
Technical reports in Computer and Information Science

Report number 2008:3

A Comparative Study of Industrial
Static Analysis Tools
(Extended Version)

by

Pär Emanuelsson and Ulf Nilsson
par.emanuelsson@ericsson.com, ulfni@ida.liu.se

January 7, 2008

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Technical reports in Computer and Information Science are available online at
Linköping Electronic Press: http://www.ep.liu.se/ea/trcis/

A Comparative Study of Industrial Static

Analysis Tools (Extended Version)

Pär Emanuelsson Ulf Nilsson
Ericsson AB Dept of Computer and Info. Sci.
Datalinjen 4 Linköping University

SE-583 30 Linköping, Sweden SE-581 83 Linköping, Sweden
par.emanuelsson@ericsson.com ulfni@ida.liu.se

January 7, 2008

1 Introduction

Almost all software contains defects. Some defects are found easily while others
are never found, typically because they emerge seldom or not at all. Some
defects that emerge relatively often even go unnoticed simply because they are
not perceived as errors or are not sufficiently severe. Software defects may give
rise to several types of errors, ranging from logical/functional ones (the program
sometimes computes incorrect values) to runtime errors (the program typically
crashes), or resource leaks (performance of the program degrades possibly until
the program freezes or crashes). Programs may also contain subtle security
vulnerabilities that can be exploited by malicious attackers to gain control over
computers.

Fixing defects that suddenly emerge can be extremely costly in particular if
found at the end of the development cycle, or worse: after deployment. Many
simple defects in modern programming languages can be found by modern com-
pilers, e.g. in statically typed languages. But the predominating method for
finding defects is testing. Testing has the potential of finding most types of
defects, however, testing is costly and no amount of testing will find all de-
fects. Testing is also problematic because it can be applied only to executable
code, i.e. rather late in the development process. Alternatives to testing, such
as dataflow analysis and formal verification, have been known since the 1970s
but have not gained widespread acceptance outside academia—that is, until
recently; lately several commercial tools for detecting runtime error conditions
at compile time have emerged. The tools build on static analysis and can be
used to find runtime errors as well as resource leaks and even some security
vulnerabilities statically, i.e. without executing the code. This paper is a survey
and comparison of three market leading static analysis tools: PolySpace Veri-
fier, Coverity Prevent and Klocwork K7. The list is by no means exhaustive,
and the list of competitors is steadily increasing, but the three tools represent
state-of-the-art in the field at the moment.

The main objective of this study is (1) to identify significant static analysis
functionality provided by the tools, but not addressed in a normal compiler,
and (2) to survey the underlying supporting technology. The goal is not to

2

provide a ranking of the tools; nor is it to provide a comprehensive survey of all
functionality provided by the tools. Providing such a ranking is problematic for
at least two reasons: Static analysis is generally only part of the functionality
provided by the tool; for instance, Klocwork K7 supports both refactoring and
software metrics which are not supported by the two other tools. Even if re-
stricting attention only to static analysis functionality the tools provide largely
non-overlapping functionality. Secondly, even when the tools seemingly provide
the same functionality (e.g. detection of dereferencing of null pointers) their
solutions are often not comparable; each tool typically finds defects which are
not found by any of the other tools.

Studying the internals of commercial and proprietary tools is not without
problems—in particular, it is impossible to get full information about technical
solutions. However, some technical information is publicly available in manuals
and white papers; some of the tools also originate from academic tools which
have been extensively described in research journals and conference proceedings.
While technical solutions may have changed since then, we believe that such
information is still largely valid. We have also consulted representatives from
all three providers with the purpose to validate our descriptions of the tools.
Still it must be pointed out that the descriptions of suggested technical solutions
is subject to a certain amount of guessing in some respects.

The rest of the report is organized as follows: In Section 2 we define what
we mean by the term static analysis and survey some elementary concepts and
preconditions; in particular, the trade off between precision and analysis time.
Section 3 contains a description of basic principles of static analysis. In Sec-
tions 4–6 we survey the static analysis functionality provided by PolySpace
Verifier/Desktop, Coverity Prevent and Klocwork K7 focusing in particular on
the support for the C and C++ programming languages. Section 7 addresses
the complementary issue of programming guidelines such as those of The Motor
Software Reliability Association (MISRA). Section 8 contains a qualitative com-
parison of the three tools summing up their relative merits and shortcomings.
The section also surveys several industrial evaluations of the tools over time
at Ericsson, in particular involving the products from Coverity and Klocwork.
Section 9 contains conclusions.

2 Static analysis

Languages such as C and, to a lesser extent, C++ are designed primarily with
efficiency and portability in mind1, and therefore provide little support to avoid
or to deal with runtime errors. For instance, there is no checking in C that read
or write access to an array is within bounds, that dereferencing of a pointer vari-
able is possible (that the variable is not null) or that type casting is well-defined.
Such checks must therefore be enforced by the programmer. Alternatively we
must make sure that the checks are not needed, i.e. guarantee that the error
conditions will never occur in practice.

By the term static analysis we mean automatic methods to reason about
runtime properties of program code without actually executing it. Properties

1Or so it is often claimed; in fact, even in ANSI/ISO Standard C there are many language
constructs which are not semantically well-defined and which may lead to different behavior
in different compilers.

3

that we consider include those which lead to premature termination or ill-defined
results of the program, but precludes for instance purely syntactic properties
such as syntax errors or simple type errors.2 Nor does static analysis address
errors involving the functional correctness of the software. Hence, static analy-
sis can be used to check that the program execution is not prematurely aborted
due to unexpected runtime events, but it does not guarantee that the program
computes the correct result. While static analysis can be used to check for
e.g. deadlock, timeliness or non-termination there are other, more specialized,
techniques for checking such properties; although relying on similar principles.
Static analysis should be contrasted with dynamic analysis which concerns anal-
ysis of programs based on their execution, and includes e.g. testing, performance
monitoring, fault isolation and debugging.

Static analysis is useful in several respects. It can be used to detect certain
types of software runtime errors—e.g. division by zero, arithmetic overflows,
array indices out of bounds, buffer overflows etc—without actually executing
the code. However, static analysis does not in general guarantee the absence of
runtime errors. While static analysis can reduce the need for testing or even
detect errors that in practice cannot be found by testing, it is not meant to
replace testing.

In addition to finding errors, static analysis can also be used to produce more
efficient code; in particular for “safe” languages like Java, where efficiency was
not the primary goal of the language designers. Many runtime tests carried out
in Java programs can in practice be avoided given certain information about the
runtime behavior. For instance, tests that array indices are not out-of-bounds
can be omitted if we know that the value of the indices are limited to values
in-bounds. Static analysis can provide such information.

Static analysis can also be used for type inference in untyped or weakly
typed languages or type checking in languages with non-static type systems
[22]. Finally static analysis can be used for debugging purposes (see e.g. [1]), for
automatic test case generation (see e.g. [17]), for impact analysis (see e.g. [26]),
intrusion detection (see e.g. [28]) and for software metrics (see e.g. [29]). How-
ever, in this paper we focus our attention on the use of static analysis for finding
defects and software vulnerabilities which typically would not show up until the
code is executed.

2.1 Detecting runtime errors

The following is a non-exhaustive list of runtime problems that typically cannot
be detected by a traditional compiler, but which can potentially be detected by
static analysis:

• Improper resource management: Resource leaks of various kinds, e.g. dy-
namically allocated memory which is not freed, files, sockets etc. which
are not properly deallocated when no longer used;

• Illegal operations: Division by zero, calling arithmetic functions with il-
legal values (e.g. non-positive values to logarithm), over- or underflow in

2The borderline is not clear; some checks done by compilers, such as type checking in a
statically typed language, are closer to runtime properties than syntactic ones. In fact, in a
sufficiently rich type system some type checking must be done dynamically.

4

arithmetic expressions, addressing arrays out of bounds, dereferencing of
null pointers, freeing already deallocated memory;

• Dead code and data: Code and data that cannot be reached or is not used.
This may be only bad coding style, but may also signal logical errors or
misspellings in the code;

• Incomplete code: This includes the use of uninitialized variables, functions
with unspecified return values (due to e.g. missing return statements) and
incomplete branching statements (e.g. missing cases in switch statements
or missing else branches in conditional statements).

Other problems checked for by static analysis include non-termination, uncaught
exceptions, race conditions etc.

2.2 Precision and time of analysis

Most interesting properties checked by static analyses are undecidable, meaning
that it is impossible, even in theory, to determine whether an arbitrary program
exhibits the property or not. As a consequence static analyses are inherently
imprecise—they typically infer that a property (e.g. a runtime error) may hold.
This implies that

1. if a program has a specific property, the analysis will usually only be able to
infer that the program may have the property. In some cases the analysis
may also be able to infer that the program must have the property.

2. if the program does not have the property, there is a chance that (a) our
analysis is actually able to infer this (i.e. the program must not have the
property), but it may also happen that (b) the analysis infers that the
program may have the property.

If the property checked for is a defect then we refer to case 2(b) as a false
positive. Hence, if the analysis reports that a program may divide by zero we
cannot tell in general whether it is a real problem (item 1) or if it is a false
positive (item 2(b)). The precision of the analysis determines how often false
positives are reported. The more imprecise the analysis is, the more likely it is
to generate false positives.

Unfortunately precision usually depends on analysis time. The more precise
the analysis is, the more resource consuming it is, and the longer it takes. Hence,
precision must be traded for time of analysis. This is a very subtle trade-off—if
the analysis is fast it is likely to report many false positives in which case the
alarms cannot be trusted. On the other hand a very precise analysis is unlikely
to terminate in reasonable time for large programs.

One way to avoid false positives is to filter the result of the analysis, remov-
ing potential errors which are unlikely (assuming some measure of likelihood).
However, this may result in the removal of positives which are indeed defects.
This is known as a false negative—an actual problem which is not reported.
False negatives may occur for at least two other reasons. The first case is if
the analysis is too optimistic, making unjustified assumptions about the effects
of certain operations. For instance, not taking into account that malloc may

5

return null. The other case which may result in false negatives is if the analysis
is incomplete; not taking account of all possible execution paths in the program.

There are a number of well-established techniques that can be used to trade-
off precision and analysis time. A flow-sensitive analysis takes account of the
control flow graph of the program while a flow-insensitive analysis does not. A
flow-sensitive analysis is usually more precise—it may infer that x and y may
be aliased (only) after line 10, while a flow-insensitive analysis only infers that
x and y may be aliased (anywhere within their scope). On the other hand, a
flow-sensitive analysis is usually more costly.

A path-sensitive analysis considers only valid paths through the program. It
takes account of values of variables and boolean expressions in conditionals and
loops to prune execution branches which are not possible. A path-insensitive
analysis takes into account all execution paths—even infeasible ones. Path-
sensitivity usually implies higher precision but is usually more time consuming.

A context-sensitive analysis takes the context—e.g. global variables and ac-
tual parameters of a function call—into account when analyzing a function.
This is also known as inter-procedural analysis in contrast to intra-procedural
analysis which analyses a function without any assumptions about the context.
Intra-procedural analyses are much faster but suffer from greater imprecision
than inter-procedural analyses.

The undecidability of runtime properties implies that it is impossible to have
an analysis which always finds all defects and produces no false positives. A
framework for static analysis is said to be sound (or conservative or safe) if
all defects checked for are reported, i.e. there are no false negatives but there
may be false positives.3Traditionally, most frameworks for static analysis have
aimed for soundness while trying to avoid excessive reporting of false positives.
However, most commercial systems today are not sound (i.e. they will not find
all actual defects) and also typically produce some false positives.

3 Basic principles

In this section we survey some aspects of the underlying machinery needed
to build static analysis tools and where the different vendors typically make
their own design decisions; thus affecting the performance—precision as well as
analysis time/scalability—of static analysis tools.

3.1 Computing with sets of states

Some properties checked by static analysis tools can be carried out by relatively
straightforward pattern matching techniques. However, most properties are
more challenging and require much more sophisticated analysis techniques. It is

3Soundness can be used in two completely different senses depending on if the focus is on
the reporting of defects or on properties of executions. In the former (less common) sense
soundness would mean that all positives are indeed defects, i.e. there are no false positives.
However, the more common sense, and the one used here, is that soundness refers to the
assumptions made about the possible executions. Even if there is only a small likelihood that
a variable takes on a certain value (e.g. x=0) we do not exclude that possibility. Hence if the
analysis infers that X may be zero in an expression 1/x, there is a possibility that there will
be a runtime error; otherwise not. This is why a sound analysis may actually result in false
positives, but no false negatives.

6

often claimed that static analysis is done without executing the program, but for
nontrivial properties this is only partially true. Static analysis usually implies
executing the program—not in a standard way, but on an abstract machine and
with a set of abstract non-standard values replacing the standard ones. The
underlying concept is that of a state; a state is a collection of program variables
and the association of values to those variables. State information is crucial to
determine if a statement such as x=x/y may result in division by zero (it may
do so if y may have the value zero at the time when the division is made).

In the case of an intra-procedural analysis the state takes account only of
local variables while a context-sensitive analysis must take account also of global
variables plus the contents of the stack and the heap. The program statements
are state transformers and the aim of static analysis is to associate the set of all
possible states with all program points. Such sets of states are typically infinite
or at least very large and the analysis must therefore resort to some simplified
description of the sets representing only some of the relationships between the
program variables, e.g. tracking an interval from which a variable may take its
value.

For instance, instead of computing with the integers we may compute with
values that describe some property of the integers; we may as a simple example
replace the domain of integers with the finite domain {ª, 0,⊕, ?} where “ª”
designates a negative integer (i.e. the interval]−∞,−1]), “0” designates the in-
teger 0 (the interval[0, 0]), “⊕” designates a positive integer (the interval [1,∞[)
and “?” designates any integer (the interval]−∞,∞[). Operations, such as
addition, which normally operate on the integers must be redefined over the
new domain and in such a way that the abstract operation mimics the concrete
one in a faithful way. For instance, we may replace addition of integers with
“abstract addition” where for instance the addition of two negative integers is a
negative integers, while the addition of a positive and negative integer can result
in any integer. The abstract operation of addition can be defined as follows:

+ ª 0 ⊕ ?
ª ª ª ? ?
0 ª 0 ⊕ ?
⊕ ? ⊕ ⊕ ?
? ? ? ? ?

Such abstractions leads to loss of information which influences the precision of
the analysis; if we know that x = 4 and y = -3 then we know that x + y is
positive, but if we only know that x = ⊕ and y = ª then we can only safely
infer that x + y is an integer.

Some vendors provide very sophisticated machinery to track the set of pos-
sible values taken by variables and take precautions not to make unjustified
assumptions about the result of operations. However, most vendors take a more
pragmatic approach, for instance associating intervals with variables and some-
times do not even provide sound approximations of the operations.

3.2 Analysis of incomplete code

It is sometimes claimed that static analysis can be applied to incomplete code
(individual files and/or procedures). While there is some truth to this, the

7

quality of such an analysis may be arbitrary bad. For instance, if the analysis
does not know how a procedure or subprogram in existing code is called from
outside it must, to be sound, assume that the procedure is called in an arbitrary
way, thus analyzing executions that probably cannot occur when the missing
code is added. This is likely to lead to false positives. Similarly incomplete code
may contain a call to a procedure which is not available, either because it is not
yet written, or it is a proprietary library function. Such incomplete code can
be analyzed but is also likely to lead to a large number of false positives and/or
false negatives depending on if the analysis is sound or not.

On the positive side, it is often not necessary to provide complete code for
missing functions or function calls. It is often sufficient to provide a stub or
a top-level function that mimics the effects of the properties checked for. As
an example, a partial function that maps an integer to a natural number and
may fail due to division by zero can be mimicked by the following stub (where
random_int() is assumed to return a random integer):

int foo(int n)
{
if (rand()) return random_int();
else return 0/0;

}

The tools studied in this report adopt different approaches to deal with incom-
plete code and incremental analysis when only some code has been modified.

3.3 Aliasing

Two pointer variables are said to be aliased if they point to the same location.
The existence of aliasing means that we can change the value pointed to by a
variable through a second variable. For example

int x = 17;
int *y;
y = &x; // Aliasing
x = 1; // Also changing the value of y

Aliasing is not only a major source of programming errors, it is also a major
source of imprecision; infering whether two variables are aliased is an undecid-
able problem so we cannot in general tell whether two variables are aliased or
not. Hence, if the analysis infers that two variables may be aliased, we must
assume that a change in one variable may also affect the value of the other
variable.

A sound static analysis of programs using pointers would be almost im-
possible without a reasonable aliasing analysis. The emergence of commercial
systems for static analysis is largely due to the development of efficient alias-
ing analyses; e.g. the inter-procedural analyses of A. Deutsch [12] and the very
efficient and flow-insensitive analysis of B. Steensgaard [27].

An accurate and fast aliasing analysis is necessary to draw sound conclusions
about runtime behavior of code. Unfortunately, most tools do not do a full
aliasing analysis, and often make unjustified assumptions about the non-aliasing
of pairs of variables. This is often done in the name of efficiency (and perhaps

8

to reduce the number of false positives) but, as pointed out, there are very
efficient aliasing analyses, and the lack of aliasing analysis may lead to many
false negatives in code that make use of pointers.

4 PolySpace Verifier and Desktop

PolySpace Technologies provides a suite of tools including PolySpace Verifier
and PolySpace Desktop—static analysis tools based on techniques of A. Deutsch
and the work of P. Cousot’s group. Our study is based on version 2.5 of Verifier
and Desktop. PolySpace Verifier is based on classic lattice-theoretic static anal-
ysis techniques known as abstract interpretation [5]—the underlying analyzer
relies on a sound approximation of the set of all reachable states. PolySpace
Desktop relies on similar techniques but is intended for file/unit analysis and
lacks some of the functionality of Verifier. Judging from available documenta-
tion the tools rely on so-called convex polyhedra to encode sets of states, see
P. Cousot and N. Halbwachs [7].4

The properties checked by PolySpace Verifier are in many cases similar as
those checked e.g. by other commercial systems, but the analysis is more so-
phisticated taking account of non-trivial relationships between variables (taking
advantage of convex polyhedra) while other static analysis tools seem to cater
only for simple relationships (e.g. equalities between variables and variables be-
ing bound to constant values or intervals of values). Given a complete code
base, the PolySpace analysis is sound implying that it computes a superset of
all reachable states of the program; it is also flow-sensitive, inter-procedural,
context-sensitive and supports aliasing (probably relying on an aliasing analysis
developed by A. Deutsch [12]). Based on the analysis the code is “colored” as
follows:

• Red: code that must lead to runtime problems in all executions,

• Orange: Code which may, or may not, lead to errors,

• Grey: Dead code, i.e. code that will never be executed,5

• Green: Code that cannot contain any of the runtime errors checked for.6

Code may be colored orange for two reasons: it will be colored orange if there are
some executions which do not fail, while some others do. But code may also be
orange because of imprecision: the analysis may involve executions which cannot

4A convex polyhedron is an n-dimensional geometric shape where for any pair of points
inside the shape the straight line connecting the points is also inside the shape. In practice this
implies that the shape is given by a set of m linear inequalities of the form Ax ≤ B where A is
an m×n matrix and B is an m-vector of reals. A convex polyhedron can be used to represent
complex relationships between numerical program variables, e.g. x − y ≤ 0,−y ≤ 0, x ≤ 3
represents all states where y takes a value between 0 and 3 and x takes a value between 0 and
the value of y.

5To be more precise, code may also be grey when preceded by red code, i.e. code that
follows after a defect will be considered unreachable.

6To be more precise, defective code may be green when preceded by orange code—for
instance, if there is a potential out-of-bounds access a[i] to an array then that particular
access will be orange but in subsequent code it will be assumed that the index i is in-bounds
so a subsequent access to the same array with the same index will be green.

9

actually occur, but which are anyway considered because of approximations
made when representing relationships between variables.

Soundness of the analysis implies that any error checked for must be either
in red or orange code. That is, there can be no false negatives.7 However, there
may be code which should be red which is orange, and there may be code which
is red or green which should be grey. More importantly perhaps, non-erroneous
code may be marked as orange. That is, there may be false positives; in the
documentation [24] it is claimed that programs consisting of 50KLoC (50,000
lines of code) may have between 400 to 8,000 orange warnings. For smaller code
bases the percentage of oranges is typically between 2 to 15 per cent according
to PolySpace representatives. However, the ratio obviously depends both on
code size and, in particular, coding style. An optimal code size with respect
to the rate of oranges is between 20–50KLoC according to the documentation.
The rate of oranges also depends on the accuracy of the analysis—it is possible
to tune the analysis by specifying one out of a handful of levels of precision
where the most sophisticated level typically has a very low level of oranges but
is not recommended for code exceeding 1KLoC and where the coarsest analysis
can cope with more than 1,000KLoC but with a very high rate of code colored
orange.

The documentation of PolySpace Verifier and Desktop is vague in some
respects. It seems that the tools are unable to deal well with certain language
constructs. The manual mentions specifically gotos with backward jumps, but
there is an ad-hoc trick to circumvent the shortcoming.

PolySpace provides an automatic stubbing mechanism. Automatically gen-
erated stubs are (sometimes incorrectly) assumed not to have effect on global
data by default. To avoid false positives, and more seriously false negatives, it
is recommended to do manual stubbing. There are pragmas that can be used
to express global effects of the stubs. There is also a very useful mechanism
based on assertions which can be used to express local as well as global effects.
Some predefined functions are available as stubs but PolySpace does not seem
to provide as extensive support as e.g. Coverity.

There is support for dealing with concurrency. The tool produces a vari-
able dictionary and concurrent access graph that depicts shared variables and
whether they are protected or not. Shared data may be colored orange (data
subject to race conditions) or green (protected data). The sharing analysis
takes possible aliasing and atomicity into account, and subsequent analysis of
concurrent programs is possible assuming that shared data is indeed protected.
If there are possible race conditions it is still possible to model shared memory
by use of the type qualifier volatile.

PolySpace Verifier supports analysis of programs in C, C++ and Ada. While
probably feasible to analyze general purpose code, PolySpace recommends using
the tool in particular for embedded systems in automotive, avionics and space
industry, telecommunication systems and medical devices. PolySpace’s sophis-
ticated mechanism for tracking linear relationships between variables makes it
particularly useful for analyzing arithmetic operations. However, there is no
support at all for e.g. memory leaks or stack overflow. The complexity of track-
ing relationships between variables also implies that the tool does not deal well

7The absence of false negatives obviously only concerns the properties checked for; runtime
errors not checked for by PolySpace Verifier—like memory leaks—will not be detected.

10

with very large programs unless the code is manually partitioned; in the docu-
mentation 50KLoC is mentioned as an approximate upper limit, but the measure
obviously depends e.g. on coding style and the precision of the analysis.

The philosophy and functionality of the PolySpace tool set has a great deal
in common with the coding standards of MISRA (Motor Industry Software
Reliability Association) (MISRA-C:2004 [21]). PolySpace even provides a tool
for checking MISRA compliance (the MISRA Checker). Conversely, adopting a
coding standard such as MISRA-C is likely to influence static analysis positively,
both in analysis time and in precision. See also Section 7.

4.1 Checkers

PolySpace Verifier analyses violation of the following runtime properties for
the C language. For further information on the checkers and examples see the
documentation of PolySpace for C [24]:

• COR (Array conversion must not extend range) Checks that an array vari-
able is not assigned the value of another array variable pointing to a
smaller array. Such an operation is likely to lead to future problems when
the array is accessed.8

• OBAI (Array index within bounds) Checks that an array index is within
bounds when used to access an array.

• IRV (Initialized Return Value) Checks that functions return well-defined
values. The less likely reason is that the function returns a value of an
uninitialized variable. The more likely reason is that the function contains
some execution paths that are not terminated by a return statement. This
would typically happen in a function defined only for non-negative integers
which is called with a negative integer. The error is not signaled if the
value is not used by the caller.

• NIV (Non-Initialized Variable) Checks that variables are initialized before
being accessed. Also compound data (arrays and structures) are checked.
The use of non-initialized variables may result in unpredictable results,
but not necessarily a runtime error.

• NIP (Non-Initialized Pointer) Checks that pointers are initialized (i.e. point
to some well-defined location) before being dereferenced the first time.

• ASRT (User Assertion) Tries to establish whether a user assertion/invariant
is valid or not. The check relies on the standard library assert.h. Nor-
mally, when such an assertion is encountered during runtime the assertion
is checked on-the-fly; if the assertion evaluates to true the execution con-
tinues but if the assertions fails program execution aborts (i.e. results in a
runtime error). The checker tries to verify the assertion statically. If the
assertion is green it is known to hold in all executions. The use of asser-
tions makes it possible, in theory at least, to prove more general properties
of programs, including functional properties.

8It is not mentioned in the manual but the same problem arises for all type casts of pointers,
where a pointer is set to point to data which is too small according to the type of the pointer.

11

• UNFL (Scalar and Float Underflows) Checks if an arithmetic expression
(integer or float) leads to underflow.

• OVFL (Scalar and Float Overflows) Checks if an arithmetic expression (in-
teger or float) leads to overflow.

• ZDV (Scalar or Float Division by zero) Checks if the denominator of divi-
sion is zero.

• SHF (Shift amount in 0..31 or 0..63) Checks if the result of a shift (left or
right) is greater than the size of an integer respectively a long integer.

• SHF (Left operand of left shift must be positive) Checks if a left shift is
applied to a signed number. Shifting a signed number to the left will
corrupt sign information.

• COR (Function pointer must point to a valid function) Checks if a func-
tion pointer actually points to a function, or to a function with a valid
prototype.

• COR (Wrong type for argument) Checks if the actual arguments passed to
a function match the formal arguments of the function. Checking this is
not possible in general in the presence of function pointers.

• COR (Wrong number of arguments) Checks if the number of actual ar-
guments passed to a function (through a function pointer) matches the
number of formal arguments.

• IDP (Pointer within bounds) Checks if a dereferenced pointer is still within
bounds of the object pointed to.

• NTC (Non Termination of Call) Checks if a procedure call returns. The
check reports a defect when the procedure loops infinitely or if the proce-
dure leads to a runtime error, or if the procedure relies on other procedures
which may fail to terminate. There is a mechanism k-NTC (Known Non
Termination of Call) which facilitates not coloring procedures which are
meant not to terminate and which can be provided by command line ar-
guments.

• NTL (Non Termination of Loop) Checks if a loop (for, do-while or while)
terminates. According to the documentation NTL, as well as NTC, can
only be red, and never orange, suggesting that it may find a definite loop
but may fail to find calls/loops which may terminate in some executions.

• NTC (Arithmetic expressions) Checks if arithmetic expressions functions
are used with valid arguments; e.g. square-root and logarithm must be
positive.

• UNR (Unreachable Code) Checks if “code snippets” (assignments, returns,
conditional branches and function calls) may be reached.

12

5 Coverity Prevent

Coverity was founded in 2002 and is a spin-off company from a research group
led by Dawson Engler at the Stanford Computer Science Department [13]. The
products Coverity Prevent [10] and Coverity Extend [8] are developments of the
academic systems xgcc and Metal respectively. Descriptions of the principal
underlying technology of xgcc and Metal can be found in a series of research
papers, see e.g. [15]. Our survey of Prevent and Extend is based on available
documentation (version 2.4), other publicly available reports and information
from company representatives. We believe that Prevent and Extend still rely
largely on technology developed for xgcc and Metal but do not have full insight
in present technology.

In 2006 Coverity and Stanford were awarded a substantial grant from the
U.S. Department of Homeland Security to improve Coverity tools to hunt for
bugs and vulnerabilities in open-source software. During the first year 5,000
defects were fixed in some 50 open source projects. Updated results of the
analyses can be found on the web [11].

Coverity Prevent is a dataflow analysis tool that relies on inter-procedural
analysis techniques. The analysis is neither sound nor complete, that is, there
may be both defects which are not reported and there may be false alarms. A
substantial effort has however been put on eliminating false positives, and the
rate of these is clearly low (reportedly around 20 per cent). It is less clear what
the rate of false negatives is, but case-studies described later indicate that the
tool fails to report a number of known faults; at least when used out-of-the-
box. It is also unclear if the presence of false negatives is a consequence of too
aggressive filtering of error messages or if it is due to a partial analysis of the
source code—probably a combination of the two. Judging from non proprietary
information there is a probabilistic technique based on clustering of error mes-
sages and Bayesian learning which can be used to detect inconsistent use of
programming constructs and which may also be used to filter error messages,
see e.g. [18]. It is claimed that the tool investigates all possible code paths [9],
but this does not necessarily imply that all possible data values are taken into
account. The analysis is path sensitive but Coverity does not track complex
relationships between variables as is done by PolySpace, but keeps track only
of intervals and simple relationships between variables. Moreover Prevent does
not track values of global variables at all; it is unclear if this source of impre-
cision is dealt with pessimisticly, in which case impossible paths would have to
be analyzed, or optimistically, in which case possible paths are not analyzed at
all.

The user can partly influence to what extent the analysis should suppress
potential errors, e.g. by specifying a bound on the number of iterations of loops.

Coverity Prevent implements an incremental analysis which means that the
system automatically infers what parts of the source code that have to be re-
analyzed after the code has been modified. This typically reduces the analysis
time substantially, but may of course imply a complete re-analysis in the worst
case.

Coverity Prevent provides a useful meta-language for writing stubs and a
somewhat primitive mechanism, based on XML, to mask out certain events in
functions or stubs. It is also possible to add annotations (as C/C++ comments)
to the code in order to avoid some false positives. The system comes with an

13

extensive library of models of standard libraries for various platforms.
The version we have studied (2.4) supports analysis of C and C++ only but

Java support is on the way. There is build and analysis support for most plat-
forms (Linux/Unix clones, Windows and Mac OS X), numerous C and C++
compilers and the tool integrates with standard IDEs. The interface relies
largely on command line input and scripts which makes it very flexible albeit
somewhat crude, but there is a multi user GUI based on HTML for analyzing
the error reports.

The user documentation is good, the functionality of the tool and how to
use it is well described and there are numerous examples.

5.1 Coverity C checkers

Coverity Prevent version 2.4 provides the following checkers for C source code:

• RESOURCE LEAK Detects leaks of memory, files or sockets. Resource leaks
may result in degraded performance and even premature termination of
the program. There are options to analyze fields of structures and aliasing
between variables.

• USE AFTER FREE Detects dereferencing or deallocation of memory already
deallocated. This includes both trying to free memory which has already
been freed, as well as trying to dereference freed memory.

• UNINIT An intra-procedural checker that detects the use of uninitialized
variables; something that may lead to unpredictable results. This includes
also dynamically allocated memory by use of e.g. malloc.

• OVERRUN STATIC An inter-procedural checker that detects overruns of constant-
sized, stack-allocated arrays. Overruns on the stack a particularly trou-
blesome since it may be used by an intruder to change the return address
of a stack frame.

• OVERRUN DYNAMIC This checker is similar to the previous one but detects
overruns of dynamically allocated heap buffers.

• SIZECHECK Because of C’s liberal treatment of pointers it is possible to
point to a piece of memory which is smaller than the size of the type that
the variable should be pointing to. The checker attempts to detect such
cases which may lead to subsequent overruns.

• STACK USE The checker detects stack overruns or, to be more precise, when
the stack exceeds a certain specified threshold. The checker does not
account of compiler optimizations such as tail recursion optimization. The
checker is not activated by default.

• UNUSED VALUE Detects assignments of pointer values never used.

• DEADCODE Detects code which is never executed. In the best case the code
is just unnecessary, but it may also be because of a logical error e.g. in a
conditional.

• FORWARD NULL This checker detects cases where a pointer is first checked
if null and is then subsequently dereferenced.

14

• REVERSE INULL Detects null checks after dereferencing has taken place.
This may result from unnecessary checks but it may also be a logical error
where dereferencing may involve a null pointer.

• NEGATIVE RETURNS This checker detects misuse of negative integers and
functions that may return negative integers e.g. to signal an error; poten-
tial problems involve e.g. accessing arrays or assignment to an unsigned
integer.

• REVERSE NEGATIVE Detects negative checks after potentially dangerous
use. Either the check is unnecessary or the use is dangerous.

• RETURN LOCAL Detects functions returning pointer to local stack variable.
Since the data is on the stack its value is undetermined once the function
returns. Using the data is likely to lead to a crash or serious memory
corruption.

• NULL RETURNS Detects unchecked dereferences of functions that may re-
turn null return values.

• CHECKED RETURN Detects inconsistent use of return values. The checker
performs a statistical analysis in an attempt to find diverging treatment
of return values.

• BAD COMPARE A highly specialized checker that looks for cases where point-
ers to functions are compared to 0.

5.2 Coverity C++ checkers

In addition to the C checkers, the following C++ checkers are provided:

• BAD OVERRIDE Detects errors in overriding virtual functions.

• CTOR DTOR LEAK The checker detects leaks due to missing destructors to
constructors, similar to RESOURCE LEAK.

• DELETE ARRAY Detects bad deletion of arrays. In C++ structures are deal-
located with delete while dynamic arrays are deallocated with delete[].

• INVALIDATE ITERATOR Detects STL iterators that are either invalid or
past-the-end.

• PASS BY VALUE Detects function parameters that are too big (more than
128 bytes). Large parameters are normally passed by reference rather than
by value.

• UNCAUGHT EXCEPT Detects uncaught exceptions. This checker is currently
in beta stage.

15

5.3 Concurrency checkers

There is restricted support for analyzing concurrent programs, dealing mainly
with locking order of synchronization primitives:

• LOCK Detects double locks, and missing lock releases.

• ORDER REVERSAL Detects cases of incorrect lock ordering, potentially lead-
ing to deadlock.

• SLEEP Detects blocking functions where locks may be held too long.

5.4 Security checkers

As of version 2.3.0 Coverity Prevent includes checkers specifically directed to-
wards security vulnerabilities.

• OPEN ARGS Warns of incorrect use of the system call to open with the flag
O CREAT. If the file does not exist and permissions are not also specified
the file my have unsafe permissions.

• SECURE CODING Warns of possibly dangerous use of certain system calls
such as gets, strcpy, etc.

• BUFFER SIZE Warns of potential memory corruption due to incorrect size
argument to string or buffer copy operation.

• STRING OVERFLOW Warns of potential string overflow in system calls involv-
ing writing to strings. Failure to check that the destination is sufficiently
large may lead to serious memory corruption.

• CHROOT Warns of incorrect use of the chroot system call. The call can
be used to re-root a program to a directory so that it cannot name files
outside of that directory, thus providing a sandbox mechanism. However,
the call may be unsafe if the directory specified is outside of the current
working directory.

• TOCTOU (Time-Of-Check-Time-Of-Use) Detects a set of race conditions
where a resource is first checked by one system call, and then later used
by another system call (e.g. access and chmod). An intruder may be able
to modify the resource inbetween the check and the use.

• SECURE TEMP Warns of the use of insecure functions for creating temporary
files/file names, e.g. where it is easy to guess the names of temporary files.

There are five security checkers dealing with so-called tainted data. Most pro-
grams rely on data being read from files, sockets, command line arguments,
environment variables etc. Failure to check the validity of such data before use,
may lead to serious security holes. The checkers track entry points of such data
(“sources”), where it is used (“sinks”), intermediate operations on such data
(“transitivity”) and validity checks (“sanitizers”).

• STRING NULL Detects entry and subsequent use of non null-terminated
strings.

16

• STRING SIZE Detects the use of strings whose size has not been checked.

• TAINTED SCALAR Detects the use of scalars without proper checking of
bounds, e.g. in indexing of arrays, loop bounds, or in specific function
calls.

• TAINTED STRING Warns of the use of strings without first checking the
validity of them, e.g. in calls to system, exec, or if used in formatted
input/output.

• USER POINTER Detects the use of userland pointers.

5.5 Extensions

Coverity Extend [8] builds on ideas from the meta language Metal [3], although
using a significantly different syntax. Metal was a meta language for specify-
ing new checkers using a dedicated textual notation borrowing concepts from
finite state automata; however, Coverity Extend essentially uses C++ syntax
with some additional syntactic sugar. The tool provides support for parsing and
building abstract syntax trees. There is support for automatically traversing the
abstract syntax trees including a hook and a pattern matching mechanism en-
abling the user to take appropriate actions on spotting specific patterns. There
is a also a notion of an abstract store facilitating assigning abstract values to
variables and expressions. The automatic traversal of the syntax trees facilitates
pruning infeasible branches and a fixpoint mechanism to stop traversal of loops.
There is also an explicit backtracking feature that makes it possible for the user
to prune infeasible branches not spotted by the underlying framework.

6 Klocwork K7

Klocwork K7 comes in two variants—the defect+security suite for finding (1)
code defects, (2) security vulnerabilities and (3) interface problems, and the
development suite which, in addition, provides support for code metrics and
customized analyses. Klocwork K7 supports analysis of C, C++ and Java. We
have studied version 7.1 of the tools.

The philosophy of Klocwork is similar to that of Coverity. The checkers
address very similar defects. However, experiments indicate that the tools from
Coverity and Klocwork tend to find different defects. Klocwork, like Coverity,
also provides a range of security checkers with similar functionality as those of
Coverity. In contrast to Coverity Prevent it is hard to find public documenta-
tion on the underlying technology used by Klocwork. However, we conjecture
that Klocwork builds largely on similar principles; the analysis is not sound
but it does some sort of inter-procedural analysis facilitating pruning of some
impossible paths and tracks some, but far from all, aliasing information. It can
record simple relationships between variables and probably tracks possible val-
ues of variables by intervals. Finally it uses some heuristic techniques to rank
error reports. Like Coverity Prevent there is a repository for storing results of
previous analyses, and what error reports to visualize.

In response to Coverity’s mission to find bugs in open-source software Kloc-
work applied their tool to some of the open-source projects and claim that they
found many defects not found by Coverity’s tool.

17

As already mentioned Klocwork K7 is not limited to finding defects. It also
provides support for refactoring and code metrics etc.

6.1 Code defects

There are checkers for C and C++ and a separate set of checkers for Java and
we limit attention to the former. There are a large number of very specific
checkers for finding code defects, which are categorized in a completely different
way than by Coverity, but the Klocwork checkers can roughly be categorized as
follows:

• Incorrect freeing of memory: This indicates a possible memory leak. Check-
ers includes e.g. the use of mismatched allocation/deallocation constructs
(malloc should be matched by free, new by delete and new[] by delete[]).
The category also includes freeing of non-heap memory or unallocated
memory, or freeing of memory after pointer arithmetics. There is also a
checker for detecting functions which free memory in some, but not in all,
execution paths.

• Suspicious return value: A range of checkers that detect suspicious use (or
non-use) of return values, e.g. a function returning a pointer to local data,
or some branch of a function that does not return a value. There are also
checkers for functions declared as void that return values and non-void
functions that do not return explicit value. There is also a checker for
calls to side-effect free functions where the return value is not used.

• Null pointer dereference: There are a large number of checkers for deref-
erencing of null pointers in various situations.

• Use memory after free: There are checkers to detect cases where freed
memory may be dereferenced leading to unpredictable results.

• Uninitialized data: Detects cases where data is implicitly cast to a smaller
data type which may lead to loss of precision.

• Unreachable code or unused data: There are several checkers for detecting
unreachable program constructs and unused data. This includes e.g. un-
reachable break- and return-statements, unused functions, local variables
and labels, unused variables and parameters. There are checkers for state-
ment without effects and values assigned to variables which are not subse-
quently used. The presence of unreachable code or unused data does not
have to be a (serious) problem, but it may be due to serious logical errors
or misspellings.

• Incorrect allocation size: Checks for defects due to dynamic memory al-
location of data of insufficient size. This is likely to lead to subsequent
buffer overruns. There is also a checker for invalid pointer arithmetics
that may cause similar problems.

• Use of container iterator: Flags suspicious use of iterators for STL-containers.

• Memory leak: There are checkers that detect when previously allocated
memory is not freed.

18

• Buffer overruns: Flags array bounds violations due to non-null terminated
strings. See also security checkers.

Some checkers come in two flavors—“might” and “must” checkers—signaling
problems which may occur and problems which must occur. For instance there
is a FNH.MIGHT and a FNH.MUST checker for detecting freeing of non-heap
memory. This corresponds roughly to orange and red code in PolySpace.

Klocwork also detects some cases of syntactically correct code which is some-
times considered inappropriate or dangerous and may be the result of mis-
spellings:

• Assignment in conditions: Flags the use of assignment in conditions which
is allowed and frequently used in C-programs, but may be due to mis-
spellings (writing assignment instead of equality).

• Misplaced semicolon: Flags suspicious use of semicolon in syntactically
correct code.

6.2 Security vulnerabilities

Like Coverity Prevent there a range of checkers dedicated to finding security
vulnerabilities in C/C++ and Java code. Only C/C++ checkers are discussed
here. There are approximately 50 checkers for C/C++. Some vulnerabilities
are generic (e.g. buffer overruns and tainted data) but many of the checkers are
very specific; checking the use of specific system calls, known to be potential
sources of security holes. Klocwork provide checkers for security vulnerabilities
such as:9

• Buffer overruns: Reading or writing data out of bounds is a very common
type of attack in languages such as C and C++. This includes use of
unsafe format string for formated printing and scanning. Similar (or even
worse effects) may arise because of non-constant format strings or the
use of format strings injected from outside (see tainted data). There are
checks for use of non-null terminated strings and dangerous string copy
operations.

• Command injection: System calls such as system, versions of exec etc
may be used to spawn dangerous processes, in particular in combination
with untrusted input strings.

• Use of tainted (untrusted) data: A serious security hole in software is
data provided from the outside, such as user input, environment variables,
sockets, files, command line arguments etc. If such data is not verified or
sanitized before being used it can result in malicious attacks; in particular
in combination with buffer overrun attempts or command injection. A
well-known example is use of the standard function gets.

• Access problems: A number of system functions require special system
privileges (admin/super-user etc) to be performed, e.g. allocation of ports
and access to certain entries in the Windows registry. Eliminating the
use of such functions entirely from the code is not possible, but it may be

9There is an even greater number of checkers for Java, which are not covered here.

19

possible to perform the functions e.g. during start-up and then revert to
lower privileges and/or to perform the function externally e.g. through a
service instead. There are several checkers that flag the use of operating
system functions requiring special privileges. Another problem checked
for is ignoring return values from system functions to lower priority of the
current process. Finally there are checkers to detect system functions that
may leak critical data through the use of absolute path names.

• Time-of-check/time-of-use (TOCTOU): There are a number of system
calls for checking the status of resources (e.g. files) before using/modifying
them, e.g. access, chown, chgrp and chmod. It is of course vital that the
resource is not replaced/modified inbetween by an attacker. There are
checkers that signal such critical checks/uses.

• File access: Files may be subject also to other vulnerabilities, e.g. the use
of insufficient (e.g. relative) file names of dynamic load libraries. Problems
may also arise because of improper sequencing of calls to resources, and
improper use of temporary file names resulting from unsafe use of the
CreateFile system call. Another problem checked for is poor naming of
files for critical data or executable code (dynamic link libraries etc).

• Poor encryption: There are checks to warn of use of old, i.e. unsafe, algo-
rithms for encryption of data.

• Unintended copy: It is typically not clear what happens to memory after
a process stops executing. Sensitive data or even code may be exposed to
other processes that reuse the same memory unless the memory is explic-
itly overwritten. This concerns in particular system calls like realloc,
fork and vfork.

In addition to the defects and security checkers Klocwork also provides a support
for checking interface problems and for code metrics:

• The interface problems addressed by Klocwork are essentially syntactic
checks involving dependencies but no semantic analysis. The checks in-
clude issues such as finding potential cycles in #include-directives, multi-
ple declarations of an object in different files, unintentional reuse of names
variable or function names, declarations which are not used, transitive use
of #include-directives etc.

• The metrics supported by Klocwork are also syntactic in nature. There are
metrics on file-level as well as class- and function-/method-level. Metrics
range from simple ones like the number of lines of code, number of dec-
larations, operands, comments, includes etc., accesses to global variables
number of conditionals and nesting of control structures and so forth. But
there are also more sophisticated yet well-established measures like Mc-
Cabe cyclomatic complexity [19] and Halstead program volume metrics
[16].

Interface problems as well as metrics are of course very relevant in development
of correct software but is an orthogonal issue to static analysis (at least as we
use the term).

20

7 Programming guidelines

Many software errors can be avoided by limiting the freedom of designers and
programmers. The standard example is the use of gotos, available in most
programming languages and useful in certain situations, but usually considered
harmful. Similarly many runtime errors can be avoided by not using e.g. pointers
and dynamic allocation of memory unless absolutely necessary.

Restricting the use of certain language constructs or limiting the design space
can also be beneficial for static analysis; both with regard to precision as well
as analysis time. For instance, restricting the use of pointers, global variables,
dynamic memory allocation and recursion will improve precision and reduce the
analysis time substantially.

The Motor Industry Software Reliability Association (MISRA) has issued a
set of guideline for the use of C language code in vehicular embedded systems
([20] and [21]). The guidelines consist of 100+ rules intended to reduce the
number of errors in vehicle based software by considering a subset of the C
language. There are “required” rules, which must be adhered to, and “advisory”
rules which should normally be followed. In the first version of the guidelines
there were 93 required rules and 34 advisory rules. The rules concern what
version of C to use and how to embed code written in other languages. There
are rules on which character sets to use, how to write comments, identifiers and
constants. Some of the more significant rules concern

• what types to use and how to use them;

• the naming and scope of declarations and definitions;

• the initialization of variables before use;

• how to write expressions involving certain operators;

• how to do explicit and implicit type conversions;

• how to write expressions;

• which control flow statements that should be used and how to use them;

• how to declare and define functions and various constraints on them, such
as return values and formal parameters (e.g. disallowing the use of recur-
sive functions and functions with a variable number of arguments);

• the use of pre-processing directives and macros;

• the use of pointers and arrays (e.g. avoiding pointer arithmetics and deref-
erencing of null-pointers);

• the use of structures and unions where, in particular, the latter is a source
of hard-to-find errors;

• the use of standard libraries. In particular, ensuring that standard func-
tions are called in the way they are intended to. There are also rules
disallowing the use of certain standard functions and libraries (e.g. dy-
namic allocation of memory).

21

The character of the rules varies substantially. Some rules are quite loose like
the advisory rule stating that provisions should be made for appropriate runtime
checking, since C does not provide much builtin support. This is an obvious
case where static analysis can be of great help. However, most of the rules are
essentially syntactic and can be easily checked with simple pattern matching
techniques like the rule which bans the use of functions with a variable number
of arguments, or the use of recursion. There are also specific rules which are
not easily checked by humans; e.g. requiring that values of expressions should
be the same under any evaluation order admitted by the C standard and the
rule which requires that there must be no dead code.

Programming guidelines, such as the MISRA rules, and static analysis can
benefit from each other. On the one hand static analysis can be used to verify
certain non-trivial rules/recommendation suggested by the coding rules. For
instance, PolySpace provides a separate tool to verify MISRA compliance. On
the other hand, doing static analysis can be greatly simplified by adhering to
a more disciplined programming style; in fact, PolySpace recommends using a
subset of the MISRA rules [24] to reduce the amount of orange marked code
(code that may lead to errors).

8 A comparison of the tools

Shallow static analysis tools based on pattern matching such as FlexeLint [14]
have been around since the late 1980s. Lately several sophisticated industrial-
strength static analysis tools have emerged. In this report we study tools from
three of the main providers—PolySpace, Coverity and Klocwork. There are
several other static analysis tools around, including PREfix/PREfast from Mi-
crosoft [2], Astree [6], which are not as widely available. An interesting new-
comer is CodeSonar from Grammatech, founded by Tim Teitelbaum and Tom
Reps, which is similar in style and ambition level to Coverity Prevent and Kloc-
work K7. Even if we focus here on tools intended for global and “deep” (=se-
mantic) analysis of code, more lightweight tools like FlexeLint may still be useful
in more interactive use and for local analysis.

There are also dynamic tools that aim for discovering some of the kinds of
defects as the static analysis tools do. For example Insure++ [23] and Rational
Purify [25] detect memory corruption errors.

A rough summary of major features of the three systems studied here can
be found in Table 1. Such a table is by necessity incomplete and simplistic and
in the following sub-section we elaborate on the most important differences and
similarities.

8.1 Functionality provided

While all three tools have much functionality in common, there are noticeable
differences; in particular when comparing PolySpace Verifier against Coverity
Prevent and Klocwork K7. The primary aim of all three tools obviously is to
find real defects, but in doing so any tool will also produce some false positives
(i.e. false alarms). While Coverity and Klocwork are prepared to sacrifice finding
all bugs in favor of reducing the number of false positives, PolySpace is not; as a
consequence the former two will in general produce relatively few false positives

22

but will also typically have some false negatives (defects which are not reported).
It is almost impossible to quantify the rate of false negatives/positives; Coverity
claims that approximately 20 to 30 per cent of the defects reported are false
positives. Klocwork K7 seems to produce a higher rate of false positives, but
stays in approximately the same league. However, the rate of false positives
obviously depends on the quality of the code. The rate of false negatives is even
more difficult to estimate, since it depends even more on the quality of the code.
(Obviously there will be no false negatives if the code is already free of defects.)
According to Coverity the rate of defect reports is typically around 1 defect per
1-2KLoC.

PolySpace, on the other hand, does in general produce a great deal of or-
ange code. If orange code is considered a potential defect then PolySpace
Verifier produces a high rate of false positives. However, this is a somewhat
unfair comparison; while Coverity and Klocwork does not even give the devel-
oper the opportunity to inspect all potential defects, PolySpace provides that
opportunity and provides instead a methodology in which the developer can
systematically inspect orange code and classify it either as correct or faulty. In
other words, Coverity and Klocwork are likely to “find some bugs”, but provide
no guarantees—the rest of the code may contain defects which are not even re-
ported by the tool. PolySpace on the other hand can provide guarantees—if all
code is green (or grey) it is known not to contain any bugs (wrt the properties
checked for, that is). On the other hand it may be hard to eliminate all orange
code.

All three tools rely at least partly on inter-procedural analyses, but the
ambition level varies significantly. PolySpace uses the most advanced techni-
cal solution where relationships between variables are approximated by convex
polyhedra and all approximations are sound—that is, no execution sequences
are forgotten but some impossible execution paths may be analyzed due to the
approximations made. Coverity Prevent and Klocwork K7 accounts only of in-
terval ranges of variables in combination with “simple” relationships between
variables in a local context with the main purpose to prune some infeasible
execution paths, but do not do as well as PolySpace. Global variables and non-
trivial aliasing are not (fully) accounted for or treated only in a restricted way.
As a consequence neither Coverity nor Klocwork take all possible behaviors
into account which is one source of false negatives. It is somewhat unclear how
Coverity Prevent and Klocwork K7 compare with each other, but impression is
that the former has the more accurate analyses.

Another consequence of the restricted tracking of arithmetic values of vari-
ables in Coverity Prevent and Klocwork K7 is that the products are not suitable
for detecting arithmetic defects, such as over- and underflows or illegal opera-
tions like division by zero. The products do not even provide arithmetic checkers.
PolySpace on the other hand does provide several arithmetic checkers, setting
it apart from the others.

While PolySpace is the only tool that provides arithmetic checkers, it is also
the only one among the three which does not provide any checkers for resource
leaks; in particular there is no support for discovering defects in dynamic man-
agement (allocation and deallocation) of memory. As a consequence there are
also no checkers e.g. for use-after-free. This lack can perhaps be explained by
PolySpace’s focus on the embedded systems market, involving safety or life crit-
ical applications where no dynamic allocation of memory is possible or allowed.

23

While PolySpace appears to be aiming primarily for the embedded systems
market, Klocwork and Coverity have targeted in particular networked systems
and applications as witnessed, for instance, by a range of security checkers.
Klocwork and Coverity address essentially the same sort of security issues rang-
ing from simple checks that critical system calls are not used inappropriately to
more sophisticated analyses involving buffer overruns (which is also supported
by PolySpace) and the potential use of so-called tainted data. The focus on net-
worked application also explains the support for analyzing resource leaks since
dynamic management of resources such as sockets, streams and memory is an
integral part of most networked applications.

Coverity supports incremental analysis of a whole system, where only parts
have been changed since last analysis. Results of an analysis are saved and
reused in subsequent analysis. An automatic impact analysis is done to detect
and, if necessary, re-analyze other parts of the code affected indirectly by the
change. Such an incremental analysis takes significantly less time than analyzing
the whole system from scratch. With the other tools analysis of the whole system
has to be redone.

All the tools provide the possibility to analyze a single file. However such
an analysis will be much more shallow than analyzing a whole system where
complete paths of execution can be analyzed.

Both Klocwork and Coverity provide means for writing user defined checkers
and integrating them with the analysis tools. However, the APIs are non-trivial
and writing new checkers is both cumbersome and error prone. There are no
explicit guidelines for writing correct checkers and no documented support for
manipulation of abstract values (e.g. interval constraints). There is also no sup-
port for reusing the results of other checkers. Termination of the checker is
another issue which may be problematic for users not familiar with the mathe-
matical foundations of static analysis.

All three tools support analysis of the C programming language and C++.
When this study was initiated only Klocwork supported analysis of Java but
Coverity has recently announced a new version of Prevent that also supports
analysis of Java. Only PolySpace supports analysis of Ada. Klocwork is the
only provider which claims to be able to handle mixed language applications
(C/C++/Java).

The downside of PolySpace’s sophisticated mechanisms for tracking variable
values is that the tool cannot deal automatically with very large code bases
without manual partitioning of the code. While Coverity Prevent and Kloc-
work K7 is able to analyze millions of lines of code off-the-shelf and overnight,
PolySpace seems to reach the complexity barrier already at around 50KLoC
with the default settings. On the other hand PolySpace advocates analyzing
code in a modular fashion. Analysis time is typically not linear in the number
of lines of code—analyzing 10 modules of 100KLoC is typically orders of magni-
tude faster than analyzing a single program consisting of 1,000KLoC. However
this typically involves human intervention and well-defined interfaces (which
obviously may be beneficial for other quality reasons...)

Coverity and Klocwork seem to have given priority to largely similar con-
cerns, with focus on general purpose software, in particular communication cen-
tric software in Internet environments. They both offer checkers for security
vulnerabilities and checkers for management of resource leaks which are missing
in PolySpace Verifier. PolySpace has a sophisticated machinery for tracking re-

24

Table 1: Summary of features of Coverity Prevent, Klocwork K7 and PolySpace
Verifier

Functionality Coverity KlocWork PolySpace

Coding style No Some No

Buffer overrun Yes Yes Yes

Arithmetic over/underflow No No Yes

Illegal shift operations No No Yes

Undefined arithmetic operations No No Yes

Bad return value Yes Yes Yes

Memory/resource leaks Yes Yes No

Use after free Yes Yes No

Uninitialized variables Yes Yes Yes

Size mismatch Yes Yes Yes

Stack use Yes No No

Dead code/data Yes Yes Yes (code)

Null pointer dereference Yes Yes Yes

STL checkers Some Some No?

Uncaught exceptions Beta (C++) No No

User assertions No No Yes

Function pointers No No Yes

Nontermination No No Yes

Concurrency Lock order No Shared data

Tainted data Yes Yes No

Time-of-check Time-of-use Yes Yes No

Unsafe system calls Yes Yes No

MISRA support No No Yes

Extensible Yes Some No

Incremental analysis Yes No No

False positives Few Few Many

False negatives Yes Yes No

Software metrics No Yes No

Language support C/C++ C/C++/Java C/C++/Ada

lationships between variables, in particular integer and floating point variables,
which makes it useful for arithmetic embedded applications such DSPs (Digi-
tal Signal Processors) and dataflow architectures typically used in avionics and
automotive systems with hard limitations on memory (typically no dynamic al-

25

location of memory) and the range of numerical data (over-/underflows may be
catastrophic).

On the more exotic side Coverity provides a checker for stack use. It is un-
clear how useful this is since there is no uniform way of allocating stack memory
in different compilers. Klocwork is claimed to provide similar functionality but
in a separate tool. PolySpace set themselves aside from the others by pro-
viding checkers for non termination, both of functions and loops. Again it is
unclear how useful such checkers are considering the great amount of research
done on dedicated algorithms for proving termination of programs. Coverity
has a checker for uncaught exceptions in C++ which was still a beta release.
PolySpace provides a useful feature in their support for writing general asser-
tions in the code. Such assertions are useful both for writing stubs and may
also be used for proving partial correctness also of functional properties.

None of the tools provide very sophisticated support for dealing with concur-
rency. Klocwork currently provides no support at all. Coverity is able to detect
some cases of mismatched locks but does not take concurrency into account in
analysis of concurrent threads. The only tool which provides more substantial
support is PolySpace which is able to detect shared data and whether that data
is protected or not (via the data dictionary).

Both Coverity and Klocwork have developed lightweight versions of their
tools aimed for frequent analysis during development. These have been in-
tegrated with Eclipse IDEs. However the defect databases for Coverity and
Klocwork have not been integrated into Eclipse IDEs or TPTP. PolySpace has
integrated with the Rhapsody UML tool to provide a UML static analysis tool.
It analyzes generated code and links back references to the UML model to point
out where defects have been detected. Besides that PolySpace has its general
C++ level advantages with a sound analysis (no false negatives) and presumably
problems with analyzing large code bases (larger than 50-100 KLoC)—a restric-
tion which should be more severe in the UML situation compared to hand-coded
C++.

8.2 Experiences at Ericsson

A number of independent evaluations of static analysis tools have been per-
formed by development groups at Ericsson. Several of the evaluations included
tools studied in this report; Coverity has been evaluated by several groups.
Klocwork has also been subject to evaluations but not quite as many. There
has been one attempt to use PolySpace for one of the smallest applications, but
the evaluation was not successful and it is not clearly known why. It would
have been very interesting to compare results from PolySpace, which is sound,
to results from Klocwork and Coverity. Perhaps that would give a hint on the
false negative rate in Klocwork and Coverity.

Some general experiences from use of Coverity and Klocwork were:

• The tools are easy to install and get going. The development environment
is easy to adapt and no incompatible changes in tools or processes are
needed.

• The tools are able to find bugs that would hardly be found otherwise.

26

• It is possible to analyze even large applications with several million lines
of code and the time it takes is comparable to build time.

• Even for large applications the number of false positives is not a major
problem.

• Several users had expected the tools to find more errors and errors that
were more severe.

• On the other hand, several users were surprised that the tools found several
bugs even in applications that had been tested for a long time. Perhaps
there is a difference in what users find reasonable to expect from these
tools. There might also be large differences in what different users classify
as a false positive, a bug and a severe bug.

• It is acceptable to use tools with a high false positive rate (FlexeLint)
if the tool is introduced in the beginning of development and then used
continuously.

• It is unacceptable to use tools with a high false positive rate if the product
is large and the tool is introduced late in the development.

• Many of the defects found could not cause a crash in the system as it was
defined and used at the moment. However if the system would be only
slightly changed or the usage was changed the problem could happen and
cause a serious crash. Therefore these problems should be fixed anyway.

• Even if the tools look for the same categories of defects, for instance mem-
ory leaks, addressing out of array bounds etc, the defects found in a given
category by one tool can be quite different from those found by another
tool.

• Handling of third party libraries can make a big difference to analysis
results. Declarations for commercial libraries that come with the analysis
tool can make the analysis of own code more precise. If source for the
library is available defects in the library can be uncovered, which may be
as important to the quality of the whole application as the own code.

• There are several aspects of the tools that are important when making
a tool selection that has not been a part of the comparison in this pa-
per; such as pricing, ease of use, integration in IDEs, other functionality,
interactiveness etc.

Below follows some more specific results from some of the evaluations. We do
not publish exact numbers of code sizes and found bugs etc for confidentiality
reasons since some of the applications are commercial products in use.

Evaluation 1 - Coverity and FlexeLint: An application that had been
thoroughly tested, both by manually designed tests and systematic tests that
were generated from descriptions.

FlexeLint was applied and produced 1,200,000 defect reports. The defects
could be reduced to about 1,000 with a great deal of analysis and following
filtering work. These then had to be manually analyzed.

27

Coverity was applied to the same piece of code and found about 40 defects;
there were very few false positives and some real bugs. The users appreciated
the low false positive rate and thought that the defects that were found would
hardly have been found by regular testing.

The users had expected Coverity to find more defects. It was believed that
there should be more bugs to be found by static analysis techniques. It was not
known if this was the price paid for the low false positive rate or if the analyzed
application actually contained only a few defects.

The users also expected Coverity to find more severe defects. Many of the
findings were not really defects, but code that simply should be removed, such
as declarations of variables that were never used. Other defects highlighted
situations that could not really happen since the code was used in a restricted
way—which was not known to the analysis tool.

Evaluation 2 - Coverity: A large application was analyzed with Coverity.
Part of the code had been previously analyzed with FlexeLint. The application
had been extensively tested.

Coverity was easy both to install and use, and no modifications to existing
development environment was needed. The error reports from the analysis were
classified as follows

• 55 per cent were no real defects but only bad style,

• 2 per cent were false positives,

• 38 per cent were considered real bugs, 1 per cent were considered severe.

The users appreciated that a fair number of defects were found although the
code had been thoroughly tested previously.

Evaluation 3 - Coverity and Klocwork: An old version of an application
that was known to have some memory leaks was analyzed using Coverity and
Klocwork.

In total Klocwork reported 32 defects including 10 false positives and Cover-
ity reported 16 defects including 1 false positive. Only three defects were com-
mon to both tools! Hence Klocwork found more defects, but also had a larger
false positive rate. Although the tools looked for the same kind of defects the
ones actually found were largely specific to each tool. This suggests that each
of the tools fails to detect many defects.

Looking at only the memory leaks the results were similar. Klocwork re-
ported 12 defects of which 8 were false, totaling 4 real defects and Coverity
reported 7 defects all of which were true defects. None of the tools found any
of the known memory leaks.

Evaluation 4 - Coverity and Klocwork Two old and released C++ prod-
ucts were analyzed using Coverity and Klocwork. The products came with
trouble reports that had been generated during previous tests. One purpose
was to compare how many faults each of the tools would find. Another purpose
was to get an estimation of how many of the faults that had been discovered in
testing could be found by the static analysis tools.

28

Coverity found significantly more faults and also had significantly less false
positives than Klocwork. One of the major reasons for this was the handling of
third party libraries. Coverity analyzed the existing source code for the libraries
and found many faults in third party code! Klocwork did not analyze this code
and hence did not find any of these faults. Besides that the analysis of the
libraries that Coverity did resulted in fewer false positives in the application
code since it could be derived that certain situations could not occur.

The time of analyses was about the same as build time for both tools. That
is good enough for overnight batch runs but not for daily, interactive use during
development.

Both tools lacked integration with CM tool Clearcase, the source code had
to be copied into the repository of the analysis tools. There was no way to do
inspection of analysis results from an IDE, but the reviews had to be done in
the GUI of the analysis tools.

Coverity was preferred by the C++ developers. It had incremental analysis
that would save time and it could easily analyze and report on single compo-
nents.

Although the main part of the evaluation was on old code some studies were
done on programs during the development. The development code had more
warnings and most of them were real faults; most of these were believed to have
been found during function test. It had been anticipated that more faults would
be found in low level components, but these components proved to be stable
and only a few defects were discovered. More faults were however found in high
level components with more frequent changes.

Evaluation 5 - Coverity, Klocwork and CodePro A Java product with
known bugs was analyzed. A beta version of Coverity Prevent with Java analysis
capabilities was used.

None of the known bugs were found by the tools. Coverity found more real
faults and had far less false positives than Klocwork. For Coverity one third of
the warnings were real bugs.

Klocwork generated many warnings—7 times the number of warnings that
Coverity did. The missing analysis of the third party library seemed to be the
major reason. However, Klocwork does a ranking of the potential defects and
when only the four most severe levels of warnings were considered the results
were much better—there were few false positives.

CodePro Analytix (developed and marketed by Instantiations) is a tool
aimed for analysis during development. It is integrated into the Eclipse IDE
and the results of an analysis cannot be persistently saved, but only exist dur-
ing the development session with the IDE. The analysis is not as deep as that of
Coverity or Clockwork, but is faster and can easily be done interactively during
development. The tool generates a great deal of false positives, but these can
be kept at a tolerable level by choosing an appropriate set of analysis rules. No
detailed analysis was done of the number of faults and if they were real faults
or not.

In this evaluation there was a large difference in the number of warnings gen-
erated, Coverity 92 warnings, Klocwork 658 warnings (in the top four severities
19), CodePro 8,000 warnings (with all rules activated).

29

9 Conclusions

Static analysis tools for detection of runtime defects and security vulnerabilities
can roughly be categorized as follows

• String and pattern matching approaches: Tools in this category rely
mainly on syntactic pattern matching techniques; the analysis is typically
path- and context-insensitive. Analyses are therefore shallow, taking little
account of semantic information except user annotations, if present. Tools
typically generate large volumes of false positives as well as false negatives.
Tools (often derivatives of the lint program) have been around for many
years, e.g. FlexeLint, PC-Lint and Splint. Since the analysis is shallow
it is possible to analyze very large programs, but due to the high rate of
false positives an overwhelming amount of post-processing may be needed.
These tools are in our opinion more useful for providing almost immediate
feedback in interactive use and in combination with user annotations.

• Unsound dataflow analyses: This category of tools which have emerged
recently rely on semantic information; not just syntactic pattern match-
ing. Tools are typically path- and context-sensitive but the precision is
limited so in practice the tools have to analyze also many impossible paths
or make more-or-less justified guesses what paths are (im-)possible. This
implies that analyses are unsound. Aliasing analysis is usually only partly
implemented, and tracking of possible variable values is limited; global
variables are sometimes not tracked at all. A main objective of the tools,
represented e.g. by Coverity Prevent and Klocwork K7, is to reduce the
number of false positives and to allow for analysis of very large code bases.
The low rate of false positives (typically 20–30 per cent in Coverity Pre-
vent) is achieved by a combination of a unsound analysis and filtering of
the error reports. The downside is the presence of false negatives. It is
impossible to quantify the rate since it depends very much on the quality
of the code, but in several evaluations Coverity and Klocwork find largely
disjoint sets of defects. This category of tools provide no guarantees—the
error reports may or may not be real defects (it has to be checked by
the user), and code which is not complained upon may still be incorrect.
However, the tools will typically find some bugs which are hard to find by
other techniques.

• Sound dataflow analyses: Tools in this category are typically path-
and context-sensitive. However, imprecision may lead to analysis of some
infeasible paths. They typically have sophisticated mechanisms to track
aliasing and relationships between variables including global ones. The
main difficulty is to avoid excessive generation of false positives by being
as precise as possible while analysis time scales. The only commercial
system that we are aware of which has taken this route is PolySpace
Verifier/Desktop. The great advantage of a sound analysis is that it gives
some guarantees: if the tool does not complain about some piece of code
(the code is green in PolySpace jargon) then that piece of code must be
free of the defects checked for.

There is a forth category of tools which we have not discussed here—namely
tools based on model checking techniques [4]. Model checking, much like static

30

analysis, facilitates traversal and analysis of all reachable states of a system
(e.g. a piece of software), but in addition to allowing for checking of run-
time properties, model checking facilitates checking of functional properties
(e.g. safety properties) and also so-called temporal properties (liveness, fair-
ness and real-time properties). There are commercial tools for model checking
hardware systems, but because of efficiency issues there are not yet serious
commercial competitors for software model checking.

It is clear that the efficiency and quality of static analysis tools have reached
a maturity level were static analysis is not only becoming a viable complement
to software testing but is in fact a required step in the quality assurance of
certain types of applications. There are many examples where static analysis
has discovered serious defects and vulnerabilities that would have been very
hard to find using ordinary testing.

However, there is still substantial room for improvement. Sound static anal-
ysis approaches, such as that of PolySpace, still cannot deal well with very large
code bases without manual intervention and they produce a large number of
false positives even with very advanced approximation techniques to avoid loss
of precision. Unsound tools, on the other hand, such as those from Coverity and
Klocwork do scale well, albeit not to the level of interactive use. The number of
false positives is surprisingly low and clearly at an acceptable level. The price to
be paid is that they are not sound, and hence, provide no guarantees: they may
(and most likely will) find some bugs, possibly serious ones. But the absence of
error reports from such a tool only means that the tool was unable to find any
potential defects. As witnessed in the evaluations different unsound tools tend
to find largely disjoint defects and are also known not to find known defects.
Hence, analyzed code is likely to contain dormant bugs which can only be found
by a sound analysis.

Most of the evaluations of the tools have been carried out on more or less
mature code. We believe that to fully ripe the benefits of the tools they should
not be used only at the end of the development process (after testing and/or after
using e.g. FlexeLint), but should probably be used throughout the development
process. However, the requirements on the tools are quite different at an early
stage compared to at acceptance testing. Some vendors “solve” the problem
by providing different tools, such as PolySpace Desktop and PolySpace Verifier.
However, we rather advocate giving the user means of fine-tuning the behavior
of the analysis engine. A user of the tools today has very limited control over
precision and the rate of false positives and false negatives—there are typically
a few levels of precision available, but the user is basically in the hands of the
tools. It would be desirable for the user to have better control over precision
of the analyses. There should for example be a mechanism to fine-tune the
effort spent on deriving value ranges of variables and the effort spent on aliasing
analysis. For some users and in certain situations it would be acceptable to
spend five times more analysis time in order to detect more defects. Before an
important release it could be desirable to spend much more time than on the
day to day analysis runs. In code under development one can possibly live with
some false negatives and non-optimal precision as long as the tool “finds some
bugs”. As the code develops one can improve the precision and decrease the
rate of false positives and negatives; in particular in an incremental tool such
as Coverity Prevent. Similarly it would be desirable to have some mechanism
to control the aggressiveness of filtering of error reports.

31

Finally a word of caution: Static analysis can be used to find runtime error
but does not in general address the functional correctness of the program. One
should be aware of the risk that an over-zealous user, in the excessive eagerness
to get rid of warnings of potential runtime errors, may introduce functional
incorrectness instead. The following piece of code may lead to a runtime error,
unless there is a check in initialize that the buffer, allocated in the previous
line, is not null.

my_buf *buf;

// Some code
buf = (my_buf *)malloc(sizeof(my_buf));
initialize(buf);
// Some more code

It is of course easy to get rid of a warning from a static analysis tool simply by
introducing a conditional

my_buf *buf;

// Some code
buf = (my_buf *)malloc(sizeof(my_buf));
if(buf != NULL) {
initialize(buf);

}
// Some more code

However, if the conditional is not also equipped with an else-branch it is likely
that we either have a runtime error somewhere else when the buffer is used,
or—if all such warnings have been suppressed—that the program does not do
what it is supposed to do in the event that malloc is unsuccessful in allocating
memory.

Acknowledgements: The authors are grateful to Dejan Baca, Per Flodin,
Fredrik Hansson, Per Karlsson, Leif Linderstam, and Johan Ringström from
Ericsson for providing tool evaluation information.

References

[1] T. Ball and S. Rajamani. The SLAM Project: Debugging System Software
via Static Analysis. ACM SIGPLAN Notices, 37(1):1–3, 2002.

[2] W. Bush, J. Pincus, and D. Sielaff. A Static Analyzer For Finding Dynamic
Programming Errors. Software, Practice and Experience, 30(7):775–802,
2000.

[3] B. Chelf, D. Engler, and S. Hallem. How to Write System-specific,
Static Checkers in Metal. In PASTE ’02: Proceedings of the 2002 ACM
SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools
and Engineering, pages 51–60, New York, NY, USA, 2002. ACM Press.

32

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
For Static Analysis of Programs by Construction Or Approximation of Fix-
points. In Conf. Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 238–252, Los An-
geles, California, 1977. ACM Press, New York, NY.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE Analyser. In M. Sagiv, editor, Proceedings
of the European Symposium on Programming (ESOP’05), volume 3444 of
Lecture Notes in Computer Science, pages 21–30, Edinburgh, Scotland,
2005. Springer.

[7] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. In Conf. Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages
84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[8] Coverity. Coverity ExtendTM User’s Manual (2.4), 2006.

[9] Coverity. Coverity PreventTM: Static Source Code Analysis for C and
C++. Product information, 2006.

[10] Coverity. Coverity PreventTM User’s Manual 2.4, 2006.

[11] Coverity Inc. The Scan Ladder, 2007. http://scan.coverity.com.

[12] A. Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-
limiting. In Proc. Programming Language Design and Implementation.
ACM Press, 1994.

[13] D. Engler. http://www.stanford.edu/ engler/.

[14] Gimpel Software. PC-lint/FlexeLint, 1999.
http://www.gimpel.com/lintinfo.htm.

[15] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and Language for
Building System-specific, Static Analyses. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 69–82, New York, NY, USA, 2002. ACM Press.

[16] M. Halstead. Elements of Software Science. Operating, and Programming
Systems Series Volume 7. Elsevier, 1977.

[17] J. King. Symbolic Execution and Program Testing. Comm. ACM,
19(7):385–394, 1976.

[18] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation Exploita-
tion In Error Ranking. In SIGSOFT FSE, pages 83–93, 2004.

[19] T. McCabe and C. Butler. Design Complexity Measurement and Testing.
Comm. ACM, 32(12):1415–1425, 1989.

33

[20] Motor Industry Software Reliability Association. MISRA-C:1998 Guide-
lines For the Use of the C Language In Vehicle Based Software. Technical
report, MISRA, 1998.

[21] Motor Industry Software Reliability Association. MISRA-C:2004 Guide-
lines For the Use of the C Language in Critical Systems. Technical report,
MISRA, 2004.

[22] J. Palsberg and M. Schwartzbach. Object-Oriented Type Inference. In Conf
Proc Object-Oriented Programming Systems, Languages, And Applications
(OOPSLA ’91), pages 146–161, New York, NY, USA, 1991. ACM Press.

[23] Parasoft. Automating C/C++ Runtime Error Detection With Parasoft
Insure++. White paper, 2006.

[24] PolySpace Technologies. PolySpace for C Documentation, 2004.

[25] Rational Software. Purify: Fast Detection of Memory Leaks and Access
Errors. White paper, 1999.

[26] B. Ryder and F. Tip. Change Impact Analysis For Object-Oriented Pro-
grams. In Proc. of 2001 ACM SIGPLAN-SIGSOFT workshop on Program
Analysis For Software Tools And Engineering (PASTE ’01), pages 46–53,
New York, NY, USA, 2001. ACM Press.

[27] B. Steensgaard. Points-to Analysis in Almost Linear Time. In ACM POPL,
pages 32–41, 1996.

[28] D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In Proc. of
2001 IEEE Symp. on Security and Privacy (SP’01), page 156, Washington,
DC, USA, 2001. IEEE Computer Society.

[29] T. Wagner, V. Maverick, S. Graham, and M. Harrison. Accurate Static
Estimators For Program Optimization. In Proc. of ACM SIGPLAN 1994
Conf. on Programming Language Design And Implementation (PLDI ’94),
pages 85–96, New York, NY, USA, 1994. ACM Press.

34

