Optimal Dimension Reduction for Array Processing
– Generalized*

Sören Anderson† and Arye Nehorai

Department of Electrical Engineering
Yale University
New Haven, CT 06520

EDICS Category: 3.6, 3.8.

Abstract

This correspondence extends previously reported work [1, 2] on the problem, or rather possibility, of achieving optimality of beamspace (BS) array processing, where use is made of dimensionally reduced data vectors. The optimality here is with respect to the best possible element space (ESP) parameter estimation accuracy, i.e., the Cramér-Rao bound.

1 Introduction

The topic of sensor array signal processing deals with methods for processing measurements of an array of sensors. Some typical applications are radio telescopy, where signals emitted by radio sources are measured by means of antenna groups and passive sonar, where hydrophone arrays are used for collecting data. The problem in these applications is to detect and estimate incoming signals in order to determine, for example, the locations of the emitting sources.

The interest in performance improvement for model parameter estimation algorithms can result in antenna arrays composed of a large number of sensor elements. Since the computational requirements are directly affected by the dimension of the collected data, the burden increases rapidly with the number of sensors. This is the case, e.g., for the maximum likelihood estimator, but also for the more recently developed high-resolution methods based on eigendecomposition of the array covariance matrix. These latter methods, which by a “direct” approach (using the non-reduced, or element space (ESP), data vectors), requires a number of operations proportional to the cube of the the dimension of the ESP data vectors, [3]. Therefore, in order to secure efficient

*This work was supported by the Air Force Office of Scientific Research under Grant no. F49620-93-1-0006, the Office of Naval Research under Grant no. N00014-91-J-1298, and the National Science Foundation under Grant no. MIP-9122733.

†On leave from the Department of Electrical Engineering, Linköping University, S-581 83 Linköping, Sweden.
computation of the algorithms it is useful to introduce some sort of mapping that reduces the dimension of the data set before applying signal processing algorithms. Another advantage is that if the transformation matrix is implemented using analog technology, there is a need for a smaller number of analog-to-digital converters, as compared to the number needed for ESP computations. The space into which the set of full dimensional data is mapped is referred to as the (reduced dimension) beamspace (BS).

One approach to reduce the amount of computations is to employ a linear (matrix) transformation for mapping the full dimension ESP data into the lower dimensional BS, and then apply a signal processing algorithm to this new set of data. The design of the matrix transformation is guided by some subjective criterion as, for instance: selection of spatial sector, [4, 5, 6], maximization of average signal-to-noise ratio within a specified sector, [7, 8], or minimization of output interference power (assuming a priori knowledge of the interference scenario), [9]. In [10], the design is made by analytic determination of a transformation matrix through minimization of the BS signal-to-noise ratio (SNR) at which two closely spaced emitters can be resolved. The derivation is carried out using the framework of the MUSIC algorithm, [11].

The main purpose of this correspondence is to generalize the previously reported analysis [1, 2] of under which circumstances it is possible to retain the property of asymptotically achieving the full-dimension Cramér-Rao Bound (CRB), while reducing the dimension of the data set used for the estimation of the underlying model parameters. As shown in [1, 2], it is possible to obtain analytical expressions for the requirements to be met by an optimal transformation matrix. These expressions rely on knowledge of the functional form of the array (calibrated array of arbitrary geometry) and the true values on the parameters-of-interest. This last condition is, however, not limiting the possibilities of using the results derived to outline a design method.

The generalization considered herein consists of the employment of a more general data model and the corresponding Cramér-Rao bound. This model was used in [12] for modeling of electromagnetic wavefronts by means of vector sensors. Therein, the derivation of the Cramér-Rao bound for this more general model can be found. In [13], the same model is used for the modeling of acoustic vector sensor measurements.

The main difference between the model considered here and the one employed in [1, 2] is that we now can allow for multiple parameters per emitter, as well as for vector sensor data.

2 The Data Model and Its Cramér-Rao Bound

In this section the employed measurement model is briefly reviewed. Moreover, the corresponding Cramér-Rao bound expression, as derived in [12], is also given.
2.1 A Generalized Measurement Model

The basic (narrowband) data model we will consider here is of the following form, where we assume that the number of vector sensors are \(m \) and the number of sources to be \(n \). The employed vector sensor is a device that is able to deliver, at its output, multiple measurements of different wave phenomena as, in [12] for example, the complete electric and magnetic field components at the sensor or as in [13], the acoustic pressure and particle velocity vector. The model is the following,

\[
y(t) = A(\theta)x(t) + e(t),
\]

where \(y(t) \in \mathbb{C}^{\frac{\pi}{\gamma} \times 1} \) is the observed array output vector at time instant \(t \), whereas \(e(t) \in \mathbb{C}^{\frac{\pi}{\gamma} \times 1} \) is an additive measurement noise vector. Assuming that the \(n \) emitters each generate unknown vectors of wave fronts \(x^{(k)}(t) \in \mathbb{C}^{
u_k \times 1} \), \(k = 1, \ldots, n \), with \(x^{(k)}(t) \) being the vector signal of the \(k^{th} \) source, we have \(x(t) \in \mathbb{C}^{\frac{\pi}{\gamma} \times 1} \) where \(\bar{\mu} = \sum_{k=1}^{n} \nu_k \). We thus obtain the vector \(x(t) \) by stacking the \(x^{(k)}(t) \)'s on top of each other, see (5). The transfer matrix \(A(\theta) \in \mathbb{C}^{\frac{\pi}{\gamma} \times \pi} \) and the parameter vector \(\theta \in \mathbb{R}^{\frac{\pi}{\gamma} \times 1} \) are given by

\[
A(\theta) = \begin{bmatrix} A_1(\theta^{(1)}) & \cdots & A_n(\theta^{(n)}) \end{bmatrix} \quad \quad (2)
\]

\[
\theta = \begin{bmatrix} (\theta^{(1)})^T & \cdots & (\theta^{(n)})^T \end{bmatrix}^T, \quad \quad (3)
\]

with \(A_k(\theta^{(k)}) \in \mathbb{C}^{\frac{\pi}{\gamma} \times \nu_k} \) and the parameter vector for the \(k^{th} \) source \(\theta^{(k)} \in \mathbb{R}^{\nu_k \times 1} \) (thus \(\bar{\nu} = \sum_{k=1}^{n} \nu_k \)). We also define

\[
y(t) = \begin{bmatrix} y^{(1)}(t)^T & \cdots & y^{(m)}(t)^T \end{bmatrix}^T \quad \quad (4)
\]

\[
x(t) = \begin{bmatrix} x^{(1)}(t)^T & \cdots & x^{(n)}(t)^T \end{bmatrix}^T, \quad \quad (5)
\]

where \(y^{(j)}(t) \in \mathbb{C}^{\nu_j \times 1} \) is the vector measurement of the \(j^{th} \) sensor (hence \(\bar{\nu} = \sum_{j=1}^{m} \nu_j \)).

2.2 The Cramér-Rao Bound

Consider the model (1) and the problem of estimating the parameter vector \(\theta \) of that model, with \(\theta, P = \text{E} \left[x(t) x(t)^T \right] \) and \(\sigma^2 I = \text{E} \left[e(t) e(t)^T \right] \) unknown. Observe that the noise model actually can be even less restrictive than in the present case, and this without changing the Cramér-Rao bound expression, see [12] for those details. From [12], we have also the following theorem (where \(N \) is the number of array output measurements or snapshots). The noise \(e(t) \) as well as the source signal \(x(t) \) are both assumed to be temporally uncorrelated stationary (complex) Gaussian processes. See [12, 13] for further assumptions.
Theorem 1 The Cramér-Rao bound on the estimation error covariance matrix of any (locally) unbiased estimator of the vector θ in the model (1) with θ, P, σ^2 unknown and $\nu_k = \nu$ for all k is

$$\text{CRB}(\theta) = \frac{\sigma^2}{2N} \left\{ \text{Re} \left[\text{btr} \left(\left(1 \otimes U \right) \Box \left(D^* \Pi_c D \right)^{bT} \right) \right] \right\}^{-1},$$

(6)

where

$$U = P \left(A^* A P + \sigma^2 I \right)^{-1} A^* A P$$

(7)
$$\Pi_c = I - \Pi$$

(8)
$$\Pi = A \left(A^* A \right)^{-1} A^*$$

(9)
$$D = \left[D_1^{(1)}, \ldots, D_{q_1}^{(1)}, \ldots, D_1^{(n)}, \ldots, D_{q_n}^{(n)} \right]$$

(10)
$$D_l^{(k)} = \frac{\partial A_k}{\partial \theta_l^{(k)}}$$

(11)

and where 1 denotes a $\mathfrak{T} \times \mathfrak{T}$ matrix with all entries equal to one, and the block trace operator btr(·), the block Kronecker matrix product \otimes, the block Schur-Hadamard product \Box and the block transpose operator bT are as defined in [12] with blocks of dimensions $\nu \times \nu$, except for the matrix 1 that has blocks of dimensions $q_i \times q_j$. Furthermore, the CRB remains the same independently of whether σ^2 is known or unknown.

If $\nu_i \neq \nu_j$ for at least one pair (i, j), we shall instead consider the expression

$$[F_0''_{ij}]_{t_p} = \frac{2}{\sigma^2} \text{Re} \left\{ \text{Tr} \left[U_{ij} D_p^{(i)} A_c \left(D_l^{(i)} \right)^* \right] \right\},$$

(12)

where $[F_0''_{ij}]_{t_p}$ is the $(l,p)^{th}$ entry of the matrix $[F_0''_{ij}] \in \mathbb{C}^{q_i \times q_j}$ and $[F_0''_{ij}]_{(i,j)}$, in turn, denotes the $(i,j)^{th}$ block entry of the Fisher Information matrix

$$F_0''(\theta) = \frac{1}{N} \text{CRB}^{-1}(\theta).$$

(13)

Similarly, U_{ij} is the $(i,j)^{th}$ block entry of the matrix U defined in (7).

Observe here that the matrix $D_l^{(i)} \in \mathbb{C}^{\mathfrak{T} \times \nu}$, that is, it is the $\left(\sum_{k=1}^{i-1} q_k + l \right)^{th}$ block column (composed of ν_i columns) of D, see [12] for more details.

3 Optimal Transformation Matrix

In order to obtain the beamspace (BS) observations, we first define a transformation matrix $T \in \mathbb{C}^{\mathfrak{T} \times r}$. The observed data in BS are then related to the element space (ESP) measurements according to $z(t) = T^* y(t) \in \mathbb{C}^{r \times 1}$. If $r = 1$, this is more commonly referred to as beamforming in the array processing literature.

The BS data model can now be written as, with θ_0 denoting the true value of the parameter vector θ,

$$z(t) = T^* A(\theta_0) x(t) + T^* e(t),$$

(14)
where we also shall require that the transformation matrix satisfies $T^* T = I_r$, that is, it shall have orthonormal columns. This requirement is for guaranteeing that the BS noise, $T^* e(t)$, is white whenever the ESP noise $e(t)$ is so.

In order to assess the optimal performance for this new model, the only thing we have to do is to replace A and D in Theorem 1 (or in (12)) with $T^* A$ and $T^* D$, respectively. If we denote by $\text{CRB}_{\text{ESP}}(\theta_0)$ the ESP Cramér-Rao bound and the corresponding BS bound by $\text{CRB}_{\text{BS}}(\theta_0, T)$, we find the BS CRB-expression to be

$$\text{CRB}_{\text{BS}}(\theta_0, T) = \frac{\sigma^2}{2N} \left\{ \text{Re} \left[\text{tr} \left((1 \otimes U_{BS}) \otimes (D^* T \otimes c_{BS} T^* D)^{bT} \right) \right] \right\}^{-1}, \quad (15)$$

where we now have

$$U_{BS} = P \left(A^* T T^* A P + \sigma^2 I \right)^{-1} A^* T T^* A \quad (16)$$

$$|H_c|_{BS} = I - T^* A (A^* T T^* A)^{-1} A^* T. \quad (17)$$

Provided that there exist efficient estimation algorithms, that is algorithms that attain the Cramér-Rao bound, the main objective would be to find a transformation matrix T that makes the ESP and BS bounds coincide for the true value on the parameter vector, i.e., $\text{CRB}_{\text{BS}}(\theta_0, T) = \text{CRB}_{\text{ESP}}(\theta_0)$. This would then guarantee the best possible performance of any efficient algorithm applied to BS data.

Now, let $\text{dim} \{T\}$ denote the number of columns, or the dimension, of the matrix T. Recall also that n_k is the number of components of the vector signal, $x^{(k)}(t)$, of the k^{th} source. We have the following theorem.

Theorem 2 Suppose that $n_k = \nu, k = 1, \ldots, n$. Then the equality

$$\text{CRB}_{\text{BS}}(\theta_0, T) = \text{CRB}_{\text{ESP}}(\theta_0) \quad (18)$$

holds true provided that

$$T T^* |A(\theta_0), (\theta_0)| = |A(\theta_0), D(\theta_0)|, \quad (19)$$

and $\text{dim} \{T\} \geq \nu (n + \sum_{k=1}^{n} n_k)$.

Proof: The theorem follows directly by making use of the assumption (19) in equations (16) and (17), since (19) implies that

$$U_{BS} = U \quad (20)$$

$$H_{cBS} = T^* H_c T. \quad (21)$$

The equality (21) follows if use is made of the requirement that the columns of T shall be orthonormal, $T T^* = I$. A comparison with Theorem 1 now shows that the BS CRB coincides with
the ESP one. Note that the number of columns in \(T \) is allowed to be larger than \(\nu(n + \sum_{k=1}^{n} q_k) \), as long as (19) is satisfied. This is also the lower bound on the number of sufficient conditions on \(T \) that guarantee that (19) can be fulfilled. □

The final notes in the proof above was utilized in [1, 2] for devising a method for design of transformation matrices, using a less general model than (1). The argument is based on the fact that the transformation matrix may have more columns than the lower bound indicated in the theorem above. This means that instead of knowing exactly the true value of the parameter vector, we can design a transformation matrix satisfying the assumption (19) in some parameter intervals, “hopefully” containing also the true parameter vector value.

Corollary 1 Suppose now that \(\nu_i \neq \nu_j \) for at least one pair \((i, j)\). Then, if \(\dim\{T\} \geq \sum_{k=1}^{n} (1 + q_k) \nu_k \) and

\[
TT^* [A(\theta_0), D(\theta_0)] = [A(\theta_0), D(\theta_0)],
\]

we have

\[
\text{CRB}_{\text{ESC}}(\theta_0, T)_{<ij>lp} = \text{CRB}_{\text{ESP}}(\theta_0)_{<ij>lp}
\]

for the \((l,p)^{th}\) position of the \((i,j)^{th}\) block entry of the ESP Cramér-Rao bound matrix \(\text{CRB}_{\text{ESP}}(\theta_0) \).

Proof: Follows immediately from equation (12) and the assumption (19), together with the proof of Theorem 2. Observe that the number of columns are \(\nu = \sum_{k=1}^{n} q_k \) for \(A(\theta) \) and \(\sum_{k=1}^{n} \nu_k q_k \) for \(D(\theta) \).

Theorem 2 and its corollary generalize the result in [1, 2], where it was assumed that both \(q_k = 1 \) and \(\nu_k = 1, \ k = 1, \ldots, n \) (that is, only one signal and one signal parameter (the azimuth angle) per source). In those references, a method was proposed for design of a transformation matrix satisfying assumptions similar to those stated herein. Some “rough” prior information about the true value of the parameter vector \(\theta \) is necessary, however. That design method can, fairly easily, be applied also to this generalized model (with some obvious changes). The only thing needed is specified intervals for all different physical parameters (such as azimuth and elevation, etc), within which those parameters, by the assumed prior knowledge, can be assumed to be located.

Finally, observe that the bounds on \(\dim\{T\} \), the number of columns in \(T \), stated in Theorem 2 and its corollary are indeed lower bounds, provided that the matrix \([A(\theta_0) \ D(\theta_0)] \) has full rank.

4 Summary

This correspondence extends previously reported work on the possibility of optimality in beamspace array signal processing. The presented extension is in terms of a more general measurement model.
The main result is the statement of sufficient conditions for being able to have the same model parameter estimation accuracy in beamspace as that possible in element space. These conditions include bounds on the dimension of the beam space, above which it is always possible to attain the element space Cramér-Rao bound also in beam space.

The implication of this work is that, provided there exist efficient parameter estimation algorithms for a model that fits into the employed model structure, any of these algorithms can be used for element space efficient parameter estimation using the reduced-dimension beam space data. The reduction of the data dimension imply a reduction in computational requirements for many popular estimation methods.

References

