Model (In-)Validation from a \mathcal{H}_∞ and μ perspective

Wolfgang Reinelt

Department of Electrical Engineering
Linköping University, S-581 83 Linköping, Sweden
WWW: http://www.control.isy.liu.se/~wolle/
Email: wolle@isy.liu.se

February 1999

Report no.: LiTH-ISY-R-2186

Technical reports from the Automatic Control group in Linköping are available by anonymous ftp at the address ftp.control.isy.liu.se. This report is contained in the portable document format file 2186.pdf.
Model (In-)Validation from a H_∞ and μ perspective

Wolfgang Reinelt∗

Summary for SIGMOID @ ISY, 990212

Abstract

We give a short overview on methods of Model (In-)Validation, that fit to the robust control framework. The idea is that the mismatch between a measured datum and an expected datum is explained by a disturbance signal w and an error model Δ, representing unmodelled dynamics. The key question is if there exists a pair (w, Δ), sufficiently small, that can produce the measured datum. In particular, we view the different approaches by Smith et.al. and Poolla et.al., their numerical solution and given examples.

1 Problem Setup

The general setup for robust control is depicted in figure 1(a): a generalized plant P with the inputs control signal u and disturbance w and an error Δ, representing unmodelled dynamics. The plant P is given (modelling, identification) and we have a measured datum $(u_{\text{meas}}, y_{\text{meas}})$. The question is: Does the datum fit to the model? The main idea is that the (possible) mismatch between a measured datum and the expected (output-)datum is explained by a disturbance signal w and an error model Δ. The relation between inputs and output is given by ULFT:

$$(z) = \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} =: P \cdot \begin{pmatrix} v \\ w \end{pmatrix}$$

(1)

$$\Rightarrow y = (P_{21} \Delta (I - P_{11} \Delta)^{-1} [P_{12}, P_{13}] + [P_{22}, P_{23}]) \cdot \begin{pmatrix} w \\ u \end{pmatrix} =: F_U(P, \Delta) \cdot \begin{pmatrix} w \\ u \end{pmatrix}$$

(2)

Figure 1(b) shows a simplification of the general case: a weighted additive error. As a special case, it "disables" the feedback ($P_{11} = 0$) and fixes the location of the disturbance ($P_{12} = 0$). These two simplifications make the optimization problem (presented in the next section) convex. We state the Problem, treated in the following sections:

Problem-Definition: Suppose the setup in figure 1(b). The (scaled) model P (plant and weights) is given, also given a measured datum $(u_{\text{meas}}, y_{\text{meas}})$. Do there exist $||w|| \leq 1$ and $||\Delta|| \leq 1$ so that eqn.(2) holds?

Scaling is possible by exploiting $F_U(\gamma P, \Delta) = \gamma F_U(P, \gamma \Delta)$.

∗Division of Automatic Control, Dept of Electrical Engineering, Linköping University, S-581 83 Linköping, Sweden, email: wolle@isy.liu.se, http://www.control.isy.liu.se/~wolle/

1
2 Three Different Frameworks

We have a certain plant input u_{meas} with a measured output y_{meas}, a nominal output y_{nom} (without errors) and a modelled output y_{mod} (including the error model). The last two signals are calculated by the (error-)model with input u_{meas}. All signals are of finite length N. Ideally, the residuum $r = y_{\text{meas}} - y_{\text{nom}}$ should be zero\(^1\).

To check the quality of the error model (w, Δ), we compare the measured output with the modelled output, i.e. we compare the residuum with $y_{\text{mod}} - y_{\text{nom}}$. Considering the above simplified plant structure, we get the following

$$
r = y_{\text{meas}} - y_{\text{nom}} \overset{?}{=} y_{\text{mod}} - y_{\text{nom}} = P_w w + P_{\text{nom}} u_{\text{meas}} + P_v \Delta P_{\text{meas}} - P_{\text{nom}} u_{\text{meas}} = P_v v + P_w w \quad (3)
$$

Notable that there is no need for P_{nom} to be linear. The lhs of eqn.(3) is known by measurement of y_{meas} resp. calculation of $y_{\text{nom}} = P_{\text{nom}} u_{\text{meas}}$. In the rhs, w varies by $||w|| \leq 1$ and v is given by

$$
v = \Delta z \quad (\ast)$$

$$
z = P_z u_{\text{meas}} \quad (5)
$$

The rhs of eqn.(5) is known, eqn.(\ast) contains the dynamics-error Δ, which will be removed in the next step. As eqn.(\ast) must hold for all $\Delta \leq 1$, the question is, if there exists a relation between input z and output v? This question is answered by the so-called

Extension Theorem: Eqn.(\ast) holds for a $\Delta \leq 1$, iff the input signal z is larger than the output signal v.

Using this, eqn.(\ast) degenerates to

$$
v \text{ "smaller than" } z \quad (4)
$$

\(^1\)that’s why the computational complexity of the problem depends in operator theoretical sense on the dimension of the kernel of the mapping $(v, w) \rightarrow r$, compare with eqn.(3).
and the two degree freedom optimization is reduced to a convex optimization problem: minimize $||w||$ with respect to $(3,4,5)$. The result of the optimization is the minimum-norm disturbance w, responsible for the given datum (u_{meas}, y_{meas}). Finally, we get sufficient invalidation theorems of the following kind (dropping technical statements):

Invalidation Theorem: The model is invalid, if $||w|| > 1$.

The extension theorems for the three frameworks are responsible for the computational complexity, because they increase the "size" of eqn.(4) in different amounts.

2.1 Discrete Frequency Domain (DFD)

Initial work: Smith [8], overview [1, sec 3], example [6].

The DFD approach transforms the time domain data, given in $(3,4,5)$ into frequency domain data by DFT [1, eqns.(5-7)] for all N frequencies. The extension theorem for replacing the uncertainty Δ replaces eqn.(4) equivalently by

$$V_n^*V_n \leq Z_n^*Z_n, \quad \forall n$$ \hspace{2cm} (DFD 4)

The conditions for the optimization are eqns.(3,5) transformed into the frequency domain and eqn.(DFD 4). Exact formulation [1, Lemma 2 + Theorem 3].

Properties/Comments

- Quadratic objective + linear constraints \Rightarrow no local minima.
- Even full sized LFT problems can be solved, applying μ techniques [8]. The problem remains convex as long as the SSV can be calculated by its upper bound (depends on the number of blocks).
- A computational example exists [6]: two liquids of different temperature are mixed in a tank (MIMO, 2×2), two different models are validated.
- Application of DFT: signals v, w have to be zero for negative times. No problem for v (depends on u), but for w, therefore restriction to static P_w, see [6, sec 2.3].
- Computational complexity $\sim N$ tractable.
- Another type of problem is posed in [8]: minimize the size of Δ and w. The problem is similar to the computation of μ, but not solved.

To avoid problems with DFT, we jump back into the time domain:

2.2 Discrete Time Domain (DTD)

Initial work: Poolla [7], overview [1, sec 4].

The DTD approach transforms the pulse response coefficients of P_v, P_u, P_z, given in $(3+5)$ into their associated lower block Toepliz matrices (this a $N \times N$ matrix) and the signals into appropriate ones (N vector); see [1, eqns.(10+11)]. The extension theorem for replacing the uncertainty Δ replaces eqn.(4) equivalently by

$$V^*V \leq Z^*Z$$ \hspace{2cm} (DTD 4)
where V and Z are the associated lower block Toeplitz matrices of the signals (i.e. eqn.(DTD 4) is a matrix inequality). Exact formulation [1, Theorem 4+5].

Properties/Comments

- Problem convex as long as $Z^* Z$ constant ($\iff P_{11} = P_{12} = 0$). General case?
- No restrictions on v and w for negative times as in the DFD (appearing from DFT): nonzero v can be handled by residuum, nonzero w be initial conditions of P_w.
- Also LTV perturbations possible in the framework.
- This theory works also for multidimensional signals.
- Computational complexity $\sim N^5$, not feasible for reasonable data-length, even in LMI formulation [2, sec 4].
- Therefore no examples given.

2.3 Sampled Data Domain (SDD)

Initial work: Smith and Dullerud [3] (technical details [5]), equivalent results independently derived by Poolla [4], overview [1, sec 5], example [2].

DTD regards the plant as a purely discrete-time system, with a "built-in" sampling time T. SDD is based on DTD, but interprets the plant as a sampled continuous system. The separation of plant and sample/hold unit enables us to subsample, i.e. we use the DTD-machinery for a subset of our data to get a feasible problem. The theoretical results are derived using the lifting operation. After this transformation, size and appearance of the extension theorem for replacing the uncertainty Δ are similar to the DTD case (including transformation to lower block Toeplitz matrices):

$$\hat{V}^* \hat{V} \leq \hat{Z}^* \hat{Z} \quad \text{(SDD 4)}$$

Exact formulation [1, Theorem 7+8].

Properties/Comments

- The invalidation theorem gets necessary and sufficient for $T \to 0$ (which is only of theoretical interest).
- Same comments as in DTD, but subsampling possible. Start with subsampling time $T_{\text{sub}} \gg T$ and decrease until the model is invalid or $T_{\text{sub}} = T$.
- Example: heating system, SISO [2].
- Computational time within the example: model invalid for data-length of $N = 64$, this iteration-step needed $72 \cdot 10^3$ Mflops ($2h40mins$ CPU-time on Ultra1). The final step was the 6th. [2, table 1].

4
3 Questions

1. DTD and SDD in case of full LFT: convexity is lost. Other solutions?
2. DFD solvable for full LFT problems (µ): implementation? examples?
3. Exploiting sparse structure in SDD to get a faster implementation [2]?
4. MIMO problems in SDD
5. "iff" invalidation theorems?
6. Suppose model is invalid because of min ||w||₂ = 1.36, how to adjust the model knowing this value 1.36? Scaling and bounds in general?
7. All approaches compute the minimum size of w for all ||Δ||ₘₐₓ ≤ 1. What about the question: (uₖ, yₖ) given, minimum size of Δ and w [8, Problem 4.1]?

References

(references in reversed chronological order)