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Abstract

This paper is concerned with the, by now rather well studied, problem

of integrated road geometry estimation and vehicle tracking. The main

di�erences to the existing approaches are that we make use of an improved

host vehicle model and a new dynamic model for the road. The problem is

posed within a standard sensor fusion framework, allowing us to make good

use of the available sensor information. The performance of the solution is

evaluated using measurements from real and relevant tra�c environments
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Abstract

This paper is concerned with the, by now rather well studied, problem
of integrated road geometry estimation and vehicle tracking. The main
di�erences to the existing approaches are that we make use of an improved
host vehicle model and a new dynamic model for the road. The problem
is posed within a standard sensor fusion framework, allowing us to make
good use of the available sensor information. The performance of the
solution is evaluated using measurements from real and relevant tra�c
environments from public roads in Sweden.
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1 Introduction

We are concerned with the, by now rather well studied, problem of automotive
sensor fusion. More speci�cally, we consider the problem of integrated road
geometry estimation and vehicle tracking making use of an improved host vehicle
model. The overall aim in the present paper is to extend the existing results to
a more complete treatment of the problem by making better use of the available
information.

In order to facilitate a systematic treatment of this problem we need dy-
namical models for the host vehicle, the road and the leading vehicles. These
models are by now rather well understood. However, in studying sensor fusion
problems this information tends not to be used as much as it could. Dynamic
vehicle modelling is a research �eld in itself and a solid treatment can be found
in for example [16,14]. The leading vehicles can be successfully modelled using
the geometrical constraints and their derivatives w.r.t. time. Finally, dynamic
models describing the road are rather well treated, see e.g., [6, 5, 4]. The re-
sulting state-space model, including host vehicle, road and leading vehicles, can
then be written in the form

xt+1 = f(xt, ut) + wt, (1a)

yt = h(xt, ut) + et, (1b)

where xt denotes the state vector, ut denotes the input signal, wt denotes the
process noise, yt denotes the measurements and et denotes the measurement
noise. Once we have derived a model in the form (1) the problem has been
transformed into a standard nonlinear estimation problem. This problem has
been extensively studied within the control and the target tracking communities
for many di�erent application areas and there are many di�erent ways to solve
it, including the popular Extended Kalman Filter (EKF), the particle �lter and
the Unscented Kalman Filter (UKF), see e.g., [1, 13] for more information on
this topic.

As mentioned above, the problem studied in this paper is by no means new,
see e.g., [5, 4] for some early work without using the motion of the leading
vehicles. These papers are still very interesting reading and contain much of the
underlying ideas that are being used today. It is also interesting to note that
the importance of sensor fusion was stressed already in these early papers. The
next step in the development was to introduce a radar sensor as well. The idea
was that the motion of the leading vehicles reveals information about the road
geometry [21, 9, 10]. Hence, if the leading vehicles can be accurately tracked,
their motion can be used to improve the road geometry estimates, computed
using only information about the host vehicle motion and information about
the road inferred from a vision sensor. This idea has been further re�ned and
developed in [8, 19,6]. However, the dynamic model describing the host vehicle
used in all of these later works were signi�cantly simpli�ed as compared to the
one used in [5,4,3]. It consists of 2 states, the distance from the host vehicle to
the white lane and the heading (yaw) angle of the host vehicle. Hence, it does
not contain any information about the host vehicles velocity vector. Information
of this kind is included in the host vehicle model employed in the present paper.

The main contribution of this work is to pose and solve a sensor fusion
problem that makes use of the information from all the available sensors. This
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is achieved by unifying all the ideas in the above referenced papers. The host
vehicle is modelled in more detail, it bears most similarity to the model used
in [5, 4]. Furthermore, we include the motion of the leading vehicles, using the
idea introduced in [21]. The resulting sensor fusion problem provides a rather
systematic treatment of the information from the sensors measuring the host
vehicle motion (inertial sensors, steering wheel sensors and wheel speed sensors)
and the sensors measuring the vehicle surroundings (vision and radar).

We will show how the suggested sensor fusion approach performs in practice,
by evaluating it using measurements from real and relevant tra�c environments
from public roads in Sweden.

2 Dynamic Models

In this section we will derive the di�erential equations describing the motion of
the host vehicle (Section 2.2), the road (Section 2.3) and the leading vehicles
(Section 2.4), also referred to as targets. However, before we embark on de-
riving these equations we introduce the overall geometry and some notation in
Section 2.1.

2.1 Geometry and Notation

The coordinate frames describing the host vehicle and one leading vehicle are
de�ned in Figure 1. The inertial reference frame is denoted by R and its origin is

lSn

l2 l1

l4

rR
P4O

rR
P2O

rR
P1O

rR
PT nO

rR
PSnO

ψ1

ψ2

ψ4

ψSn

ψTn

y

x

R

O
y

x

L1 P1

y

x

L4 P4
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P2

y

x

LSn

PSn

y

x

LTn

PTn

Figure 1: Coordinate frames describing the host vehicle and one leading vehicle
Tn.
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O, the other frames are denoted by Li, with origin in Pi. P1 and P2 are attached
to the rear and front wheel axle of the host vehicle, respectively. P3 is used to
describe the road and P4 is located in the center of gravity (CoG) for the host
vehicle. Furthermore, LSn is associated to the observed leading vehicle n, with
PSn at the sensor of the host vehicle. Finally, LTn is also associated with the
observed leading vehicle n, but its origin PTn is located at the leading vehicle.
Velocities are de�ned as the movement of a frame Li relative to the inertial
reference frame R, but typically resolved in the frame Li, for example v

L4
x is the

velocity of the L4 frame in its x-direction. The same convention holds for the
acceleration aL4

x . In order to simplify the notation we leave out L4 when referring
to the host vehicle's longitudinal velocity vx. This notation will be used when
referring to the various coordinate frames. However, certain frequently used
quantities will be renamed, in the interest of readability. The measurements are
denoted by using subscript m or a completely di�erent notation. Furthermore,
the notation used for the rigid body dynamics is in accordance with [12].

2.2 Host Vehicle

We will only be concerned with the host vehicle motion during normal driving
situations and not at the wheel-track adhesion limit. This implies that the
single track model [16] is su�cient for the present purposes. This model is also
referred to to as the bicycle model. The geometry of the single track model
with slip angles is shown in Figure 2. It is here worth to point out that the
velocity vector of the host vehicle is typically not in the same direction as the
longitudinal axis of the host vehicle. Instead the vehicle will move along a path
at an angle β with the longitudinal direction of the vehicle if the slip angles are
considered. This angle β is referred to as the �oat angle [17] or vehicle body
side slip angle [14]. Lateral slip is an e�ect of cornering. To turn, a vehicle
needs to be a�ected by lateral forces. These are provided by the friction when
the wheels slip.

The slip angle αi is de�ned as the angle between the central axis of the
wheel and the path along which the wheel moves. The phenomenon of side
slip is mainly due to the lateral elasticity of the tire. For reasonably small slip
angles, at maximum 3 deg, it is a good approximation to assume that the lateral
friction force of the tire Fi is proportional to the slip angle,

Fi = Cαiαi. (2)

The parameter Cαi is called cornering sti�ness and describes the cornering be-
haviour of the tire. A deeper analysis of slip angles can be found in e.g., [16].

2.2.1 Geometric Constraints

From Figure 1 we have the geometric constraints:

rRP1O +ARL1 · rL1
P2P1

− rRP2O = 0. (3)

In this document we will use the the planar coordinate transformation matrix

ARLi =
(

cosψi − sinψi
sinψi cosψi

)
(4)
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Ψ
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Figure 2: Illustration of the geometry for the single track model, describing the
motion of the host vehicle. The host vehicle velocity vector vx is de�ned from
the CoG and its angle to the longitudinal axis of the vehicle is denoted by β,
referred to as the �oat angle or vehicle body side slip angle. Furthermore, the
slip angles are referred to as αf and αr. The front wheel angle is denoted by
δF and the current radius is denoted by ρ.

to map a vector, represented in Li, into a vector, represented in R, where ψi is
the angle of rotation from R to Li. The geometric displacement vector r

R
P1O

is
the direct straight line from O to P represented with respect to the frame R.
In our case

rL1
P2P1

=
(
l1
0

)
(5)

yields

xRP2O = l1 cosψ1 + xRP1O, (6a)

yRP2O = l1 sinψ1 + yRP1O. (6b)

For the coordinates of the car center of gravity (xRP4O
, yRP4O

) it holds that

xRP4O − l4 cosψ1 − xRP1O = 0, (7a)

yRP4O − l4 sinψ1 − yRP1O = 0, (7b)

where l4 is the distance between the center of gravity and the rear wheel axle,
compare with Figure 1.

Furthermore, the front wheel angle δF , i.e. the angle between the longitudi-
nal direction of the front wheel and the longitudinal axis of the host vehicle, is
de�ned as

δF , ψ2 − ψ1. (8)

2.2.2 Kinematic Constraints

The velocity is measured at the rear axis by taking the mean value of two rear
wheels speed. Besides the easier calculations, another advantage of just using
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the rear wheel speeds is that they have less longitudinal slip due to the front
wheel traction of a modern Volvo.1 The host vehicles velocity can be expressed
as

AL1R · ṙRP1O =
(
vL1
x

vL1
y

)
, (9)

which can be rewritten as

ẋRP1O cosψ1 + ẏRP1O sinψ1 = vL1
x , (10a)

−ẋRP1O sinψ1 + ẏRP1O cosψ1 = vL1
y . (10b)

Using (6) and the new de�nitions of vL1
x (10a) and vL1

y (10b) we get

ψ̇1 =
vL1
x

l1
tan (δF − αf )−

vL1
y

l1
, (11a)

vL1
y = −vL1

x tanαr. (11b)

having in mind that the velocities vL1
x and vL1

y have their origin in the host
vehicle's rear axle. In order to simplify the notation we also de�ne the velocities
in the vehicle's center of gravity as vL4

x = vL1
x = vx and v

L4
y = vL1

y + ψ̇1 · l4. The
host vehicles �oat angle β is de�ned as,

tanβ =
vL4
y

vx
, (12)

and inserting this relation in (11) yields us

tanαr = − tanβ +
ψ̇1 · l4
xv

, (13)

tan(δF − αf ) =
ψ̇1 · (l1 − l4)

vx
+ tanβ. (14)

Under normal driving conditions we can assuming small α and β angles (tanα =
α and tanβ = β respectively), thus:

αr = −β +
ψ̇1 · l4
xv

, (15a)

αf = − ψ̇1 · (l1 − l4)
vx

− β + tan δF , (15b)

holds.

2.2.3 Motion Model

Following this introduction to the host vehicle geometry and its kinematic con-
straints we are now ready to give an expression of the host vehicle's velocity
vector, resolved in the inertial frame R,

ẋRP4O = vx cos (ψ1 + β), (16a)

ẏRP4O = vx sin (ψ1 + β), (16b)

1This project was carried out together with Volvo Car Corporation and the Intelligent
Vehicle Safety System Program (IVSS). The results were validated using a Volvo S80.
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which is governed by the yaw angle ψ1 and the �oat angle β. Hence, in order to
�nd the state-space model we are looking for, we need the di�erential equations
describing the evolution of these angles over time. Di�erentiating (7) we obtain
the corresponding relation for the accelerations:

ẍRP4O + l4ψ̈1 sinψ1 + l4ψ̇
2
1 cosψ1 − ẍRP1O = 0, (17)

ÿRP4O − l4ψ̈1 cosψ1 + l4ψ̇
2
1 sinψ1 − ÿRP1O = 0. (18)

Substituting the expressions of the host vehicle's accelerations yields

aL4
x cosψ1 − aL4

y sinψ1 + l4ψ̈1 sinψ1

+ l4ψ̇
2
1 cosψ1 − aL1

x cosψ1 − aL1
y sinψ1 = 0 (19)

and

aL4
x sinψ1 + aL4

y cosψ1 − l4ψ̈1 cosψ1

+ l4ψ̇
2
1 sinψ1 − aL1

x sinψ1 + aL1
y cosψ1 = 0. (20)

By combining the two equations and separating the variables in front of the
sinus and cosine we get:

aL4
y = aL1

y + l4ψ̈1.

For the centers of gravity, we can use Newton's second law of motion, F = ma.
We only have to consider the lateral axis (y), since longitudinal movement is a
measured input. This gives us ∑

Fi = maL4
y , (21)

where
aL4
y = v̇L4

y + ψ̇1 vx, (22)

and

v̇L4
y =

d

dt
(βvx) = vxβ̇ + v̇xβ, (23)

holds for small angles. The external forces are in this case the slip forces from
the wheels, compare with (2). Merging these expressions into Newton's law, we
have

Cαf αf cos δF + Cαr αr = m(vxψ̇ + vxβ̇ + v̇xβ), (24)

where m denotes the mass of the host vehicle. In the same manner Euler's
equation ∑

Mi = J ψ̈1 (25)

is used to obtain the relations for the angular accelerations

(l2 − l4)Cαf αf cos δF − l4 Cαr αr = J ψ̈1, (26)

where J denotes the moment of inertia of the vehicle about its vertical axis in
the center of gravity. By using the relations of the wheels' slip angle (15) in
(24) and (26) we obtain

m(vxψ̇ + vxβ̇ + v̇xβ) =

= Cαf

(
ψ̇1(l1 − l4)

vx
+ β − tan δF

)
cos δF + Cαr

(
β − ψ̇1l4

vx

)
(27)
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and

J1ψ̈1 =

= (l1 − l4)Cαf

(
ψ̇1(l1 − l4)

vx
+ β − tan δF

)
cos δF − l4 Cαr

(
β − ψ̇1l4

vx

)
(28)

which can be rewritten as

ψ̈1 = β
(−(l1 − l4)Cαf cos δF + l4Cαr)

J

− ψ̇1
Cαf (l1 − l4)2 cos δF + Cαrl

2
4

Jvx
+

(l1 − l4)Cαf tan δF
J

, (29)

β̇ = β
−Cαf cos δF − Cαr − v̇xm

mvx

− ψ̇1

(
1 +

Cαf (l1 − l4) cos δF − Cαrl4
v2
xm

)
+
Cαf sin δF
mvx

, (30)

These equations are well-known from the literature, see e.g., [14].

2.3 Road

The essential component in describing the road geometry is the curvature c,
which is de�ned as the curvature of the white lane marking to the left of the
host vehicle. An overall description of the road geometry is given in Figure 3.
In order to model the road curvature we introduce the road coordinate frame
L3, with its origin P3 on the white lane marking to the left of the host vehicle,
with xL1

P3P1
= l2. This implies that the frame L3 is moving with the x-axis of

the host vehicle. The angle of the L3 frame ψ3 is de�ned as the tangent of the
road in xL3 = 0, see Figure 4. This implies that ψ3 is de�ned as

ψ3 , ψ1 + δr, (31)

where δr is the angle between the tangent of the road curvature and the longi-
tudinal axis of the host vehicle, i.e.,

δr = β + δR. (32)

Here, δR is the angle between the host vehicles direction of motion (velocity
vector) and the road curvature tangent. Hence, inserting (32) into (31) we have

ψ3 = ψ1 + β + δR. (33)

Furthermore, the road curvature c is typically parameterized according to

c(xc) = c0 + c1xc, (34)

where xc is the position along the road in a road aligned coordinate frame.
Furthermore, c0 describes the local curvature at the host vehicle position and
c1 is the distance derivative (hence, the rate of change) of c0. It is common to
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Figure 3: Relations between the leading vehicles Tn, the host vehicle and the
road. The distance between the host vehicle path and the white lane to its left
(where the road curvature is de�ned) is l3. The lane width is W .

y
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1
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Figure 4: Representation of the road curvature c0, the radius ρ of the (driven)
path and the angles δR = ψ3 − (ψ1 + β). The lane width is W .

make use of a road aligned coordinate frame when deriving an estimator for the
road geometry, a good overview of this approach is given in [6]. However, we will
make use of a Cartesian coordinate frame. Since the road can be approximated
by the �rst quadrant of an ellipse, the Pythagorean theorem can be used to
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describe the position of the road in the L3-system as

yL3 = −sign(c)

√( 1
c0 + c1xL3

)2

− (xL3)2 − 1
c0

 . (35)

A good polynomial approximation of the shape of the road curvature is given
by

yL3 =
c0
2

(xL3)2 +
c1
6

(xL3)3, (36)

see e.g., [4, 6]. The two expressions are compared in Figure 5, where the road
curvature parameters are c0 = 0.002 (500 m) and c1 = −10−7. The di�erence
between the two curves is negligible, and due to its simplicity the polynomial
approach in (36) will be used in the following derivations. Rewriting (36) with
respect to the host vehicles coordinate frame yields

yL4 = l3 + xL4 tan δr +
c0
2

(xL4)2 +
c1
6

(xL4)3, (37)

where l3(t) is de�ned as the time dependent distance between the host vehicle
and the lane to the left.

The following dynamic model is often used for the road

ċ0 = vxc1, (38a)

ċ1 = 0, (38b)

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

35

40

45

xL
3  [m]

yL 3 
 [m

]

Figure 5: An example of the road curvature where the host vehicle is situated
in x = 0 and its longitudinal direction is in the direction of the x-axis. The solid
line is a plot of Equation (35) and the dashed line of (36) respectively. The road
curvature parameters are c0 = 0.002 (500 m) and c1 = −10−7 in this example.
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which in discrete time can be interpreted as a velocity dependent integration of
white noise. It is interesting to note that (38) re�ects the way in which roads
are commonly built [4]. However, we will now derive a new dynamic model for
the road that makes use of the road geometry introduced above.

2.3.1 Road Angle

Assume that duR is a part of the road curvature or an arc of the road circle
with the angle dψ3, see Figure 4. A segment of the road circle can be described
as

duR =
1
c0

· dψ3, (39)

which after division with the di�erential w.r.t. time dt is given by

duR
dt

=
1
c0

· dψ3

dt
, (40a)

vx =
1
c0

· ψ̇3, (40b)

where we have assumed that duR

dt = vx cos δR ≈ vx. Re-ordering the equation
and using the derivative of (33) to substitute ψ3 yields

δ̇R = c0vx − (ψ̇1 + β̇). (41)

A similar relation has been used in [4, 15].

2.3.2 Road Curvature

Di�erentiating (41) w.r.t. time gives

δ̈R = ċ0vx + c0v̇x − ψ̈1 − β̈, (42)

from which we have

ċ0 =
δ̈R + ψ̈1 + β̈ − c0v̇x

vx
. (43)

Assume δ̈R = 0, inserting ψ̈1 which was given in (29), and di�erentiating β̇,
from (30), w.r.t. time yields

ċ0 =
1

(Jm2vx)4

(
C2

αr(J + l24m)(−ψ̇1l4 + βvx)

+ C2
αf (J + (l1 − l4)2m)(ψ̇1(l1 − l4) + (β − δF )vx)

+ CαrJm(−3ψ̇1v̇xl4 + 3βv̇xvx + ψ̇1v
2
x)

+ v̇xJm
2vx(2βv̇x + vx(ψ̇1 − c0vx))

+ Cαf (Cαr(J + l4(−l1 + l4)m)(ψ̇1l1 − 2ψ̇1l4 + 2βvx − δF vx)

+ Jm(3ψ̇1v̇x(l1 − l4) + (3β − 2δF )v̇xvx + (δ̇F + ψ̇1)v
2
x))

)
(44)
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2.3.3 Distance Between the Host Vehicle Path and the Lane

Assume a small arc du of the circumference describing the host vehicle's curva-
ture, see Figure 4. The angle between the host vehicle and the road is δR, thus

dl3 = du sin δR, (45a)

l̇3 = vx sin δR. (45b)

2.4 Leading Vehicles

2.4.1 Geometric Constraints

The leading vehicles are also referred to as targets Tn. The coordinate frame
LTn moving with target n is located in PTn, as we saw in Figure 3. It is assumed
that the leading vehicles are driving on the road. More speci�cally, it is assumed
that they are following the road curvature and thus that their heading is the
same as the tangent of the road.

For each target Tn, there exists a coordinate frame LSn, with its origin PSn
at the position of the sensor. Hence, the origin is the same for all targets, but the
coordinate frames have di�erent angles ψSn. This angle, as well as the distance
lSn, depend on the targets position in space. From Figure 3 it is clear that,

rRP4O + rRPSnP4
+ rRPT nPSn

− rRPT nO = 0, (46)

or split in x and y components:

xRP4O + (l2 − l4) cosψ1 + lSn cosψSn − xRPT nO = 0, (47a)

yRP4O + (l2 − l4) sinψ1 + lSn sinψSn − yRPT nO = 0. (47b)

Let us now de�ne the relative angle to the leading vehicle as

δSn , ψSn − ψ1. (48)

The road shape was described by (36) in the road frame L3, where the x-axis
is in the longitudinal direction of the vehicle. Di�erentiating (36) w.r.t. xL3

results in

dyL3

dxL3
= c0x

L3 +
c1
(
xL3
)2

2
. (49)

The Cartesian x-coordinate of the leading vehicle PTn in the L3-frame is:

xL3
PT nP3

= xL1
PT nP1

− l2 = lSn
cos δSn
cos δr

. (50)

This gives us the angle of the leading vehicle relative to the road at P3,

δTn = ψTn − ψ3 = arctan
dyL3

dxL3
for xL3 = xL3

PT nP3
, (51)

which is not absolutely correct, since the leading vehicle must not drive directly
on the road line. However, it is su�cient for our purposes.
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2.4.2 Kinematic Constraints

The target Tn is assumed to have zero lateral velocity, i.e.,ẏLSn = 0. Further-
more, using the geometry of Figure 1 we have

ALSnR · ṙRPT nO =
(

�
0

)
, (52)

which can be rewritten as:

−ẋRPT nO sinψSn + ẏRPT nO cosψSn = 0. (53)

2.4.3 Angle

The host vehicles velocity vector is applied in its CoG P4. The derivative of (47)
is used together with (16) and (53) to get an expression for the derivative of the
relative angle to the leading vehicle w.r.t. time

(δ̇Sn + ψ̇1)lSn + ψ̇1(l2 − l4) cos δSn + vx sin(β − δSn) = 0 (54)

which is rewritten according to

δ̇Sn = − ψ̇1(l2 − l4) cos δSn + vx sin(β − δSn)
lSn

− ψ̇1. (55)

3 Resulting Sensor Fusion Problem

The resulting state-space model is divided into three parts, one for the host
vehicle, one for the road and one for the leading vehicles, referred to as H, R and
T , respectively. In the �nal state-space model the three parts are augmented,
resulting in a state vector of dimension 6 + 4 · (Number of leading vehicles).
Hence, the state vector varies with time, depending on the number of leading
vehicles that we are currently tracking.

3.1 Dynamic Motion Model

We will in this section brie�y summarize the dynamic motion models previously
derived in Section 2. The host vehicle model is described by the following states,

xH =
(
ψ̇1 β l3

)T
, (56)

i.e., the yaw rate, the �oat angle and the distance to the left lane marking. The
nonlinear states space model ẋH = fH(x, u) is given by

fH(x, u) =β
(−(l1−l4)Cαf cos δF +l4Cαr)

J − ψ̇1
Cαf (l1−l4)2 cos δF +Cαrl

2
4

Jvx
+ (l1−l4)Cαf tan δF

J

β
−Cαf cos δF−Cαr−v̇xm

mvx
− ψ̇1

(
1 + Cαf (l1−l4) cos δF−Cαrl4

v2xm

)
+ Cαf sin δF

mvx

vx sin δR


(57)

The corresponding di�erential equations were given in (29), (30) and (45b),
respectively.
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The states describing the road xR are the road curvature at the host vehicle
position c0, the angle between the host vehicles direction of motion and the road
curvature tangent δR and the width of the road W , i.e.,

xR =
(
c0 δR W

)T
. (58)

The di�erential equations for c0 and δR were given in (44) and (41), respectively.
When it comes to the width of the current lane W , we simply make use of

Ẇ = 0, (59)

motivated by the fact that W does not change as fast as the other variables, i.e.
the nonlinear states space model ẋR = fR(x, u) is given by

fR(x, u) = ċ0
c0vx − β

−Cαf cos δF−Cαr−v̇xm
mvx

+ ψ̇
Cαf (l1−l4) cos δF−Cαrl4

v2xm
− Cαf sin δF

mvx

0

 (60)

The states de�ning the targets are the azimuth angle δSn
, the lateral position

lTn of the target, the distance between the target and the host vehicle lSn and
the relative velocity between the target and the host vehicle l̇Sn. This gives the
following state vector for a leading vehicle

xT =
(
δSn lTn l̇Sn lSn

)T
. (61)

The derivative of the azimuth angle was given in (55). It is assumed that
the leading vehicles lateral velocity is small, implying that l̇Tn = 0 is a good
assumption (compare with Figure 3). Furthermore, it can be assumed that the
leading vehicle accelerates similar to the host vehicle, thus l̈Sn = 0 (compare
with e.g., [6]). The states space model ẋT = fT (x, u) of the targets (leading
vehicles) is

fT (x, u) =


− ψ̇1(l2−l4) cos δSn+vx sin(β−δSn)

lSn
− ψ̇1

0
0
l̇Sn

 (62)

Furthermore, the steering wheel angle δF and the host vehicle longitudinal ve-
locity vx are modelled as input signals,

ut =
(
δF vx

)T
. (63)

3.2 Measurement Equations

The measurement equation describes how the state variables relate to the mea-
surements, i.e., it describes how the measurements enters the estimator. Recall
that subscript m is used to denote measurements. Let us start by introducing
the measurements relating directly to the host vehicle motion, by de�ning

y1 =
(
Ψ̇ aL4

y,m

)T
, (64)
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where Ψ̇ and aL4
y,m are the measured yaw rate and the measured lateral accel-

eration, respectively. They are both measured with the host vehicles inertial
sensor in the center of gravity. In order to �nd the corresponding measurement
equation we start by observing that the host vehicle's lateral acceleration in the
CoG is

aL4
y = vx(ψ̇ + β̇) + v̇xβ. (65)

Combining this expression with the centrifugal force and assuming v̇xβ = 0
yields

aL4
y = vx(ψ̇ + β̇) = β

−Cαf − Cαr −mv̇x
m

+ ψ̇1
−Cαf (l1 − l4) + Cαrl4

mvx
+
Cαf
m

δF (66)

From this equation it is clear that the sensor information from the host vehicle's
inertial sensor, the yaw rate and the lateral acceleration, and the steering wheel
angel contains information about the �oat angle β. Hence the measurement
equations corresponding to (64) are given by

h1 =

(
ψ̇1

β
−Cαf−Cαr−mv̇x

m + ψ̇1
−Cαf (l1−l4)+Cαrl4

mvx
+ Cαf

m δF

)
(67)

The vision system provides measurements of the road geometry and the host
vehicle position on the road according to

y2 =
(
c0,m δr,m Wm l3,m

)T
(68)

and the corresponding measurement equations are given by

h2 =
(
c0 (δR + β) W l3

)T
. (69)

In order to include measurements of a leading vehicle we require that it is seen
both by the radar and the vision system. The corresponding measurement
vector is

y3 =
(
δSn,m l̇Sn,m lSn,m

)T
. (70)

Since these are state variables the measurement equation is obviously

h3 =
(
δSn l̇Sn lSn

)T
. (71)

Finally, we have to introduce a nontrivial arti�cial measurement equation in
order to reduce the drift in lTn, and to introduce a further constraint on the
road curvature. The measurement equation, which is derived from Figure 3 is
given by

h4 =
c0(lSn cos δSn)2

2
+

lTn
cos δTn

+ l3 + lSn(δR + β) cos δSn, (72)

and the corresponding measurement is simply

y4 = lSn,m sin(δSn,m). (73)

This might seem a bit ad hoc at �rst. However, the validity of the approach has
recently been justi�ed in the literature, see e.g., [20].
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3.3 Estimator

The state-space model derived in the previous section is nonlinear and it is
given in continuous time, whereas the measurements are in discrete time. The
�ltered estimates x̂t|t are computed with an EKF. In order to do this we will
�rst linearize and discretize the state-space model. This is a standard situation
and a solid account of the underlying theory concerning this can be found in
e.g., [11, 18].

The discretization is performed using the standard forward Euler method,
resulting in

xt+T = xt + Tf(xt, ut) = g(xt, ut) (74)

where T denotes the sample time. Now, at each time step the nonlinear state-
space model is linearized by evaluating the Jacobian (i.e., the partial derivatives)
of the g(x, u)-matrix at the current estimate x̂t|t. It is worth noting that this
Jacobian is straightforwardly computed o�-line using symbolic software, such
as Mathematica.

The leading vehicles are estimated using rather standard techniques from
target tracking, such as nearest neighbour data association and track counters
in order to decide when to stop tracking a certain vehicle, etc. These are all
important parts of the system we have implemented. However, it falls outside
the scope of this paper and since the techniques are rather standard we reference
the general treatments given in e.g., [2, 1].

4 Experiments and Results

The experiments presented in this section are based on measurements acquired
on public roads in Sweden during normal tra�c circumstances. The host vehicle
was equipped with radar and vision systems, measuring the distances and angles
to the leading vehicles (targets). Information about the host vehicle motion,
such as the steering wheel angle, yaw rate, etc. where acquired directly from
the CAN bus.

4.1 Parameter Estimation

Most of the host vehicle's parameters, such as the dimensions, the mass and the
moment of inertia, were given by the vehicle manufacturer (OEM). Since the
cornering sti�ness is a parameter which describes the properties between road
and tire it has to be estimated for the given set of measurements.

4.1.1 Cornering Sti�ness Parameters

A state space model with the states,

x =
(
ψ̇ β

)T
, (75)

i.e., the yaw rate and the �oat angle and the di�erential equations in (29) and
(30) was used. Furthermore, the steering wheel angle and the host vehicle
longitudinal velocity were modeled as input signals

u =
(
δF vx

)T
. (76)
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The yaw rate and the lateral acceleration

y =
(
ψ̇ ay

)T
, (77)

were used as outputs of the state space model and the measurement equation
was given in (67).

For this rather straightforward method we used two for-loops iterating the
state space model with the estimation data for cornering sti�ness values between
50,000 and 100,000 N/rad. The estimated yaw rate and lateral acceleration was
compared with the measured values using the best �t value de�ned by

�t =
(

1− |y − ŷ|
|y − ȳ|

)
· 100 (78)

where y is the measured value, ŷ is the estimate and ȳ is the mean of the
measurement. The two �t-values where combined in a weighted sum forming
a joint �t-value. In Figure 6 a diagonal ridge of the best �t value is clearly
identi�able. For di�erent estimation data sets, di�erent local maxima were
found on the ridge. However, it feels natural to assume that the two parameters
should have approximately the same value. This constraint (which forms a cross
diagonal or orthogonal ridge) is expressed as

�tpara =

1− |Cαf − Cαr|∣∣∣ (Cαf +Cαr)
2

∣∣∣
 · 100. (79)

and added as a third �t-value to the weighted sum, obtaining the total best �t
for the estimation data set as

best total �t = Wψ�tψ +Way�tay +Wpara�tpara, (80)

where
Wψ +Way +Wpara = 1 (81)

The iteration resulted in the values Cαf = 69, 000 N/rad and Cαr = 81, 000
N/rad.

The state space model was validated with the given parameters, see Figure 7.
The �t-values of the yaw rate and lateral acceleration are given together with
some standard liner and nonlinear system identi�cation approaches in Table 1.

4.1.2 Kalman Design Variables

The process and measurement noise covariances (Q and R matrices) are design
parameters of the extended Kalman �lter (EKF). It is assumed that there are
no cross correlations between the measurement signals or the process equations,
i.e. the two matrices are diagonal. The present �lter has ten states and ten
measurement signals, which implies that 20 parameters have to be tuned. The
tuning was started by using physical intuition of the error of the process equa-
tion and the measurement signals. In a second step the covariance parameters
were tuned by an algorithm minimizing the root mean square error (RMSE) of
the estimated ĉ0 and the reference curvature c0. The estimated curvature was
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Table 1: Fit values for some di�erent identi�cation approaches. The Grid ap-
proach was discussed in this section, the tree others are nonlinear and linear
methods available inMatlab's System Identification Toolbox. Note that
the two last linear black-box approaches have no explicit cornering sti�ness pa-
rameters. The �t values are presented for the two outputs, the yaw rate and
the lateral acceleration respectively.

Approach Fit Yaw Rate [%] Fit Latt. Acc. [%]
Grid 66 71
NL-Gray 57 56
ARX 75 67
Subspace 69 65

obtained by simulating the �lter with an estimation data set. The calculation
of the reference value is described in [7].

The tuning algorithm adjusts the elements of the diagonal Q and R matri-
ces sequentially, i.e. tuning the �rst element until the minimum RMSE value
is found, thereafter tuning the next element and so on. When all elements
have been adjusted the algorithm starts with the �rst again. This procedure is
iterated until the RMSE value is stabilized, and a local minima has been found:
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Figure 6: Total best �t value of the two outputs and the constraint de�ned in
(79).
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Figure 7: Comparing the simulated result of the nonlinear state space model
(black) with measured data (gray) of a validation data set. The upper plot
shows the yaw rate and the lower shows the lateral acceleration.

1. Start with initial values of the parameter p(n), where n = 1...20 for the
present �lter. Simulate the �lter and save the resulting RMSE value in
the variable old RMSE.

2. Simulate the �lter for three di�erent choices of the parameter p(n):

• p(n)(1 + ∆)

• p(n)(1−∆).

• p(n)(1 + δ) with δ = N (0, 0.1).

3. Assign p(n) the value corresponding to smallest RMSE of these three
choices or the old value of p(n). Save the RMSE in the variable current
RMSE. If the value of p(n) was changed go to 2, if it was not changed and
if n 6= nmax switch parameter n:=n+1 and go to 2.

4. Compare the current with old RMSE value, if there is no di�erence stop.
Use the di�erence between the current and the old RMSE to calculate ∆
(limit the value to e.g 0.001 < ∆ < 0.1). Assign old RMSE := current

RMSE and go to 2.

The chosen design parameters were validated on a di�erent data set, the results
are discussed in the next sections.

4.2 Validation of Host Vehicle Signals

The host vehicle's states are according to (56), the yaw rate, the �oat angle
and the distance to the left lane marking. The estimated and the measured
yaw rate signals are as expected very similar. As described in Section 4.1.1, the
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parameters of the vehicle model were optimized with respect to the yaw rate,
hence it is no surprise that the fusion method decrease the residual further. A
sequence from a measurement on a rural road is shown in Figure 8. Note that
the same measurement sequence is used in the Figures 7 to 13, which will make
it easier to compare the estimated states.

The �oat angle β is estimated, but there exists no reference or measurement
signal. An example is shown in Figure 9. For velocities above 30-40 km/h, the
�oat angle appears more or less like the mirror image of the yaw rate, and by
comparing with Figures 8 we can conclude that the sequence is consistent.

The measurement signal of the distance to the left white lane marking l3,m
is produced by the vision system OLR (Optical Lane Recognition). Bad lane
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Figure 8: Comparison between the measured (gray) and estimated yaw rate
using the sensor fusion approach in this paper (black).
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Figure 9: The estimated �oat angle β for the same measurement as used for the
yaw rate in Figure 8.
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markings or certain weather conditions can cause errors or noise in the mea-
surement signal. The estimated state l3 of the fusion approach is very similar
to the pure OLR signal as shown in Figure 10.

The measured and estimated angle between the host vehicles direction of mo-
tion (velocity vector) and the road curvature tangent δR is shown in Figure 11.
The measurement signal is produced by the OLR.
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Figure 10: The estimated and measured distance to the left white lane marking
l3.
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Figure 11: The estimated and measured angle between the velocity vector of
the host vehicle and the tangent of the road δR.
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4.3 Road Curvature Estimation

An essential idea with the sensor fusion approach shown in this paper is to
make use of a more precise host vehicle model in order to estimate the road
curvature. In this section we will compare this approach with other vehicle
and road models. There are basically two di�erences in comparison with other
fusion approaches discussed in the literature,

1. the more precise host vehicle model including the �oat angle β and

2. the dynamic curvature model (44).

We will compare three fusion approaches and two more straightforward ap-
proaches.

Fusion 1 is the sensor fusion approach shown in this paper.

Fusion 2 is a similar approach, thoroughly described in [6]. An important
di�erence to fusion 1 is that the host vehicle model is less complex and
the �oat angle β among others is not modeled. Furthermore, in fusion 2,
the road is modeled according to (38) and a road aligned coordinate frame
is used.

Fusion 3 comprehends the host vehicle model of fusion 1 and the road model
of fusion 2, i.e. substituting (44) by (38) and introducing the seventh state
c1. This method is described in e.g. [4].

Model 1 estimates the curvature as a division of two measurement signals

ĉ0 =
Ψ
vx

(82)

i.e. the model comprises no dynamics.

Model 2 is the state space model described in Section 3.3, i.e. the model of
this paper is used as estimator without the Kalman �lter.

Before we analyze the results we discuss the important question of where the
curvature coe�cient c0 is de�ned. In fusion 1 and the two models it feels rather
natural to assume that c0 is de�ned at the host vehicle and thus describes the
currently driven curvature. In fusion 2 and 3 the curvature is described by the
state space model (38) and by the polynomials (34) and (36) respectively, both
utilizing two curvature coe�cients c0 and c1. In this case it is more di�cult to
de�ne of the position of c0 by intuition.

The curvature estimate ĉ0 from the sensor fusion approaches are compared
to the estimate from the optical lane recognition (OLR) alone and a reference
value (computed o�-line using [7]). A typical result of this is shown in Figure 12.
The data stems from a rural road, which explains the curvature values. It can
be seen that the estimates from the sensor fusion approaches gives better results
than using the OLR alone, as was expected. The OLR estimate is rather noisy
compared to the fused estimates. This is not surprising, since the pure OLR
has less information.

Fusion 3, model 1 and model 2 are shown together with the reference value in
Figure 13. The curvature estimate from model 1 (gray solid line) is surprisingly
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Figure 12: Results from the two fusion approaches (fusion 1 solid black line and
fusion 2 gray line) and the OLR (dotted line), showing the curvature estimate
ĉ0. As can be seen the curvature estimation can be improved by taking the
other vehicles (gray line) and the host vehicle's driven curvature in account
(solid black line). The dashed line is the reference curvature.

good, considering the fact that it is just a division of two measurement signals.
Model 2 (solid black line) is the state space model described in this paper.
The absolute position is not measured and the derivative of the curvature is
estimated, which leads to a major bias on the estimate of c0. The bias is
transparent in Figure 13 but it also leads to a large RMSE value in Table 2.
Fusion 3 also gives a proper result, it is interesting to notice that the estimate
seams to follow the incorrect OLR at 35 s. The same behavior holds for fusion
2 in Figure 12, which uses the same road model.

To get a more aggregate view of the performance, we give the root mean
square error (RMSE) for longer measurement sequences in Table 2. The fusion
approaches improves the road curvature estimate by making use of the informa-
tion about the leading vehicles, that is available from the radar and the vision
systems. However, since we are interested in the curvature estimate also when
there are no leading vehicles in front of the host vehicle this case will be studied
as well. It is straightforward to study this case, it is just a matter of not pro-
viding the measurements of the leading vehicles to the algorithms. In Table 2
the RMSE values are provided for a few di�erent scenarios. It is interesting
to see that the advantage of fusion 1, which uses a more accurate host vehicle
model, in comparison to fusion 2 is particularly noticeable when driving alone
on a rural road. The reason for this is �rst of all that there are no leading
vehicles that could aid the fusion algorithm. Furthermore, the fact that we are
driving on a rather curvy road implies that any additional information will help
improving the curvature estimate. Here, the additional information is the im-
proved host vehicle model used in fusion 1. The highway is rather straight and
as expected not much accuracy could be gained in using an improved dynamic
vehicle model.
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Figure 13: Results from fusion 3 (dotted line) and the two models (model 1 gray
line and model 2 solid black line), showing the curvature estimate ĉ0. Model
2 is estimating the derivative of the curvature and the absolute position is not
measured, which leads to the illustrated bias. The dashed line is the reference
curvature.

4.4 Leading Vehicle Tracking

A common problem with these road estimation methods is that it is hard to
distinguish between the case when the leading vehicle is entering a curve and the
case when the leading vehicle is performing a lane change. With the approach
in this paper the information about the host vehicle motion, the OLR and
the leading vehicles is weighted together in order to form an estimate of the
road curvature. Figure 14 shows an example from a situation on a three lane
highway, where one of the leading vehicles changes lane. The fusion approach

Table 2: Comparison of the root mean square error (RMSE) values for the
three fusion approaches and the pure measurement signal OLR for two longer
measurement sequence on public roads. Two cases where considered, using the
knowledge of the leading vehicles position or not and thereby simulating the
lonely driver. Note that all RMSE values should be multiplied by 10−3.

· 10−3 Highway Rural road
Time 15 min 9 min
OLR 0.152 0.541
Model 1 0.193 0.399
Model 2 0.311 1.103
Leading vehicles used? yes no yes no
Fusion 1 (this paper) 0.103 0.138 0.260 0.387
Fusion 2 (method from [6]) 0.126 0.143 0.266 0.499
Fusion 3 0.154 0.152 0.331 0.403
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Figure 14: Illustration of the lateral movement lTn over time for a leading
vehicle driving on a highway with three lanes, where the leading vehicle changes
lane. The estimate from our fusion approach (fusion 1) is given by the solid
black lines and the raw measurement signal is shown by the solid gray line.
The dashed lines shows the lane markings. In this example the distance to the
leading vehicle is 65 m, see Figure 15.

in this paper produces an estimate of the lateral position of the leading vehicle
which seems reasonable, but there is a time delay present in the estimate. To
get a better understanding of this situation, one of the images acquired during
the lane change is shown in Figure 15.

For straight roads with several leading vehicles no di�erence between this
and the second fusion approach mentioned above could be seen. This can be
explained by the other leading vehicles, which stay in there lane and stabilizes
the road geometry estimation.

Figure 15: Camera view for the situation in Figure 14 during the lane change.
The distance to the leading vehicle is approximately 65 m.
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5 Conclusions

We have presented a new formulation for the well studied problem of integrated
road geometry estimation and vehicle tracking. The main di�erences to the
existing approaches are that we have introduced a new dynamic model for the
road and we make use of an improved host vehicle model. The results obtained
using measurements from real tra�c situations clearly indicates that the gain in
using the extended host vehicle model is most prominent when driving on rural
roads without any vehicles in front.
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