
ent energy tensor is the contraction of a fourth order tensor built from image
derivatives of order one to three. The new tensor is compatible to the structure
tensor concerning eigensystem analysis, but it is phaseinvariant without spatial
averaging. Using Gaussian regularization of the derivatives leads to a connec-
tion of monogenic scale-space and Gaussian scale-space via the quadratic form.
We provided formulas to extract the local phase from the two different parts of
the GET. For non-simple signals, it even provides the two additional features
of second eigenvalue and second phase, which makes it comparable to the much
slower structure multivector.
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