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Abstract
The choice of input signal is very important in identification of nonlinear sys-
tems. In this paper, it is shown that random multisines with a flat amplitude
spectrum are separable. The separability property means that certain condi-
tional expectations are linear and it implies that random multisines easily can
be used to obtain accurate estimates of the linear time-invariant part of a Ham-
merstein system. This is illustrated in a numerical example.

Keywords: System identification, Random multisines, Separable processes,
Hammerstein systems
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Abstract
The choice of input signal is very important in identification of non-

linear systems. In this paper, it is shown that random multisines with a
flat amplitude spectrum are separable. The separability property means
that certain conditional expectations are linear and it implies that ran-
dom multisines easily can be used to obtain accurate estimates of the
linear time-invariant part of a Hammerstein system. This is illustrated in
a numerical example.

1 Introduction
A Hammerstein system consists of a static nonlinearity followed by a linear
time-invariant (LTI) system. This system structure is common in many real-life
applications and it is thus natural that identification of Hammerstein systems
has been an active research field for quite some time, see, for example, Naren-
dra and Gallman (1966); Chang and Luus (1971); Stoica (1981); Billings and
Fakhouri (1978, 1982). A brief overview of some of the existing methods can be
found in Bai and Li (2004).

A parameterized Hammerstein model can be written as

y(t) = G(q, θ)f(u(t), η) + e(t), (1)

where q is the shift operator qu(t) = u(t+ 1), where u(t) and y(t) are the input
and output signals, respectively, and where e(t) is measurement noise. Here, θ
and η are the parameters of the linear and nonlinear subsystem, respectively. If
N input and output measurements are collected from a particular Hammerstein
system, the parameters θ and η can be found by minimizing a cost function, for
example a quadratic function

VN (θ, η) =
1
N

N−1∑
t=0

(y(t)−G(q, θ)f(u(t), η))2 . (2)

In many cases, it is hard to simultaneously minimize VN (θ, η) with respect to θ
and η. Instead, a couple of iterative methods have been suggested.

One popular method for identification of Hammerstein systems was proposed
in Narendra and Gallman (1966). In this method, the minimization of VN (θ, η)
is done iteratively starting from an initial estimate, or guess, of the parameter
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values. In each step, the function VN (θ, η) is minimized with respect only to
one of its arguments while using the previous value of the other one. Often,
an LTI approximation of the system is first estimated without considering the
nonlinearity at the input and the parameters from this approximate model are
used as θ-parameters when the first estimate of η is calculated in the next step.
For example, the initial LTI model can be obtained by using the prediction-error
method (Ljung, 1999). With an output error (OE) model structure, this means
that the parameter estimate is calculated by minimizing the function

1
N

N−1∑
t=0

(y(t)−G(q, θ)u(t))2 (3)

numerically with respect to θ.
The iterative approach guarantees that the cost function will be monotoni-

cally decreasing over the iterations. Furthermore, the convergence of the para-
meter estimates can be shown in some special cases (Bai and Li, 2004). However,
there are no convergence results available for the general case. Hence, it is im-
portant that the initial LTI approximation is as good as possible in the sense
that it resembles the true LTI subsystem as well as possible.

For a Gaussian input signal, the iterative approach can be motivated by
Bussgang’s theorem (Bussgang, 1952). This result implies that for a Hammer-
stein system, the LTI model that minimizes the mean-square error

E((y(t)−G(q)u(t))2) (4)

will be equal to a scaled version of the LTI part of the system. Since the
cost function (3) in most cases will be a good approximation of the mean-
square error (4) for large N , Bussgang’s theorem guarantees that an OE model
estimated from a large data set using the prediction-error method will be a good
approximation of the LTI subsystem. Bussgang’s theorem has been extended
also to signals that are separable in Nuttall’s sense (see Definition 2.3) (Nuttall,
1958a,b; McGraw and Wagner, 1968). Identification of Hammerstein systems
using separable input signals has been discussed in, for example, Billings and
Fakhouri (1978). The theory for separable processes has also been extended to
systems where the nonlinear subsystem is a nonlinear finite impulse response
(NFIR) system (Enqvist and Ljung, 2005). Related material can be found in
Enqvist (2005).

For nonseparable input signals, the estimation of the initial LTI model re-
quires more attention. A number of results concerning this problem for random
multisine inputs can be found in Crama and Schoukens (2001); Crama et al.
(2004); Crama and Schoukens (2004, 2005). General theory about random mul-
tisines and linear approximations of nonlinear systems can, for example, be
found in Pintelon and Schoukens (2001); Schoukens et al. (2005).

The main contribution of this paper is the observation that random mul-
tisines with a flat amplitude spectrum are separable. This result provides a
theoretical explanation to why previous methods for identification of Hammer-
stein systems using random multisines have been so successful.
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2 Preliminaries
In this section, some background theory about LTI approximations of nonlinear
systems and separable processes is presented.

2.1 Second Order Equivalents
In this paper, we will study nonlinear systems with periodic inputs. More
specifically, the signal assumptions are as follows.

Assumption A1. Assume that the input u(t) and output y(t) are real-valued
stationary stochastic processes with E(u(t)) = E(y(t)) = 0 and that u(t) is
P -periodic for some P ∈ Z+, i.e., that

u(t+ P ) = u(t), ∀t ∈ Z.

Furthermore, assume that the covariance functions Ru(τ) = E(u(t)u(t−τ)) and
Ryu(τ) = E(y(t)u(t− τ)) exist and are P -periodic.

Approximations of nonlinear systems can be derived using different theoret-
ical frameworks. In this paper, LTI models that are optimal approximations in
the mean-square error sense are studied. Such a model will here be called an
Output Error LTI Second Order Equivalent (OE-LTI-SOE), and it is defined in
the following definition.

Definition 2.1. Consider a nonlinear system with a P -periodic input u(t) and
an output y(t) such that Assumption A1 is fulfilled. An OE-LTI-SOE of this
system is a stable and causal LTI model G0,OE (q) that minimizes the mean-
square error E((y(t)−G(q)u(t))2), i.e.,

G0,OE (q) = arg min
G∈G

E((y(t)−G(q)u(t))2),

where G denotes the set of all stable and causal LTI models. Let G0,OE denote
the set of all OE-LTI-SOEs for this particular pair of input and output signals,
i.e.,

G0,OE = {G0,OE (q)}.

Note that G0,OE always will contain more than one model. For example,
consider a system with an OE-LTI-SOE G0,OE ,0(q) for a particular P -periodic
input u(t). Then the models G0,OE ,k(q) = (1 + q−kP )G0,OE ,0(q)/2, k ∈ N,
are OE-LTI-SOEs too, since they will produce the same stationary output as
G0,OE ,0(q). Obviously, the impulse responses from these OE-LTI-SOEs are quite
different, but this does not matter here since the transient response of a model
is not considered in the definition of the OE-LTI-SOE.

Usually, the mean-square error cannot be minimized directly in real identi-
fication problems. Instead, with data sets from NE experiments where different
realizations of the input signal have been used and N = MP , M ∈ Z+ measure-
ments in each data set, a model can be estimated by minimizing the approximate
cost function

VNE ,N (G(q)) =
1
NE

NE∑
s=1

1
N

N−1∑
t=0

(ys(t)−G(q)us(t))2
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with respect to G(q). Here, us(t) and ys(t) are the input and output signals
from experiment s, respectively.

With a periodic input it is very natural to consider the modeling problem in
the frequency domain. Applying the Discrete Fourier Transform (DFT) to the
input and output signals gives the transforms

Us,N (n) =
N−1∑
t=0

us(t)e−i2πnt/N , (5a)

Ys,N (n) =
N−1∑
t=0

ys(t)e−i2πnt/N . (5b)

Let ŷG,s(t) denote the output from the stable model G(q) for the input us(t) and
assume that the input has been applied at t = −∞ such that all transients have
disappeared at t ≥ 0, i.e., that ŷG,s(t) is P -periodic in the interval 0 ≤ t ≤ N−1.
Furthermore, let ŶG,s,N (n) denote the DFT of ŷG,s(t), i.e.,

ŶG,s,N (n) =
N−1∑
t=0

ŷG,s(t)e−i2πnt/N .

The frequency response of the stable model G(z) is obtained for z = eiω. In
particular, since r(t) = e−i2πnt/N is an N -periodic signal, it follows that

G(ei2πn/N ) =
∞∑

k=0

g(k)e−i2πnk/N

=
N−1∑
t=0

( ∞∑
l=0

g(t+ lN)

)
︸ ︷︷ ︸

=:g̃N (t)

e−i2πnt/N =: G̃N (n). (6)

Furthermore, since us(t) is a P -periodic signal and N = MP , M ∈ Z+, us(t) is
also N -periodic. Hence,

ŷG,s(t) = G(q)us(t) =
N−1∑
k=0

g̃(k)us(t− k)

and this implies that

ŶG,s,N (n) = G̃N (n)Us,N (n) = G(ei2πn/N )Us,N (n), (7)

where we have used (6) in the last equality.
Using Parseval’s formula, the cost function can be rewritten as

VNE ,N (G(q)) =
1
NE

NE∑
s=1

1
N

N−1∑
t=0

(ys(t)−G(q)us(t)︸ ︷︷ ︸
=ŷG,s(t)

)2

=
1

NEN2

NE∑
s=1

N−1∑
n=0

∣∣∣Ys,N (n)− ŶG,s,N (n)
∣∣∣2

=
1

NEN2

NE∑
s=1

N−1∑
n=0

∣∣∣Ys,N (n)−G(ei2πn/N )Us,N (n)
∣∣∣2.
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From this expression, it is obvious that two linear models will give the same
value of the cost function if their frequency responses are equal at the frequencies
where Us,N (n) is nonzero. In particular, if an optimal nonparametric frequency
response estimate is calculated by minimizing VNE ,N (G(q)) for each excited
frequency, any other optimal model must have a frequency response that is
equal to the optimal nonparametric one at these frequencies and that can have
arbitrary values at all other frequencies. Hence, all information about the set of
optimal models can be found by calculating the optimal nonparametric model
at the excited frequencies. This observation will be used later when a particular
Hammerstein system is studied in a numerical example.

2.2 Random Multisines
In this paper, only one type of periodic input signals will be considered, namely
random multisines.

Definition 2.2. A random multisine signal is a stationary stochastic process
u(t) that can be written

u(t) =
Q∑

k=1

Ak cos(ωkt+ ψk), (8)

where both Ak and ψk can be random variables and where all ωk are constants
that satisfy |ωk| ≤ π.

Here, the phases ψk will usually be independent random variables with uni-
form distribution on the interval [0, 2π) and the amplitudes Ak will usually be
constants. Furthermore, we will only consider periodic random multisines such
that the period P is an integer, i.e., such that all ωk can be written ωk = πpk

for some pk ∈ {x ∈ Q | |x| ≤ 1}.

2.3 Separable Processes
The results in this paper concern separable processes, i.e., processes that satisfy
the condition described in the following definition.

Definition 2.3 (Separability). A stationary stochastic process u(t) with
E(u(t)) = 0 is separable (in Nuttall’s sense) if

E(u(t− τ)|u(t)) = a(τ)u(t). (9)

for some function a(τ).

It is easy to show that the function a(τ) in (9) can be expressed using the
covariance function of u(t).

Lemma 2.1
Consider a separable stationary stochastic process u(t) with E(u(t)) = 0. The
function a(τ) from (9) can then be written

a(τ) =
Ru(τ)
Ru(0)

. (10)
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Proof: Nuttall (1958a)

Some properties of a separable stochastic process can be expressed also using
the characteristic function of the process.

Definition 2.4. Consider a stationary stochastic process u(t) with E(u(t)) = 0.
Let the first order characteristic function be denoted with

fu,1(ξ1) = E(eiξ1u(t)). (11)

A single sinusoid with random phase is separable according to the following
lemma.

Lemma 2.2
A random sine process

u(t) = A cos(ωt+ ψ), (12)

where ψ is a random variable with uniform distribution on the interval [0, 2π)
and where A and ω are constants, is a separable process. Furthermore, this
process has the properties

Ru(τ) =
A2

2
cos(ωτ), (13a)

fu,1(ξ1) = J0(Aξ1), (13b)

where J0 is the zeroth order Bessel function.

Proof: Nuttall (1958a)

In the next theorem, it is shown that the sum of Q independent separable
processes is separable if the characteristic functions satisfy a certain condition.

Theorem 2.1
Consider Q independent and separable stationary stochastic processes uk(t) with

E(uk(t)) = 0

for k = 1, . . . , Q and let

u(t) =
Q∑

k=1

uk(t). (14)

Assume that the characteristic functions satisfy

fuk,1(ξ1)1/σ2
k = ful,1(ξ1)

1/σ2
l , (15)

for all k, l ∈ {1, 2, . . . , Q}, where σ2
m = Rum

(0). Then u(t) is separable.

Proof: Nuttall (1958a)

In the next section, Theorem 2.1 will be used to show that some random
multisines are separable.
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3 Separable Random Multisines
The main result in this paper concerns the separability of random multisines.
It turns out that such signals are separable if all amplitudes are constant and
equal. This result is proven in the following lemma.

Lemma 3.1
A random multisine

u(t) =
Q∑

k=1

Ak cos(ωkt+ ψk),

where all Ak are constants, Ak = Ā, and all ψk are independent random vari-
ables with uniform distribution on the interval [0, 2π), is separable.

Proof: The signals
uk(t) = Ak cos(ωkt+ ψk)

are independent and

fuk,1(ξ1) = ful,1(ξ1) = J0(Āξ1),

σ2
k = σ2

l =
Ā2

2

for all k, l ∈ {1, 2, . . . , Q} from Lemma 2.2. Hence, u(t) is separable according
to Theorem 2.1.

Besides the fact that the separability of random multisines is theoretically
interesting, it has some practical implications for identification of Hammerstein
systems. This will be discussed in the next section.

4 Hammerstein Systems
As has been mentioned previously, the initial identification of the LTI part of a
Hammerstein system without considering the nonlinearity is an important step
in many methods. In the following theorem, it is shown that a scaled version of
the LTI subsystem is an OE-LTI-SOE of the system if the input is a separable
random multisine. Hence, the model that minimize VNE ,N will usually be a
good approximation of the LTI subsystem if NE is large.

Theorem 4.1
Consider a Hammerstein system

y(t) = GL(q)v(t) + w(t), (16a)
v(t) = f(u(t)), (16b)

where GL(q) is a stable and causal LTI system and where w(t) is measurement
noise with E(w(t)) = 0. Assume that the input to this system is a P -periodic
random multisine, P ∈ Z+,

u(t) =
Q∑

k=1

Ak cos(ωkt+ ψk),

7



where all Ak are constants, Ak = Ā, and all ψk are independent random vari-
ables with uniform distribution on the interval [0, 2π). Assume that u(t) and
w(s) are independent for all t, s ∈ Z and that Assumption A1 holds. Then

c0GL(q) ∈ G0,OE , (17)

where c0 = E(f(u(t))u(t))/Ru(0) is a constant.

Proof: The equalities (9) and (10) hold since u(t) by Lemma 3.1 is separable.
Hence,

Rvu(τ) = E(f(u(t))u(t− τ))
= E(f(u(t))E(u(t− τ)|u(t)))

=
Ru(τ)
Ru(0)

E(f(u(t))u(t)) = c0Ru(τ).

(18)

The condition that G0,OE should minimize

E((y(t)−G(q)u(t))2)

is equivalent to G0,OE satisfying the Wiener-Hopf condition

Ryu(τ)−
∞∑

k=0

g0,OE(k)Ru(τ − k) = 0, 0 ≤ τ ≤ P − 1. (19)

From the system description (16a), we have

Ryu(τ)−
∞∑

k=0

gL(k)Rvu(τ − k) = 0, ∀τ ∈ Z

and inserting (18) gives

Ryu(τ)−
∞∑

k=0

c0gL(k)Ru(τ − k) = 0, ∀τ ∈ Z.

Hence, c0GL(q) ∈ G0,OE .

The previous theorem indicates that random multisines with flat amplitude
spectra are suitable for identification of Hammerstein systems. In particular, it
shows that the number of excited frequencies does not affect the fact that the LTI
subsystem can be estimated consistently without considering the nonlinearity.
Theorem 4.1 is verified numerically in the following example.

Example 4.1
Consider the Hammerstein system

y(t) = GL(q)v(t) =
1.6− 1.6q−1 + 0.4q−2

1− 1.56q−1 + 0.96q−2
v(t), (20a)

v(t) = f(u(t)) = u(t)3, (20b)

with the input

u1(t) =
6∑

k=1

cos(ωkt+ ψk), (21)

8



10
−1

10
0

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
−1

10
0

−50

0

50
P

ha
se

 (
de

gr
ee

s)

Frequency (rad/s)

Figure 1: The frequency response of the linear part GL(q) of the Ham-
merstein system from Example 4.1 (solid line) and a scaled version of the
nonparametric frequency response estimate (circles).

where ωk = 2πk/40 and where ψk are independent random variables with uni-
form distribution on the interval [0, 2π). 500 realizations of the phases have been
generated and an input signal with 400 samples has been constructed for each
realization. For each input, an identification experiment has been performed
where the last periods (40 samples) of the input and output signals have been
collected.

Based on the 500 data sets, each consisting 40 input and output measure-
ments, a nonparametric frequency response estimate Ĝ(eiωk) has been calculated
using the least-squares method and the previously defined cost function VNE ,N .
A scaled version of this estimate is shown in Figure 1 together with the linear
part of the system. As can be seen in this figure, the nonparametric frequency
response estimate is very close to being a scaled version of GL(eiω). Actually,
the relative errors

ρk =
|Ĝ(eiωk)/ĉ0 −GL(eiωk)|

|GL(eiωk)|
, k = 1, 2, . . . , 6,

where

ĉ0 =
1
6

6∑
k=1

|Ĝ(eiωk)|
|GL(eiωk)|

,

are less than 4% here. An identical identification experiment has been performed
with the input

u2(t) =
6∑

k=1

25−k cos(ωkt+ ψk).

However, in this case the relative errors were 27%, 5%, 12%, 12%, 12% and 17%,
respectively, i.e., significantly larger than for the separable random multisine.
Furthermore, for u2(t), the relative errors do not decrease if the number of
phase realizations is increased. Hence, it seems that for this input, the best LTI
approximation is not a scaled version of GL(q).
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Example 4.1 illustrates the main benefit of using separable random mul-
tisines for Hammerstein system identification since it shows that for such an
input signal, it is rather easy to obtain good estimates of the LTI part of the
system. Furthermore, the example indicates that not all random multisines are
separable.

5 Conclusions
In this paper, it has been shown that random multisines with constant, flat
amplitude spectra and uniformly distributed phases are separable. This implies
that a scaled version of the LTI part of a Hammerstein system is an OE-LTI-
SOE of the system and that it is rather easy to compute a consistent estimate of
the LTI subsystem. The results have been verified numerically in an example.
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