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THE THERMAL CASIMIR EFFECT: SATURATION

Bo E. Sernelius

Division of Theory and Modeling, Department of Physics, Chemistry and Biology,

Linköping University, SE-581 83 Linköping, Sweden
∗E-mail: bos@ifm.liu.se

This article addresses the discrepancies between theoretical and experimental
results obtained for the thermal Casimir effect. Here we test the possibility
that saturation effects may be the root of the problems. We present graphs
that describe the numerical derivations in great detail.
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1. Introduction

We realized1 that the correct way to treat the materials in the Casimir

experiments is to include finite temperature, finite conductivity and dis-

sipation, all at the same time. Up till then one had started from perfect

metals and added corrections, one by one, for the effects just mentioned.

Very soon it became evident that this more realistic treatment of the ma-

terials led to worse agreement with the experimental results. This divided

the Casimir community into two groups: one in favor of the more realistic

treatment based on known material properties; one in favor of a theory that

agrees better with experiment but, for this to be the case, has to invoke

various prescriptions — a phenomenological approach. The general situa-

tion is one of great frustration. The consensus in the Casimir community at

present is that the correct approach is to use the proper material properties

and that both experimentalists and theorists should do their best in finding

the root of the problem.

In the present work we test if the cause of all the problems can be satura-

tion effects. The electromagnetic normal modes involved in the Casimir ef-

fect are assumed to be independent massless bosons. However, these bosons

are formed from electron excitations and the electrons are fermions. This

means that the modes are not completely independent. Saturation effects

are expected to appear in case a huge number of modes are excited. We
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test this idea on several different Casimir experiments where theory and

experiment disagree. First out is the classical Casimir force measurement

between two metal half spaces; here both in the form of the torsion pen-

dulum experiment by Lamoreaux2 and in the form of the Casimir pressure

measurement between a gold sphere and a gold plate as performed by Decca

et al.3 ; theory predicts a large negative thermal correction, absent in the

high precision experiments. The third experiment is the measurement of the

Casimir force between a metal plate and a laser irradiated semiconductor

membrane as performed by Chen et al.4 ; the change in force with laser

intensity is larger than predicted by theory. The fourth experiment is the

measurement of the Casimir force between an atom and a wall in the form

of the measurement by Obrecht et al.5 of the change in oscillation frequency

of a 87Rb Bose-Einstein condensate (BEC) trapped to a fused silica wall;

the change is smaller than predicted by theory.

The main results from the work is to be presented elsewhere.6,7 To avoid

too much overlap we here make a much briefer description of the formal

derivation and expand more on where the cause of the deviations are to

be found and what the effects are from our saturation corrections. In Sec.

2 we summarize the formalism; in Sec. 3 we discuss the experiments by

Lamoreaux and Decca; Sec. 4 is devoted to the experiment by Chen et al.;

in Sec. 5 we discuss the experiment by Obrecht et al.; Sec. 6 contains a brief

summary.

2. Basic Formalism

The theory corresponding to all experiments treated here are based on the

two plate geometry. Even the Casimir force between an atom and a wall

can be obtained from the results of this geometry; one takes the limit when

the thickness of one of the plates goes to zero and at the same time lets

the material of the thin plate be diluted. In the two plate geometry the

interaction energy per unit area, V (d), can at zero temperature be written

on the form8

V (d) =
~

Ω

∑

k

∞
∫

0

dω

2π
ln [f (k, iω)] , (1)

where d is the distance between the plates, k is the two-dimensional wave

vector in the plane of the plates, Ω is the area of a plate, and f (k, ω) = 0 is

the condition for an electromagnetic normal mode in the particular geome-

try. This expression one arrives at using the extended argument principle8
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Fig. 1. Integration contours in the complex frequency plane used in connection with the
extended argument principle: (a) contour used for zero temperature; (b) contour used
for finite temperature; (c) contour that can be used both at zero and finite temperature.

with the contour shown in Fig. 1(a). At finite temperature the integration

is replaced by a discrete summation over Matsubara frequencies,

V (d) =
1

βΩ

∑

k

∑

ωn

′

ln [f (k, iωn)] ; ωn =
2πn

~β
. (2)

This expression one arrives at using the contour shown in Fig. 1(b). Alter-

natively one may use the contour shown in Fig. 1(c) and integrate along

the real frequency axis,

V (d) =
2~

Ω

∑

k

Im

∞
∫

0

dω

2π
[n (ω) + 1/2] ln [f (k, ω)] , (3)

where n (ω) = [exp (~βω) − 1]−1 is the distribution function for massless

bosons. This form can also be used at zero temperature; then the distri-

bution function vanishes. Problems encountered using the real frequency

integration is discussed in detail elsewhere.9 In the two plate geometry

there are two groups of normal mode, transverse magnetic (TM) and trans-

verse electric (TE), each with a different mode condition function. The

interaction potential is a sum of two terms, V (d) = V TM (d) + V TE (d).

The distribution function in Eq. (3) diverges for zero frequency and it

is the low energy modes that cause the problems in all experiments treated

here. We shift the distribution function downwards in frequency, so that it

never reaches the point of divergence, by adding a damping parameter, D,

ñ (ω) = [exp (~βω + D) − 1]
−1

. (4)
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Fig. 2. Dispersion curves for the modes between two gold plates in absence of dissipa-
tion. The frequencies are in units of ωs, the surface plasmon frequency. The solid straight
line is the light dispersion curve in vacuum; the dashed (dotted) curves are TE (TM)
propagating modes; the thin solid curves are evanescent TM modes; the thick solid curve
is the lower boundary for transverse bulk modes in the plates. From Ref. [10].

The discrete frequency summation in Eq. (2) is the result of the poles

of the distribution function that all fall on the imaginary axis.8 Our new

distribution function has its poles shifted away from the axis the distance

D/~β into the left half plane. The new form of the interaction potential is

V (d) =
1

βΩ

∑

k

∑

ωn

′ 1

π

∞
∫

−∞

dω′
(D/β) ln [f (k, iω′)]

(ω′
− ωn)

2
+ (D/β)

2
. (5)

Each term in the original summation is replaced by an integral. For small

D values it is enough to replace only the zero frequency term.

3. Two Parallel Metal Plates

This geometry is applicable to the torsion pendulum experiment by Lam-

oreaux2 and the Casimir pressure measurement performed by Decca et al.3

The dispersion curves for the electromagnetic normal modes for two gold

plates10 are shown in Fig. 2. This figure is valid in neglect of dissipation

in the plate materials. The modes are propagating (evanescent) above and

to the left (below and to the right) of the light dispersion curve. The light

dispersion curve is the straight diagonal line in the figure; it has slope unity

with the chosen scaling of the axes. Note that there are no TE evanescent

modes. When the system is allowed to have dissipation there are modes

everywhere. Each original mode is replaced by a continuum of modes.11

Evanescent TE modes appear and the continuum extends all the way down

to the momentum axis. These modes are the cause of all the problems with
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Fig. 3. Integrands of Eq. (1) (curves) and summands of Eq. (2) (circles) in the case of
two gold plates separated by 0.1µm.

the thermal Casimir force in this geometry. The integrand of Eq. (1) and
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Fig. 4. Same as Fig. 3 but now for 1.0µm.

summand of Eq. (2) in the case of two gold plates separated by 0.1µm are

displayed in Fig. 3. Fig. 3(a) is the result when dissipation is neglected and

Fig. 3(b) when dissipation is included. The solid (dashed) curves is the TM

(TE) integrand; the open (filled) circles is the TM (TE) summand. We note

that the effect of dissipation is to push down the TE integrand toward zero

for small energies or frequencies. In Eq. (2) the n = 0 term vanishes for the

TE contribution. We further note that for this separation the circles come

closely spaced and the summation and integration give very similar results

— there are very small temperature effects; the integrand is pushed down

very close to the vertical axis — the dissipation has a very small effect on

the zero temperature results.
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Fig. 5. Same as Fig. 3 but now for 5µm.

In Fig. 4 we show the results at 1.0µm separation. Here we note that

summation points are much fever and hence the temperature effect is much

larger; the dissipation has still negligible effect on the zero temperature

result; on the room temperature result, on the other hand, it has a huge

effect — the TE contribution has been reduced by a factor of two. For 5µm

separation, Fig. 5, we note that only one summation point contributes; the

dissipation has the effect that at room temperature there is nolonger any

TE contribution at all.

In Fig. 6(a) we show the energy correction factor for the two-gold-plate

geometry. The energy correction factor is the Casimir energy per unit area

divided by the zero temperature Casimir energy per unit area for two per-

fectly reflecting metal plates, −~cπ2
/(

720d3
)

. The experimental results2

obtained by Lamoreaux are shown as squares with error bars. There is a

cluster of experimental points near 1µm separation. Here the deviation be-

tween theory and experiment is over 20%. Theory and experiment are in

clear disagreement. The experimental result3 for the normalized Casimir

pressure at 295 K is shown as dots in Fig. 6(b). The bars are the endpoints

of the experimental error bars. The upper (lower) thick solid curve is the

theoretical result for zero temperature (295 K) calculated with Eqs. (1)

and (2), respectively. The dielectric function on the imaginary frequency

axis was derived from experimental tabulated optical data for gold. We

note that the zero temperature result agrees much better with the exper-

imental result. The large negative thermal correction comes entirely from

the TE evanescent modes. All curves are normalized with the zero tem-

perature Casimir pressure between two perfectly reflecting metal plates,

~cπ2
/(

240d4
)

. The circles are the results for different damping parame-
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Fig. 6. (a): Energy correction factor for two gold plates. The filled squares with error
bars are the Lamoreaux’ experimental2 values from the torsion pendulum experiment.

The dashed curves are the perfect metal results. The thick solid curves are the results
for real gold plates using Eq. (1) for zero temperature and Eq. (2) for room tempera-
ture. The curves with circles are the results from our model calculations with different
saturation parameters; (b): Casimir pressure between two gold plates. The experimental
result3 is shown as dots and the endpoints of the error bars are indicated by horizon-
tal bars; the upper (lower) thick solid curve is the traditional theoretical zero (room)
temperature result; the circles are the present results, obtained from Eq. (3) with the
distribution function for TE evanescent waves modified according to Eq. (4), with damp-
ing parameters 0.01, 0.1, and 1.0, respectively, counting from below; the corresponding
results obtained by shifting the zero frequency pole into the left of the complex frequency
plane are shown as thin solid curves.

ters from using Eq. (3) with the modified distribution function of Eq. (4)

in the contribution from the TE evanescent waves. To each set of circles

corresponds a thin solid curve. This curve is the result of using Eq. (2),

where just the zero frequency pole has been moved into the left half of the

complex frequency plane and the corresponding term in the summation has

been modified according to Eq. (5). We note that for the two lowest set of

curves with small damping the two results agree. For very high damping

there are deviations. These deviations have two reasons: One is that in the

thin solid curves all mode types are affected by the damping; the second is

that for strong enough damping more terms in the summation should be

modified. In Fig. 7(a) we show the thermal correction to the Casimir en-

ergy. The contribution from all four mode types are given separately. These

curves have been obtained from Eq. (3) and the Drude dielectric function

suited for gold has been used. We note that the TE evanescent waves give

a negative contribution. For larger separations the total TE contribution

saturates when it has completely eliminated the zero temperature TE con-

tribution. Fig. 7(b) shows how the integrand for the TE evanescent modes
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Fig. 7. (a): The thermal contribution to the Casimir energy from the four mode types
between two gold plates. The results are also lumped together in various ways. All results
are divided by the zero temperature Casimir energy for perfectly reflecting plates; (b):
The integrand for the TE evanescent modes for different choices of damping parameter.

is affected by the choice of damping parameter.

4. Two Parallel Plates, one Metallic and one

Semiconducting

The third experiment we consider here is the measurement of the Casimir

force between a gold plate and a laser irradiated semiconductor membrane

as performed by Chen et al.4 They measured the change in force with the

laser irradiation compared to without any irradiation. The idea is to find

out how the force varies with carrier concentration in the semiconducting

membrane. The results are shown in Fig. 8(a). The open squares with error

bars are the experimental result. The dashed curve with open circles is the

theoretical result for 300 K. The deviations are clear. In this geometry it

is not enough to neglect dissipation to get agreement with experiment; the

theoretical results with and without dissipation are very similar. Besides,

it is now the TM modes that cause the problems. The solid curve with

filled (open) circles is our saturation based result with D equal to 0.01

(0.1). We find that both these curves agree with the experiment within the

experimental uncertainty. Here we have used Eq. (2) and just modified the

zero frequency contribution according to Eq. (5).

5. Atom Wall Geometry

In the experiment by Obrecht et al.5 one studied indirectly the force be-

tween a rubidium atom and a dielectric substrate. This was done by mea-
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Fig. 8. (a): The change in Casimir force, at 300 K, between a gold sphere and a silicon
membrane with and without laser irradiation. The open squares with error bars are the
experimental4 result. The dashed curve with open circles is the theoretical result without
saturation effects. The solid curve with filled (open) circles is our present result with D

equal to 0.01(0.1); (b): The TM and TE integrands and summands with (dotted) and
without (solid) laser irradiation at 100nm separation. The arrow to the left shows how
the dark sample n = 0 term is shifted down at the damping parameter 0.01.

suring the collective oscillation frequency of the mechanical dipole mode of

a BEC near enough to a dielectric substrate for the force to measurably

distort the trapping potential. The fractional change in trap frequency is

defined as γx ≡ (ω0 − ωx)/ω0 in terms of the unperturbed trap frequency,

ω0, and ωx, the trap frequency perturbed by the force. In Fig. 9(a) the

experimental result5 is shown as open squares with error bars. The upper

(lower) curve is the theoretical result, without saturation, including (ne-

glecting) the conductivity from the few thermal carriers in the silica wall.

We see that also here the neglect of the contribution, to the dielectric func-

tion of the silica wall, from the very few thermally excited carriers brings

the theoretical result into agreement with experiment. In this geometry,

just as in the gold-plate silicon-wafer geometry, the TM modes cause the

problems and it is not enough to neglect dissipation to get good agreement

between theory and experiment. To include saturation effects we have just

modified the zero frequency contribution in analogy with Eq. (5). We note

that in this experiment it is enough to have a damping parameter as small

as 10−10 to bring the theoretical result into agreement with experiment.

6. Summary

In summary we have proposed that saturation effects are responsible for

the discrepancy between theory and experiment in several quite different
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Fig. 9. (a): Fractional change in trap frequency for a Rb atom near a silica wall versus
separation. The open squares are the experimental result.5 The upper (lower) curve is the
theoretical result including (neglecting) the conductivity from the few thermal carriers
in the silica wall. The circles are our present results for the D values 10−10, 10−11, and
10−12, respectively, counted from below; (b): The TM and TE integrands and summands
at 6500nm separation. The arrows to the left shows how the n = 0 term is shifted down
for the damping parameter 10−10 and 10−2, respectively.

Casimir geometries. We have demonstrated that the problems may go away

in all cases.
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