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Abstract

Analog-to-digital converters based on sigma-delta modulation have shown promising performance, with

steadily increasing bandwidth. However, associated with the increasing bandwidth is an increasing modulator

sampling rate, which becomes costly to decimate in the digital domain. Several architectures exist for the digital

decimation filter, and among the more common and efficient are polyphase decomposed FIR filter structures.

In this paper, we consider such filters implemented with partial product generation for the multiplications, and

carry-save adders to merge the partial products. The focus is on the efficient pipelined reduction of the partial

products, which is done using a bit-level optimization algorithm for the tree design. However, the method is

not limited only to filter design, but may also be used in other applications where high-speed reduction of

partial products is required.

The presentation of the reduction method is carried out through a comparison between the main archi-

tectural choices for FIR filters: the direct-form and transposed direct-form structures. For the direct-form

structure, usage of symmetry adders for linear-phase filters is investigated, and a new scheme utilizing partial

symmetry adders is introduced. The optimization results are complemented with energy dissipation and cell

area estimations for a 90nm CMOS process.

Index Terms

FIR, Polyphase, Sigma-Delta, CIC, Optimization, Integer Linear Programming, Decimation, Digital Filter,

Carry-Save



3

I. INTRODUCTION

Oversampling can significantly simplify the implementation and/or increase the performance of analog-

to-digital converters (ADCs) and digital-to-analog converters (DACs) [7]. As the converters are oversampled

the data rate must be changed, and, hence, we must either decimate (ADC) or interpolate (DAC) the signal.

In this work we consider decimation filter implementations of high-speed ADCs, specifically those based

on Σ∆-modulation [18]. One key feature of Σ∆-modulation, apart from being oversampled, is that the data

wordlength is short, often much shorter than the final resolution. Hence, we primarily focus on decimation

filters with short wordlengths, but the techniques are generalizable to arbitrary wordlengths. Decimation is

often performed in several stages to allow for simpler decimation filters at each stage, so that the overall

complexity is reduced [20], [22]. It is worth noting that the wordlength differ between the stages. Especially,

for ADCs based on Σ∆-modulation the wordlength often increases significantly after the first stage.

Many decimation filters for Σ∆-modulators are based on cascaded integrator comb (CIC) filters (also

known as moving average filters) for the first filter stage. The impulse response of an N -tap (order N − 1)

CIC filter is

H(z) =
1

N

N−1
∑

i=0

z−i =
1

N

1 − z−N

1 − z−1
(1)

If the number of taps, N , is selected as N = M , where M is the decimation rate, the CIC filter has

zeros at πi/M rad for i = 1, 2, . . . ,M , i.e., the angles that are folded to 0 (corresponding to DC) during

the decimation. To increase the attenuation, several CIC filters, say L, are cascaded. Such a filter is often

referred to as a sincL-filter.

One possible realization of a CIC filter is to directly use the rightmost expression in (1) [6], [12]. This leads

to a low arithmetic complexity as only 2L adders are required. However, the wordlength of the integrators

(accumulators) in a CIC filter is significantly longer than the input wordlength, which may lead to problems

obtaining high throughput as the integrators operate at the input sampling rate. This can be alleviated by

the use of redundant arithmetic in the integrators [16] or parallelizing the integrators to operate at a lower

sampling rate.

Recent implementation studies have shown that it is more advantageous, from a power consumption point

of view, to compute the impulse response of the cascaded filters and realize the resulting linear-phase FIR

filter using polyphase decomposition. Several different architectures have been proposed [1], [10], [11],

[15]. Furthermore, using general FIR filters instead of CIC filters allows an arbitrary set of filter coefficients,

optimized for a suitable cost function. This is especially useful when using Σ∆-modulators with arbitrary zero

positioning for the noise transfer function. In this work we consider the architecture choices for polyphase

decomposed FIR filters. The focus is on decimation filters for high-speed Σ∆-modulators, typically in the

GHz range [17], so a short critical path is needed in the decimation filter. The examples are based on CIC

filters due to their common use in Σ∆-converters, although it is possible to implement arbitrary FIR filters

using the same approach.



4

In [1], [10], [11], [15], different methods of generating partial products for given filters were investigated.

However, in this paper the focus is rather on the generation of an efficient pipelined reduction tree. This is

done through a formulation as an integer linear programming (ILP) problem, with which a bit-level optimized

reduction tree can be obtained. As cost function for the optimization algorithm, a weighted sum of the number

of full adders, half adders, and registers is used. The model is similar to that presented in [14], but was not

formulated as an ILP problem there.

Compared with the traditional heuristic methods: Wallace trees [21], Dadda trees [8], and Reduced Area

[4] trees, the bit-level optimization yields better results for a number of reasons. The aggressive use of half

adders in Wallace trees leads to fast reductions, but generally a more efficient use of half adders is possible.

The Dadda structure uses half adders more restrictively only to try to maximize the opportunities to use full

adders. However, only placing full adders as late as possible makes the structure unsuitable for pipelining.

It is also the case that the heuristics work well for reduction trees for general multipliers but less so for

other reduction trees. For example, the Reduced Area heuristic is claimed to be optimal in terms of hardware

resources for general multipliers, but simulations provided in this paper show that this is not necessarily the

case for general partial product trees. Moreover, the heuristics do not consider that partial products might be

added at different levels in the reduction tree, which is the case for several of the architectures considered

in this paper.

It should be noted that the techniques in this paper can be applied to reduction trees in other applications

as well. One possible application is Merged arithmetic [19], where the results of several multiplications are

summed in a carry-save adder tree, similarly to the filter architectures in this paper. Other examples are

high-speed complex multipliers implemented using distributed arithmetic [3], and implementation of general

functions as sums of weighted bit-products [13].

A preliminary version of this work was earlier presented in [5]. In the current work, a direct-form

architecture utilizing partial symmetry adders has been included, different coefficient representations have

been investigated, and the optimization problem has been extended to allow signed-digit coefficients. Also,

power dissipation estimations have been included.

The rest of the paper is organized as follows. In Sec. II, the considered architectures are described. In

Sec. III, theoretical estimates of the architectures’ implementation complexities are provided. Formulations

of the architecture optimization as ILP problems are presented in Sec. IV, and simulation results are given

in Sec. V. Finally, conclusions are in Sec. VI.

II. ARCHITECTURES

The suitability of the two main architectures for FIR filters are investigated: the direct-form (DF) archi-

tecture, and the transposed direct-form (TF) architecture. Both architectures are implemented using partial

product generation to realize the filter coefficient multiplications, and carry-save adders (CSA) to efficiently

reduce the number of partial products. Finally, the CSA output is merged to a non-redundant binary output
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using a vector merge adder (VMA).

The direct-form (DF1) architecture is depicted in Fig. 1 . In this architecture, a delay chain at the input Fig 1

provides the algorithmic delays, and an adder tree sums the partial products generated from the taps. An

interesting characteristic of the direct-form architecture is its ability to utilize the symmetry of linear-phase

FIR filter coefficients. This architecture is depicted in Fig. 2 , and is denoted the DF2 architecture. The benefit Fig 2

of utilizing the symmetry is that the number of multiplications is halved. However, in the application of high-

speed decimation filters, this feature is not necessarily efficient because of the need for short critical paths.

The inability to implement the symmetry adders using carry save arithmetic leads to excessive use of registers

in pipelined ripple-carry adders. This can be readily observed in the experimental results in Section V. A

solution to this problem is suggested in [9], but demonstrated in [11] to have limited efficiency. As a possible

solution instead we consider using partial symmetry, by this we mean dividing the symmetry adders into

smaller blocks of adders as illustrated in Fig. 3 . This will reduce the register complexity, as the carry Fig 3

propagation chain is broken, but leads to slightly more partial products compared to full symmetry. The

partial symmetry architecture is referred to as the DF3 architecture.

The TF architecture is depicted in Fig. 4 . For high-speed decimation filters, the TF architecture may provide Fig 4

a more register-efficient realization, as the algorithmic delay elements are also used as pipelining registers

in the summation tree. Because of the architecture’s limited ability to utilize filter coefficient symmetry,

however, the TF architecture may require more adders than the direct-form architecture. The reasons that

we cannot utilize symmetry are two: first, the symmetric multiplier may be connected to a different input

beacuse of the polyphase decomposition, second, we do not compute each multiplication explicitly, instead

we merge all multiplications in a single stage to one carry-save tree. As we restrict the number of cascaded

adders in each stage, there may be additional CSA stages to reduce the number of partial products before

the VMA. Hence, the output of each CSA stage is not necessarily represented using at most two bits for

each bit weight.

For both the DF architectures and the TF architecture, the result after partial product generation is a number

of partial products with different bit weights and different delays. The general structure for the summation

tree is shown in Fig. 5 , where the carry-save adder is divided into J stages. The stages are separated by Fig 5

pipeline registers, and input is accepted in each stage. Each stage has the structure shown in Fig. 6 , allowing

Fig 6a maximum adder depth of K levels. Again, partial products may be added in every level. Considering the

investigated architectures, for the DF1 architecture all partial products are added in the first level of the first

stage. For the TF architecture partial products are added in the first level of several stages, as the pipeline

registers are also used as algorithmic delays. Finally, partial products are added in several levels of the first

stages for the DF2 and DF3 architectures, as the inputs are delayed by the symmetry adders.
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A. Partial Product Generation

As the multiplier coefficients are known it is not required to use general multipliers. Instead we generate

only the partial products corresponding to non-zero coefficient bits and add these. Here, we will discuss how

to generate partial products using different representations of the coefficients and also using both signed and

unsigned input data.

An input data X with a wordlength of wd bits can be written as

X =

wd−1
∑

i=0

xi2
i (2)

for unsigned data with an input range of 0 ≤ X ≤ 2wd − 1 and

X = −xwd−12
wd−1 +

wd−2
∑

i=0

xi2
i (3)

for signed (two’s complement) data with an input range of −2wd−1 ≤ X ≤ 2wd−1 − 1, where for both

(2) and (3) xi ∈ {0, 1}. Note that the input data is considered to be integer instead of fractional. However,

this is only to be consistent with the numbering used later on, where the bits corresponding to the smallest

weight (the LSBs) have index 0.

Similarly, the wc-bits coefficients, h(n), can be written as

h(n) =

wc−1
∑

j=0

hn,j2
j (4)

and

h(n) = −hn,wc−12
wc−1 +

wc−2
∑

j=0

hn,j2
j , (5)

where hn,j ∈ {0, 1}.

The output of a Σ∆-modulator is often a positive integer. Therefore, only (2) must be considered. Also,

for a cascade of CIC filters all the impulse response coefficients have positive values. Hence, we will initially

consider partial product generation of unsigned data and unsigned coefficients. An unsigned multiplication

of an input data and a filter coefficient can be written as

Xh(n) =

(

wd−1
∑

i=0

xi2
i

)





wc−1
∑

j=0

hn,j2
j



 =

wc−1
∑

j=0

wd−1
∑

i=0

hn,jxi2
i+j . (6)

Now, as some of the hn,j-bits are known to be zero, we only need to add bits corresponding to non-zero

hn,j .

If we instead use a signed-digit (SD) representation of the coefficient, i.e., hn,j ∈ {−1, 0, 1}, the number of

non-zero hn,j can be decreased. A signed-digit representation with a minimum number of non-zero positions

is called a minimum signed-digit (MSD) representation. In general there is no unique MSD representation,

but introducing the constraint that no two adjacent positions should both be non-zero, i.e., hn,jhn,j+1 = 0

will result in the canonic signed-digit (CSD) representation, which is both unique and minimum.
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Using a SD representation now require that we can subtract partial products instead of just adding them.

By enabling subtraction we also at the same time enable signed input data and coefficients. Equation (6)

will now contain partial products which may be both positive and negative. Now, note that −a = ā − 1 for

a ∈ {0, 1}. Hence, negative partial products can be handled by inverting the partial product and adding a

constant number. The constant numbers corresponding to all partial products can be merged to one constant

binary number in the filter computation. In Fig. 7 the partial products resulting from multiplying a three-bits Fig 7

signed input with the coefficient 29 is illustrated for both binary and CSD representation of the coefficient.

The corresponding constants to add are −4− 16− 32− 64 = −116 and −4− 4− 8− 128 = −144 for the

binary and CSD representation, respectively. It should be noted that for the TF architecture, the output will

be correct only after the first ⌈(N − 1)/M⌉ samples. If correct output from the first sample is required, one

solution is custom initialization of each stage register.

III. IMPLEMENTATION COMPLEXITY

A. Adder complexity

As only the full adders reduce the number of partial products, the required number of full adders for

the carry-save summation tree can be easily calculated as the difference between the number of generated

partial products and the output wordlength. For the DF1 architecture and the TF architecture, the number of

generated partial products can be written wd(N + 1)Na, where N is the filter order, and Na is the average

number of non-zero digits in the filter coefficients. For the DF2 architecture, the number of coefficients is

halved, whereas the input wordlength is increased by one due to the symmetry adders. Thus the number

of generated partial products can be written (wd + 1)
⌈

N+1
2

⌉

Na. Finally, for the DF3 architecture, each

symmetry adder increases its input wordlength with one, and hence the total number of partial products

can be written
(

wd +
⌈

wd

S

⌉) ⌈

N+1
2

⌉

Na, assuming that partial symmetry adder groups of S bits are used.

Depending on the representation used for coefficient and input data there may also be a number of constant

ones to add.

In all architectures, the required number of output bits, assuming the general case with signed full-scale

data and signed coefficients, can be written wout = wd +log2

∑

|h(k)|, where h(k) is the impulse response.

Thus the required number of full adders can be written

NFA,DF1 = NFA,TF = wd((N + 1)Na − 1) − log2

∑

|h(k)| (7)

for the DF1 architecture and the TF architecture,

NFA,DF2 = (wd + 1)

⌈

N + 1

2

⌉

Na − wd − log2

∑

|h(k)| (8)

for the DF2 architecture, and

NFA,DF3 =
(

wd +
⌈wd

S

⌉)

⌈

N + 1

2

⌉

Na − wd − log2

∑

|h(k)| (9)
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for the DF3 architecture. Also, the complexity of the symmetry adders for the DF2 architecture is
⌈

N+1
2

⌉

wd-bit adders, resulting in a number of adder cells equal to

NFA,sym,DF2 = (wd − 1)

⌈

N + 1

2

⌉

(10)

and

NHA,sym,DF2 =

⌈

N + 1

2

⌉

. (11)

For the DF3 architecture the number of partial symmetry adders is wd/S
⌈

N+1
2

⌉

S-bit adders, resulting in

a number of adder cells equal to

NFA,sym,DF3 =
(

wd −
⌈wd

S

⌉)

⌈

N + 1

2

⌉

(12)

and

NHA,sym,DF3 =
⌈wd

S

⌉

⌈

N + 1

2

⌉

. (13)

Using these equations, the total required number of adders for the DF architectures can be calculated.

It should be noted, however, that the equations (7)–(9) does not take into account the half adders that are

usually needed to rearrange the partial products, but nevertheless an approximate condition can be determined

for when the DF2 architecture results in a structure with smaller adder complexity compared with DF1. This

condition is

NFA,DF1 > NFA,DF2 + NFA,sym,DF2 + NHA,sym,DF2, (14)

which can be approximated to

wd >
Na

Na − 1
, (15)

if the costs of half and full adders are considered equal. However, as the half adders of the CSA trees have

been ignored, the condition should be considered as a guideline rather than as a strict rule. In the investigated

application where, typically, both wd and Na are low, utilizing the coefficient symmetry often does not lead

to reduced adder complexity.

B. Register complexity

Regarding the register complexity, it is possible to find expressions that are asymptotically valid. However,

for the considered applications these expressions convey little information, and expressions that are valid for

low filter orders and short wordlengths are difficult to find. Thus, the register complexities due to algorithmic

delays are calculated here, whereas those due to pipelining of the adder trees are determined experimentally.

For the DF architectures, the algorithmic delays are applied at the input, and the register complexity due

to these can be written

NR,DF1 = wdN . (16)

If the symmetry of the coefficients is utilized, the implementation carries an additional complexity due to

pipelining of the symmetry adders. The way the pipelining is done is shown in Fig. 8 . In addition to the Fig 8
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registers needed to restrict the length of the critical path, registers are also placed at the outputs of the full

adders just before the cuts. The reason for this is the definition of the reduction trees in Sec. IV, which does

not accept inputs just before pipeline cuts. If an n-bit ripple-carry adder with a maximum of m adders in

the critical path is considered, the required number of pipeline registers can be written

NR,RC(n,m) =

⌊n/m⌋
∑

k=1

2(n − mk + 1). (17)

The register complexity of the DF2 architecture can then be written

NR,DF2 = wdN +

⌈

N + 1

2

⌉

NR,RC(wd,K), (18)

where K is the maximum allowed number of adders in cascade. For the partial symmetry case, the number

of registers is smaller (for S < wd). The number of registers, assuming S = nK for an integer n, is

NR,DF3 = wdN +

⌈

N + 1

2

⌉

(⌊wd

S

⌋

NR,RC(S,K) + NR,RC(wd mod S,K)
)

. (19)

For (18) and (19) it is assumed that no sharing of registers between the algorithmic delays and symmetry

adder pipeline registers has been performed. If sharing is considered, the register complexity of the DF2

architecture can be written

NR,DF2 = wdN +
⌊wd

K

⌋

(N + 1) +

M−1
∑

m=0

⌈N+1−m

M ⌉−1
∑

i=0

⌊wd

K ⌋
∑

k=1+i

(wd − Kk). (20)

If, for simplicity, wd = jS for an integer j is assumed, the register complexity of the DF3 architecture can

be written

NR,DF3 = wdN + jn(N + 1) + j

M−1
∑

m=0

⌈N+1−m

M ⌉−1
∑

i=0

n
∑

k=1+i

(S − Kk). (21)

For the TF architecture, the algorithmic delays are merged with the pipeline registers, and all registers are

in the adder tree.

IV. ILP OPTIMIZATION

Denote the stage height, i.e., the maximum number of cascaded adders, by K, as in Fig. 6. Denote also the

number of stages by J , as in Fig. 5. Furthermore, denote the output wordlength by wout, and the number of

input partial products in each stage j, level k and bit position b by INBITS j(k, b), k ∈ {0, 1, 2, . . . ,K−1},

b ∈ {0, 1, 2, . . . , wout − 1}. As variables for the ILP problem, the number of full adders FAj(k, b) and half

adders HAj(k, b) are used, with the same parameter bounds as INBITS . The resulting number of partial

products in each level is denoted BITS j(k, b), and is defined BITS0(0, b) = INBITS0(0, b) for the first

level of the first stage. As each full adder reduces three partial products to one of the same weight and one

of the next higher weight, and each half adder converts two partial products to one of the same weight and

one of the next higher, the resulting number of partial products in each following level can be written

BITS j(k + 1, b) = BITS j(k, b) + INBITS j(k, b)

− 2FAj(k, b) − HAj(k, b) + FAj(k, b − 1) + HAj(k, b − 1), (22)
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for k ∈ {0, 1, 2, . . . ,K − 1}, b ∈ {0, 1, 2, . . . , wout − 1}, and with variables equal to zero for out-of-bounds

arguments. The relations between the BITS variables are depicted in Fig. 9 . Connections between the stages Fig 9

are defined by

BITS j+1(0, b) = BITS j(K, b). (23)

Variables REGS j(b) denoting the number of pipeline registers for each stage are defined by

REGS j(b) = BITS j(K, b). (24)

Thus, registers are added for all signals between the stages, as shown in Fig. 10 . The number of adders in Fig 10

each level is limited by the constraint

3FAj(k, b) + 2HAj(k, b) ≤ BITS j(k, b) + INBITS j(k, b), (25)

as the number of adder inputs can not exceed the number of partial products, for each level k and bit position

b. Also, in order to utilize a VMA to sum the output, the number of output bits from the last stage is limited

to 2 by the condition

BITSJ−1(K, b) + INBITSJ−1(K, b) ≤ 2, (26)

for b ∈ {0, 1, 2, . . . , wout −1}. Costs are defined for full adders, half adders and registers as CFA, CHA, and

CREG, respectively, and the filter structure is optimized by minimizing the sum

C = CFA

J−1
∑

j=0

∑

k,b

FAj(k, b) + CHA

J−1
∑

j=0

∑

k,b

HAj(k, b)+

+ CREG

J−1
∑

j=0

∑

b

REGS j(b) (27)

The optimization problem as specified by (22)–(27) does not consider the length of the VMA. However,

it may be possible to significantly reduce the length by introducing half adders to the least significant bits.

The optimization problem can be modified to achieve a shorter VMA by adding a constraint to limit the

number of output partial products to one for a number m of the least significant bits. This can be done by

the constraint

BITSJ−1(K, b) + INBITSJ−1(K, b) ≤ 1, (28)

for b ∈ {0, 1, 2, . . . ,m − 1}.

Whereas the problem as formulated is sufficient to find the optimal filter for a given architecture, the

problem complexity can be significantly reduced by the addition of additional constraints. In particular, there

will never be a reason, in terms of efficient reduction of the number of partial products, not to insert a full

adder where at least three partial products are available. Hence, the number of full adders in a given position

can be defined based on the number of partial products available as

FAk(l, b) =

⌊

BITSk(l, b) + INBITSk(l, b)

3

⌋

, (29)
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which can be formulated as two linear constraints for each variable.

It should be noted that the optimization problem, as formulated, is independent of the coefficient represen-

tation, i.e., binary as well as any signed-digit representation may be used. However, if signed digits are used,

either if the data is signed or if the coefficient contains negative digits, a constant term must be added to the

sum, as discussed in Section II-A. As the placement of the term in the tree is arbitrary, the problem can be

modified to insert the bits where they fit well. How to formulate the optimization problem to accomodate

for the constant term is explained in IV-E. In IV-A to IV-D, the presented architectures are formulated as

initial conditions for the optimization problem. In these formulations, the coefficient digits hn,j are defined

as in (4) or (5), with hn,j ∈ {0, 1} for binary coefficients and hn,j ∈ {−1, 0, 1} for signed-digit coefficients.

A. DF1 architecture

For the DF1 architecture, all partial products are inserted in the first adder stage. The sum of the partial

products is
∑N

n=0

∑wd−1
j=0

∑wc−1
i=0 |hn,i| 2

i+j . Substituting b = i + j and rearranging the sums allows the

number of bitproducts of weight b to be written

INBITS0(0, b) =

N
∑

n=0

wd−1
∑

j=0

|hn,b−j | . (30)

B. DF2 architecture

If the direct-form architecture is modified to utilize coefficient symmetry, the symmetry adders will add

additional delay. Thus, the partial products involving bit 0 (the LSB) of the data are added in level 1, the

partial products involving bit 1 of the data are added in level 2, and so on. Generally, the number of initial

partial products in stage j and level k can be written

INBITS j(k, b) =

(N+1)/2
∑

n=0

|hn,b−Kj−k+1| (31)

for 1 ≤ Kj + k ≤ wd − 1, and

INBITS j(k, b) =

(N+1)/2
∑

n=0

(|hn,b−Kj−k+1| + |hn,b−Kj−k|) (32)

for Kj + k = wd.

C. DF3 architecture

For the partial symmetry case, the contributions of the different adders are separated. Assuming that a

symmetry width of S adders is used, the partial products can be split into ⌈wd/S⌉ bins, where the first

contains partial products from the S least significant data bits, the next bin contains partial products from

the next S least significant data bits, and so on. Denoting the contribution from bin m by Bm
j (k, b), the

contributions for m = 0, 1, 2, . . . , ⌈wd/S⌉ − 1 can be written
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Bm
j (k, b) =

(N+1)/2
∑

n=0

|hn,b−Kj−k−mS+1| (33)

for 1 ≤ Kj + k ≤ wd − 1, and

Bm
j (k, b) =

(N+1)/2
∑

n=0

(|hn,b−Kj−k−mS+1| + |hn,b−Kj−k−mS |) (34)

for Kj + k = wd. For m = ⌈wd/S⌉, the contribution can be written

Bm
j (k, b) =

(N+1)/2
∑

n=0

|hn,b−Kj−k−mS+1| (35)

for 1 ≤ Kj + k ≤ (wd mod S) − 1, and

Bm
j (k, b) =

(N+1)/2
∑

n=0

(|hn,b−Kj−k−mS+1| + |hn,b−Kj−k−mS |) (36)

for Kj + k = wd mod S. Finally, the combined contribution is the sum of the partial symmetry adder

contributions

INBITS j(k, b) =

⌈wd/S⌉
∑

m=0

Bm
j (k, b) (37)

D. TF architecture

Denoting the polyphase factor by M , for the TF architecture the first M filter coefficient will be inserted

in the last adder stage, the next M coefficients in the stage before, and so on. Thus, the number of initial

partial products can be written

INBITSJ−j−1(0, b) =

M(j+1)−1
∑

n=Mj

wd−1
∑

t=0

|hn,b−t| . (38)

E. Constant term placement

If either the coefficient or the data contains digits with a negative sign, a constant compensation term must

be added to the carry-save tree. However, these bits may be placed in an arbitrary stage, and in this section

it is explained how the problem may be modified to place the bits optimally in terms of hardware resources.

Define the constant, in two’s complement representation, as

C = −cwout−12
wout−1 +

wout−2
∑

b=0

cb2
b, (39)

where cb ∈ {0, 1}. Then define the ILP variables CBITS j(b) ∈ {0, 1} for j ∈ {0, 1, 2, . . . , J − 1}, b ∈

{0, 1, 2, . . . , wout − 1}, and add the constraint

J−1
∑

j=0

CBITS j(b) = cb (40)

for b ∈ {0, 1, 2, . . . , wout − 1}. Redefine (23) to

BITS j+1(0, b) = BITS j(K, b) + CBITS j+1(b) (41)

in order to add the constant bits to the carry-save tree.
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V. RESULTS

In this section, the different architectures are compared, and the choice of coefficient representation is

investigated. For the energy and area estimations, a VHDL generator has been used to generate synthesizable

VHDL code. The complete software package with ILP problem and VHDL code generator is available at

http://www.es.isy.liu.se/software/hsfir/.

A. Architecture Comparison

Two filters have been used to evaluate the optimization algorithm, and the relative performance of the

architectures. The filters are based on 4-tap and 16-tap moving average filters, M = 4 and M = 16,

respectively. Both filters consist of three cascaded filters (L = 3). In all simulations, the numbers of full

adders correspond to those given by (7) and (8), and the number of registers given by (16) and (18) were

added to the optimized result for the DF1 and DF2 architectures, respectively. The filters were optimized

using the ILP problem solver SCIP [2] with the costs CFA = 3, CHA = 2, and CREG = 3. Even though

the area of a full adder is roughly twice that of a half adder, it was chosen to increase the half adder cost

slightly as the routing associated to one full adder is likely less than that of two half adders. However, it

should be noted that the optimization results seldom differ to those obtained using the more common costs

of CFA = 2, CHA = 1, and CREG = 2.

The optimized filters have been compared with filters obtained using the Reduced Area [4] heuristic. The

Reduced Area heuristic is claimed to minimize the number of registers when used in a pipelined multiplier

reduction tree. However, it is interesting to note that this is in general not true for the bitproduct matrices

resulting from filters implemented with carry-save adder trees. Especially for the TF architecture, the bit-level

optimized adder trees may result in significantly reduced register usage, while also using fewer half adders.

Figure 11 shows the impact of the pipeline factor on the first filter with short wordlengths. For the 4-tap Fig 11

filter, Na = 1.8, and according to (15) utilizing the coefficient symmetry does not lead to reduced arithmetic

complexity for wd < 2.25, and the DF2 architecture has thus not been included. Also, the half adder

complexity was equal to 6 for all filters. It can be seen that the bit-level optimized filters use significantly

less registers, especially for heavily pipelined implementations. It can also be seen that the TF architecture

has a lower register complexity except for implementations with large stage height and one bit input.

In Fig. 12 and Fig. 13 , respectively, the energy dissipation and active cell area (excluding routing) are Fig 12

Fig 13

shown. The area and energy measures are based on a 90 nm standard cell library using Synopsys Design

Compiler. The energy estimations are obtained using a zero-delay model and assuming uncorrelated input

data. In the considered application, using a zero-delay model is expected to yield relevant results as the

amount of glitches is small due to the short critical paths. Also, as decimation filter for a sigma-delta ADC

the assumption of uncorrelated input data is considered to be relevant.

In Fig. 14 , the total cost of the optimized filters are shown. These include additional logic and arithmetic Fig 14

such as the algorithmic delays for the DF1 architecture and the adders used in the ripple-carry VMA, which
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are not considered in the optimization. By comparing Fig. 14 with Figs. 12 and 13, it can be concluded that

the used cost function is a relevant measure for optimizing both energy dissipation and cell area. Whereas

energy dissipation and cell area in general do not have a strong correlation, they can be expected to correlate

well when the amount of glitches is small and uncorrelated input data is used. Thus, in the rest of this paper,

only complexity results and energy dissipation results will be presented as cell area and cost are similar to

energy dissipation.

In Fig. 15 , the implementation complexity of the 16-tap filter is shown, using one bit input data. It is Fig 15

apparent that the bit-level optimized filter for the TF architecture offers a lower register complexity, while

also reducing the number of half adders.

Figures 16 and 17 show the adder and register complexity, respectively, for increasing input wordlength Fig 16

Fig 17

wd for the 4-tap filter. The stage height is K = 2. For the 4-tap filter, Na = 1.8, and according to (15) the

DF2 architecture has a lower arithmetic complexity for wd > 2. However, even for wd = 6, the reduction in

arithmetic complexity is small compared to the increase in number of registers, as seen in Fig. 17. Energy

dissipation estimations are shown in Fig. 18 , where also simulation results of the DF3 architecture have Fig 18

been included.

B. Coefficient Representation

Different coefficient representations have been investigated for two filters shown in Fig. 19 . Using signed- Fig 19

digit coefficients yields a small decrease in energy dissipation. That the gain is not larger is because the

additional constant vector is relatively large compared with the number of bit-products for such small filters.

Also, the simulation has not taken into account the fact that adders with a constant bit input may be simplified.

It can be expected that the difference between binary and MSD coefficients would increase as the data and/or

coefficient wordlength increases.

VI. CONCLUSION

In this paper, a method for bit-level optimization of pipelined carry-save reduction trees was proposed.

The focus was on high-speed structures with a moderate number of partial products, such as those resulting

from polyphase FIR decimation filters aimed at sigma-delta analog-to-digital converters. Typically in these

applications, the wordlengths involved are small, and the filter coefficients are simple, limiting the number

of partial products.

The algorithm was used to optimize filter realizations using both the direct-form and transposed direct-

form architectures. For the direct-form architectures, utilizing the symmetry of the linear-phase coefficients

was considered, and a form of partial symmetry limiting the number of pipeline registers for the symmetry

adders was additionally considered. It was found that the transposed direct-form architecture provides the

implementation with the lowest complexity in most cases, and that the register costs of the symmetry adders

do not generally motivate the reduced arithmetic complexity achievable using the direct-form architecture.
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The resulting costs of the optimized filters were compared with energy estimations, and it was concluded

that the used costs are suitable for optimizing both energy dissipation and cell area. Also, it was shown

how the optimization algorithm can be modified to allow for signed-digit coefficients, and simulations were

provided showing the decrease in power dissipation for the transposed direct-form architecture.
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Figure captions:

Fig. 1: Direct-form architecture (DF1).

Fig. 2: Direct-form architecture utilizing coefficient symmetry (DF2).

Fig. 3: Partial symmetry adder

Fig. 4: Transposed direct-form architecture (TF).

Fig. 5: Carry-save adder tree pipelined in J stages.

Fig. 6: One stage of a carry-save adder tree, with a maximum of K adders in the critical path.

Fig. 7: Resulting partial products when multiplying a three-bits signed data with 29 in (a) binary representation

and (b) CSD representation. White dots corresponds to negated partial products.

Fig. 8: Pipelined ripple carry adder.

Fig. 9: Relations between the BITS variables in the ILP problem.

Fig. 10: Relations between the stages in the ILP problem.

Fig. 11: Register complexity comparison of FIR CIC filters with M = 4 and L = 3.

Fig. 12: Energy dissipation estimations of FIR CIC filters with M = 4 and L = 3.

Fig. 13: Synthesized cell area of FIR CIC filters with M = 4 and L = 3.

Fig. 14: Cost of optimized FIR CIC filters with M = 4 and L = 3.

Fig. 15: Register/HA complexity of bit-level optimized FIR CIC filters with M = 16, L = 3, and wd = 1.

The number of half adders is 12 or 13 for all simulations.

Fig. 16: Adder complexity of FIR CIC filters with M = 4, L = 3, and K = 2.

Fig. 17: Register complexity of FIR CIC filters with M = 4, L = 3, and K = 2.

Fig. 18: Energy dissipation estimations of TF, DF1, DF2 and DF3 architectures with M = 4, L = 3, and

K = 2.

Fig. 19: Binary and MSD coefficients for FIR CIC filters with M = 4, L = 4 and M = 8, L = 3.
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Fig. 9. Relations between the BITS variables in the ILP problem.
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