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Summary. The Riemannian exponential map, and its inverse the Riemann ian log-
arithm map, can be used to visualize metric tensor �elds. In t his chapter we �rst
derive the well-known metric sphere glyph from the geodesic equations, where the
tensor �eld to be visualized is regarded as the metric of a manifold. These glyphs
capture the appearance of the tensors relative to the coordinate system of the human
observer. We then introduce two new concepts for metric tensor �eld visualization:
geodesic spheres and geodesically warped glyphs. These additions make it possible
not only to visualize tensor anisotropy, but also the curvat ure and change in tensor-
shape in a local neighborhood. The framework is based on the expp (vi ) and logp (q)
maps, which can be computed by solving a second order Ordinary Di�erential Equa-
tion (ODE) or by manipulating the geodesic distance functio n. The latter can be
found by solving the eikonal equation, a non-linear Partial Di�erential Equation
(PDE), or it can be derived analytically for some manifolds. To avoid heavy calcula-
tions, we also include �rst and second order Taylor approxim ations to exp and log. In
our experiments, these are shown to be su�ciently accurate t o produce glyphs that
visually characterize anisotropy, curvature and shape-derivatives in smooth tensor
�elds.

1 Introduction

The need for tensor visualization has grown over the past twenty years along with
the advancement of image analysis, computer graphics and visualization techniques.
From being an abstract mathematical entity known mostly by e xperts in continuum
mechanics and general relativity, tensors are now widely used and visualized in
applied �elds such as image analysis and geology. In particular, there has been an
expansion over the years, from using tensors mostly in mathematical theories of the
world, towards estimating tensor quantities from experime ntal data. See for instance
[25] for a recent survey of both techniques and applications.

We propose a technique to paint tensor glyphs in a special warped coordinate
system, to enhance the visualization of curvature and parti al derivatives of a met-
ric tensor �eld. Glyphs are commonly used to represent the st ate of a tensor �eld
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pointwise and their collective behavior, when e.g. arranged in a grid, help to per-
ceptualize the change of shape and orientation of the tensors. Inspired by others
who have visualized tensor �elds by regarding the tensor �el ds as the metric of a
manifold, see for instance [24, 14, 18, 10, 7, 15], we proposea method to deform the
glyphs in accordance with the metric.

One of the most exciting areas where tensor data is derived from experiments
is the medical imaging modality called Di�usion Tensor MRI ( DT-MRI). It is now
becoming so central that clinical radiologists in general n eed to understand and
visualize tensor �elds representing in vivo water di�usion in the human brain. For-
tunately, the positive de�nite matrices found in DT-MRI dat a can be visualized
using ellipses (2-D) or ellipsoids (3-D), making the data un derstandable without
knowing the details of tensor algebra. In DT-MRI, the ellips oids are elongated along
the directions of maximum water di�usion and it turns out tha t the shape of them
are interpretable as anatomical properties of the tissue being studied. In the human
brain for instance, they are elongated in the directions of n erve �ber bundles in
white matter, because water di�usion is restricted in the di rections perpendicular
to the �bers. In the ventricles on the other hand, where the wa ter molecules in the
cerebrospinal uid (CSF) di�use freely in all three directi ons, the ellipsoids are large
and spherical. These properties of ellipsoid glyphs make DT-MRI datasets easier to
comprehend for a medical expert.

Tensors are mathematical objects with special geometrical properties. Most of
the research in tensor visualization has focused on the most commonly used low
order tensors, in particular vectors (�rst order, 1-D array s) and matrices (second
order, 2-D arrays). In this chapter, we study the visualizat ion of metric tensor �elds
in Rn , where each tensor is second order tensor. These can be represented by n � n
matrices, elements of Rn 
 Rn , which are symmetric and positive de�nite, i.e. they
have positive eigenvalues. We call these tensor �elds metric tensor �elds, since they
may be interpreted as the metric of a Riemannian manifold. Th e pointwise inverse
of a DT-MRI tensor �eld can be regarded as a metric tensor �eld [18]. Structure
tensor �elds in image analysis, see e.g. [9], is another example of metric tensor �elds.

2 Glyphs and Glyph Warping

A tensor glyph is a geometric object that graphically repres ents the local charac-
teristics of the tensor �eld in a point. If a pre-�ltering is a pplied to the �eld, in
which the �eld is averaged over a small neighborhood to avoid aliasing e�ects or
noise, one can argue that the glyph actually represents the average characteristics
of the tensor �eld over a small area. The topic of this chapter is "glyph warping",
which refers to a process of deforming glyphs according to the local characteristics
of a tensor �eld or manifold. By construction, most kinds of t ensor glyphs are scaled
according to the tensor in a point, regarding this tensor as t he local metric. The
eigenvalues and eigenvectors of the tensor determines the stretching and rotation of
the di�erent axes of the template that is stretched to form th e glyph or determine
the shape of the glyph in other ways if the glyphs are constructed by a more in-
volved process. Some glyphs based on a template are symmetric, ellipses (2-D) and
ellipsoid (3-D) glyphs can be constructed from a circle or a sphere. Other glyphs,
such as the \space-ship glyphs" found in [27] or the superquadric tensor glyphs [13],
are not rotationally symmetric but has three or more symmetr y axes. The curvature
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and the partial derivatives of the metric tensor �eld are usu ally not represented by
individual glyphs. It can usually be inferred from the colle ctive appearance of the
glyphs in a neighborhood, i.e. if the glyphs tend to rotate or change in size. This
e�ect could also be visualized by warping or deforming the gl yphs, i.e. bending them
like a banana or let them change size. If we regard the tensor �eld as the metric of a
manifold, i.e. a curved geometric space, one natural way to think of this deformation
process is to imagine that the glyph is placed inside the manifold. However, while
the glyph template is de�ned in a vector space, the manifold i s curved and there is
in general no way to �t the at template inside the manifold wh ile at the same time
preserving distances in the glyph if we compare Euclidean distances in the glyph
template with geodesic distances in the manifold. The situa tion is very much the
same in map making, i.e. there is no way to map the surface of the Earth to a at
vector space, so that all geodesic distances are mapped to Euclidean distances in
the new space.

Using the exp and log maps to deform the glyph, which is what is described in
this chapter, is a compromise and this mapping will at least p reserve radial distances
and radial angles in the glyph.

3 Related Work

In 1881 the French cartographer Nicolas Auguste Tissot publ ished ideas on using
circles and ellipses to visualize the deformation of map projections. Mapping the
Earth to a at surface is not possible without introducing so me kind of angular or
area distortion in the process. The Tissot indicatrix, see F ig. 3, is a small circle or
ellipse painted in a map projection. It represents the defor mation of an in�nitely
small circle on the Earth after being deformed by the map proj ection. If the Tissot
indicatrix is a perfect circle, and not an ellipse, then the p rojection is angle preserving
(conformal), and if the area of Tissot indicatrices does not change across the map
projection, the map projection is area preserving (authali c). A natural extension of
the Tissot indicatrix is to use geodesic distances on the Earth (ellipsoid) to de�ne
the circle, in general resulting in a distorted ellipse. For this reason the geodesic
sphere glyph we propose in this chapter, for the visualizati on of arbitrary metric
tensor �elds, can be seen as a generalization of the originalTissot indicatrix. In Fig.
2 and 2 we show how the geodesic variant of the Tissot indicatrix may be used to
visualize the deformation of the metric in a projection of tw o mathematical surfaces,
a half-sphere and a cone.

Later work in computer graphics has also described methods to visualize the
distortion of a projected surface, or manifold in general, f rom the information con-
tained in a metric tensor �eld. In spot noise [24], a small ima ge or spot, is pasted
stochastically in multiple copies over a parametric surfac e to create di�erent tex-
tures. The original paper on spot noise also demonstrates how anisotropic spot noise,
in the 2-D texture coordinate system of a curved surface embedded in 3-D, results in
isotropic patterns in object space. This is in fact a way to vi sualize the metric tensor
of the surface. Textures have also been used to visualize vector �elds. In line inte-
gral convolution (LIC) [5], vector �elds are visualized by c onvolution (integration)
of a random texture with streamlines created from the vector �eld. This yields a
low-frequency response along the streamlines. In a method similar to spot noise and
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Fig. 1. The area and angle distortion of map projections visualized using Tissot
indicatrices. Left: The Mercator projection, used in e.g. G oogle Maps. It is conformal.
Right: The Equidistant Azimuthal projection. It is neither conformal nor authalic.

LIC, noise is �ltered by anisotropic �lters steered by secon d order tensors to visu-
alize the tensor �eld, see for instance [16] for an early example or [22, 17]. Another
example of second order tensor �eld visualization include t he Hyper-LIC [29], an
extension of the LIC method where the convolution proceeds not only along a single
streamline, but along a non-linear patch which is aligned wi th streamlines derived
from both the �rst and second eigenvectors of the tensors. Th is is somewhat similar
to the approach taken in this chapter, since a warped coordin ate system is created
which can be used for glyph warping. In [10] an approach is presented based on a
physical interpretation of the tensor �eld and it is also abl e to, in contrast to many
other methods, visualize second order tensors with negative eigenvalues. Finally a
procedural generation of textures from tensor �elds have be en investigated in [14],
where reaction-di�usion patterns are steered by the metric tensor �eld. This yields
a pattern that seems to be composed by separate glyphs, ellipses in 2-D, which are
adaptively placed, scaled and deformed by the tensor �eld. F or a successful imple-
mentation of this method, one has to overcome the numerical problems of simulating
a highly non-linear PDE.

In the medical community, there has been a special need to extract information
from tensor �elds that goes beyond the visualization of loca l properties of the �eld.
In \tractography", entire tracts are visualized by perform ing streamline tracking
along the main eigenvector �eld of a second order tensor �eld . This procedure,
called \�ber tracking", helps radiologists to locate �ber b undles in the human brain
and �nd out about long range white matter �ber connectivity. Fiber tracking shares
many similarities with the LIC, Hyper-LIC and Hyper-stream lines [6], but it is also
a research topic in its own right since it is heavily biased by clinical needs and the
quest for anatomical understanding of the human brain.

Two properties of spot noise and reaction-di�usion visuali zation seem to be
important for the quality and perception of the tensor visua lization. First, both of
these methods spread the glyph-like spots in a uniform way according to the tensor
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Fig. 2. Left: A half sphere in R3 painted with geodesic spheres. Right: A 2-D
chart describing the half-sphere, i.e. the z-direction has been removed. The same
geodesic spheres e�ciently visualize the space-variant metric. Left: A cone sphere in
R3 painted with geodesic spheres. Right: A 2-D chart describin g the cone, i.e. the
z-direction has been removed. The same geodesic spheres e�ciently visualize the
space-variant metric. Note in particular the banana-shape d spheres in the center
and the more ellipse-shaped spheres close to the perimeter.

�eld regarded as a metric. The latter of these methods not onl y scale but also bend
the glyph-like structures according to the curvature of the tensor �eld. In recent
work on glyph packing [15] and anisotropic noise sampling [7], the �rst of these
behaviors is mimicked and glyphs are placed uniformly over t he �eld. However, the
glyphs themselves are still based on the value of the tensor �eld in each point and
do not consider curvature. In this chapter, we present glyph s that do exactly that:
they bend, expand and contract according to the derivative o f the tensor �eld. In
combination with a glyph-packing procedure, this techniqu e has the potential to
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mimick the two most desirable properties of the reaction-di �usion, in a framework
that is numerically stable and fast to compute.

The work presented here is also related to work on texture mapping in computer
graphics, in particular the decal compositing with discret e exponential maps [20].
Decal compositing refers to the mapping of small texture map s, decals, onto surface
models embedded in R3 . It has been used mainly for artistic purposes and it is
de�ned only for 2-D surfaces embedded in 3-D. Other methods for the calculation
of exponential maps on general manifolds have also been presented. In [21] fast
marching is presented as a means to calculate geodesics emanating from a point, i.e.
indirectly the calculation of exponential maps. In [28] fas t methods are presented to
calculate all geodesics in a manifold, starting from any poi nt in any direction and
traveling any distance. Finally in [4] and [3], the LogMap me thod is presented as
a means of calculating the inverse of the Riemannian exponential map, a method
which is reviewed later in this chapter.

4 Tensors and Index Notation

Tensors generalize scalars, vectors and matrices to higherdimensions. Sometimes
the word \tensor" is used for any multi-dimensional array wi th more indices than
a matrix, i.e. more than two. We use the term in a more precise m anner that is in
agreement with the notation in physics and di�erential geom etry. In these �elds of
research, tensors are geometric objects that are invariant under coordinate changes.
A vector is a tensor, i.e. it is a geometric object that remain s the same regardless
of the choice of basis or coordinate system that is used to descibe it. In physics the
word \tensor" usually refers to what in mathematics would be called a \tensor �eld"
but in both domains it is meaningful to think of tensors as obj ects de�ned pointwise
in a vector space V .

Many spatial quantities in physics are tensors, for instanc e; velocity (m =s), di�u-
sion (m2=s) and electric �eld strength (V =m). In mathematics, contravariant vectors
are those that transform like velocity and position vectors , while the so called covari-
ant vectors transform like gradients under a change of coordinate system. Examples
of higher order tensors in mathematics are for instance quadratic forms. For a general
de�nition, a tensor F is de�ned as multi-linear map,

F : V � � : : : � V �

| {z }
r

� V � : : : � V| {z }
s

! R; (1)

i.e. a map that is linear in each of its arguments. Its order is r + s and it has type
(r; s ), meaning that it operates on r covariant vectors and s contravariant vectors. In
some contexts, order is called rank and type is called valence, which can be confusing
since rank is also used to describe the rank of matrices. Similar to vectors and the
metric previously de�ned, the action of tensors can be de�ne d by components that
are derived from the action on all combinations of basis vectors f w i g in V � and
f b j g in V ,

F i 1 ;i 2 ;:::;i r
j 1 ;j 2 ;:::;j s

= T(w i 1 ; : : : ; w i r ; b i 1 ; : : : ; b i r ): (2)

The number of components is nr + s . If the coordinates are changed, ~x i = tk
i xk ,

then each contravariant index is transformed as a vector and each covariant index
is transformed as a dual vector,
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~F abc
xyz = F abc

xyz ta
i tb

j tc
k : : : (t � 1)x

m (t � 1)y
n (t � 1)z

o : : : (3)

In physics, this is sometimes how tensors are de�ned, i.e. asobjects that transform
according to certain transformation laws.

From here on, we will use index notation, which is commonly us ed in di�eren-
tial geometry to denote tensors and di�erentiate between co variant (lowered) and
contravariant (raised) indices. For an introduction to ten sors and tensor notation,
see for instance [11, 26]. In order to make the interpretation accessible to a broader
audience, we will not use the customary Einstein summation convention, meaning
that all sums will be written out explicitly instead. In inde x notation a (contravari-
ant) vector is identi�ed with its coordinates, meaning that a vector v in Euclidean
spaceRn is written using its coordinates vi in some basis,

v = vi =
nX

i =1

vi b i : (4)

Note in particular that the basis vectors have been dropped a nd are assumed implic-
itly in the short form vi . The index variable i is an integer in the range 1: : : n and it
is type set in superscript to indicate that this index, and th is vector, is contravariant.
To further increase readability we will also write equation s in ordinary linear algebra
notation when possible, i.e. bold face lower case letters for both contravariant and
covariant vectors ( v ; x ; : : :) and upper case bold letters for matrices (A ; G ; : : :). In
some expressions we use _x i and •x i to denote �rst- and second order time derivatives.

In addition to vectors, we will consider higher order tensor s in this chapter,
in particular the metric tensor. The metric tensor is a mathe matical object which
de�nes the scalar product between (contravariant) vectors , which in turn can be
used to measure important properties in space such as lengths, angles, area and so
on. In vector algebra the scalar product is often implicitly de�ned simply by

hv ; ui = v T u =
nX

i =1

vi ui (5)

but in general any symmetric positive de�nite n � n-matrix G can be used to de�ne
a metric,

hv ; ui G = v T Gu =
nX

i =1

nX

j =1

vi gij uj : (6)

The latter also introduces the commonly used tensor notatio n for the metric, i.e.
lowercase with indices written in subscript gij . In index notation, upper- and lower
case letters have less meaning and to comply with standard notation in both linear
algebra and di�erential geometry, we will denote the metric by either gij or G .
Subscript indices indicate that the metric is a covariant te nsor. In tensor algebra it is
natural to pair contravariant indices with covariant ditto , so the previous expression
in Eq. 5 for a scalar product is somewhat odd. Instead, it is better to write out the
metric explicitly,

hv ; ui = v T u =
nX

i =1

vi � ij uj ; (7)

where � ij is the Kronecker delta symbol, de�ned by � ij = 1 for i = j and 0 elsewhere.
It can be regarded as the unit-metric. Now the number of contr avariant (upper) and
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covariant (lower) indices match, meaning that the result of the calculation is a scalar
(no index).

In summary, the index notation is a handy way to denote vector s and matrices,
which easily extends to higher dimensions by adding more indices. At a �rst glance,
the common notation for vectors and matrices may seem more intuitive, but three
things are easier to do in index notation. First, index notat ion extends naturally to
higher order tensors, i.e. objects with three or more indices. Secondly, index notation
can di�erentiate between covariance and contravariance by the use of upper- and
lower indices. It should also be noted that index notation is particularly useful when
used in combination with the Einstein summation convention , meaning that the
summation symbol

P n
i =1 is omitted from all expressions and instead it is assumed

that indices i , j etc appearing more than one time in an expression is summed over,
from 1 : : : n. In this notation the above scalar product is simply

hv ; ui g = vi gij uj = gij vi uj = gij uj vi : (8)

From the example it is also easy to see another advantage with the index notation,
namely that the ordering of the tensors is irrelevant, in con trast to matrix and vector
notation.

5 The Metric and Metric Spheres

We will now take a closer look at the metric, or metric tensor, and see how we can
visualize a metric. We will also introduce a particular orth onormal (ON) coordinate
system that will be useful later in the chapter.

The metric is the object specifying the scalar product in a pa rticular point on
a manifold in di�erential geometry. It encodes how to measur e lengths, angles and
area in a particular point on the manifold by specifying the s calar product between
tangent vectors in this particular point. A natural way to vi sualize the metric is
to visualize a \unit sphere", i.e. a sphere with radius equal to 1. By \natural" we
do not necessarily mean the most suitable way to visualize a metric from a human
perception point of view, but rather a straightforward way t o visualize the metric
using simple mathematics. In Euclidean space the unit sphere is the set of points,
x 2 Rn , satisfying jj x jj =

p
hx ; x i = 1. In tensor notation and with an arbitrary

metric gij this translates to

nX

i =1

nX

j =1

gij x i x j = 1 : (9)

While the metric gij = G may be interpreted as a symmetric positive de�nite matrix,
it can be spectrally decomposed,

G = U�U � ; (10)

where U is a unitary matrix, UU � = I , and � is a diagonal matrix with the
eigenvalues ofG ordered in descending order,� ii = � i . The eigenvectors to G , found
in the columns of U , form an ON basis in Rn for both the standard metric � ij and in
the arbitrary metric gij . For instance, in R2 the �rst eigenvector, corresponding to
the eigenvalue � 1 , point along the major axis and the last eigenvector, corresponding
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to � 2 , point along the minor axis of the ellipse-shaped geodesic ball. In the general
case,Rn , the metric sphere will be a hyper-ellipsoid. Using this kno wledge we may
design a special coordinate system, which is aligned with the axes of the hyper-
ellipsoid. If U = ( e1 ; e2 ; : : : ; en ) and coordinates are denoted by ci , a vector v 2 Rn

is decomposed by

v = vi =
1

p
� 1

e1c1 +
1

p
� 2

e2c2 + : : : +
1

p
� n

en cn : (11)

Fig. 3. Coordinate basis vectors in R2 derived for some metric gij . This coordinate
basis is ON in gij .

This coordinate system has many advantages, in R2 for instance we may now
easily parameterize the surface of the metric sphere by painting an isotropic sphere
in the ci coordinates, c1 = cos(t) and c2 = sin( t), 0 � t < 2� . An alternative
approach to visualize the metric, and emphasize the direction on the eigenvectors,
is to paint a unit box, ci : max(c1 ; c2) = 1. In fact, we may paint any tensor glyph
in this coordinate system, for instance superquadratic ten sor glyphs [13] or even the
\space ship" glyph in [27].

We call the map from this coordinate system to the vector spac e E , E : Rn ! V .
It is an isomorphism from the Euclidean space Rn (and the unit metric) to a new
vector space V equipped with the metric G = gij . Of many such isomorphisms,
it has the special property that it is aligned with the axes of the hyper ellipsoid
describing gij in V, in a particular basis.

6 The Geodesic Equation and Geodesic Spheres

In applications where metric tensor �elds are visualized, t he metric is not constant
but changes from point to point. A natural theory for space-v ariant metrics is the
non-Euclidean geometry found in Riemannian manifolds, whi ch has already been
pointed out by a number of authors, see for instance [18]. In Riemannian geometry
the distance between two points in space is de�ned by the length of the shortest
curve between them, where the length of this curve is obtained from the integral
over the tangent vectors to a curve, measured using a space-variant metric gij (x),

d(a; b) = min
 :  (0)= a; (1)= b

Z 1

0

p
_ (t) i gij ( (t )) _ (t ) j dt: (12)
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Similar to the case of a constant metric, we may now de�ne geodesic spheres in
this Riemannian manifold. For a sphere centered in a point p in the manifold, the
following relation hold for points xin the geodesic sphere,

d(p; x) = 1 : (13)

The problem with this metric, from an application point of vi ew, is that the space-
variant metric makes it more di�cult to evaluate the distanc e between two di�erent
points since the minimization is performed over an in�nite s et of curves  .

One way to approach this problem is to derive a parametric fun ction for points
on the sphere, without measuring distances explicitly. Usi ng the geodesic equation,
de�ned in Eq. 14 below, geodesics emanating from a point p starting o� in a speci�c
direction and traveling a speci�c distance (in this case 1) m ay be generated. These
solutions correspond to paths of free particles moving in th e manifold, without any
forces acting on them, and in this sense they generalize the notion of straight lines
in Euclidean geometry. Without going into details, geodesi cs can be described and
calculated using the geodesic equation. It is a second orderODE which expresses
that the second derivative of the position, the acceleratio n, is zero. Because of the
space variant metric, a special term involving the Christo� el symbol needs to be
included,

d2x i

dt2
+

nX

j =1

nX

k =1

� i
jk

dx j

dt
dxk

dt
= 0 ; (14)

where 1 � i; j; k � n. � i
jk is the Christo�el symbol, which is actually a function

of the coordinate system, i.e. � i
jk (x i ). It is not a tensor in a strict sense, it does

not transform as a tensor when the coordinate system is changed, but it bene�ts
greatly from the index notation since it has three indices. I t is derived from the
metric tensor,

� i
jk =

1
2

nX

m =1

gim
�

@gmj

@xk
+

@gmk

@xj
�

@gjk
@xm

�
; (15)

where gij is the inverse of the metric gij , i.e. gij = G � 1 . A geodesic starting at
 (0) = p, where p is a point on the manifold, with a velocity _ (0) = vi will have a

geodesic length jj vi jj =
q P

i;j vi gij vj at t = 1 and thus d(p;  (1)) = jj vi jj . In this

way, by following geodesics starting at p with di�erent unit speed tangent vectors,
we obtain a polar representation of a geodesic sphere. We will return to how this is
solved in practice in a later section dealing speci�cally wi th the implementation of
this.

7 The Exponential Map and Riemannian Normal
Coordinates

With the introduction of geodesic distance and geodesics, we now have a way to paint
geodesic spheres to visualize some of the characteristics of a space-variant metric
tensor �eld. However, we have not yet introduced a coordinat e system similar to the
coordinates ci introduced for a constant metric. A �rst step towards the int roduction
of such a coordinate system is to de�ne the Riemannian exponential map, known
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from di�erential geometry. This map, and its inverse the Rie mannian logarithm, is
depicted in Fig. 4.

Let TpM denote the tangent space to a manifold M at a point p 2 M . In the case
of our space-variant metric, this is simply the space of all t angent vectors of curves
through a point p, which is a vector space. In particular, this is the space of all
possible tangent vectors to geodesics emanating fromp. The map expp : TpM ! M
is de�ned by

expp (vi ) =  (1); (16)

where  is the geodesic for which  (0) = p and _ (0) = vi . It is appropriate to use a
'shooting' analogy here, expp (vi ) is where a particle ends up after one time unit, if
it is shot from a point p with velocity vi .

The introduction of the exponential map can be done without a ny reference to
coordinates in a speci�c basis, it is simply a map from vector s vi seen as geometric
objects in the tangent vector space of a point p, TpM , to other points in the manifold.
By choosing an ON coordinate system for TpM , we obtain what is called Riemannian
Normal Coordinates, Geodesic Normal Coordinates or Normal Coordinates for short.
This ON basis can be seen as an isomorphismE : Rn ! TpM . Joining it with the
exponential map, we have a map from Rn ! M , and the inverse of this map gives
us the coordinate of a point q on the manifold by ' (q) = E � 1 exp� 1

p (q), which is a
well de�ned inverse in a neighborhood U around p. We will soon take a closer look
at the inverse of the exponential map and call it log p .

T Mp

M

p

0

x

x

log (x)p pexp (x)

Fig. 4. A schematic view of the expp and logp .

8 Solving the Geodesic Equation

Before we actually use the geodesic equation to paint glyphs, we will briey touch
upon how to solve it, both accurately using ODE solvers and ap proximately using a
Taylor approximation. Like any second- or higher order ODE, it can be reformulated
by a system of �rst order ODEs, @s

@t = f (s; t), for a vector valued state s. The two
variables x i and _x i evolve in time according to

"
@xi

@t
@_x i

@t

#

=
�

_x i

�
P n

j =1

P n
k =1 � i

jk _x j _xk

�
; (17)



12 Anders Brun and Hans Knutsson

where the � i
jk is spatially varying depending on x i . The right hand side is indepen-

dent of t , i.e. it is a so called autonomous ODE.

@xi

@t
= _x i (18)

@_x i

@t
= �

nX

j =1

nX

k =1

� i
jk _x j _xk : (19)

Given that initial conditions are known, e.g. x(0) = p and _x(0) = vi , this system of
ODEs has exactly one unique solution under very general conditions according to
the Picard-Lindel•of theorem. We identify a particular sol ution with a geodesic curve
x i (t ) =  (t ). While the Christo�el symbol might be di�cult to comprehen d at �rst,
it is worth noting that the contribution by � i

jk is symmetric with respect to a ip
of sign in _x i . Implementation of a numerical solution to this ODE in e.g. M atlab
is straightforward using standard ODE solvers. The only res ervation is that even a
third order tensor-like object, like the Christo�el symbol , generates a notation which
is quite involved when implemented in a vector- and matrix or iented language like
Matlab. It is also important to use a proper interpolation sc heme in the calculation
of derivatives of gij , if the tensor �eld is known only from samples. We used cubic
interpolation. To ensure positive de�niteness we performe d the interpolation in the
Log-Euclidean domain [1]. It is however important to point o ut that the proper
choice of interpolation method highly depends on the applic ation, and the glyph
warping framework we present is applied after the user has decided upon the right
choice of interpolation. In some applications the continuo us tensor �eld will be known
in every point, while in others the user may choose a model where the tensor �eld
is constant inside each pixel or voxel. In the latter case the solution to the geodesic
equation must be generalized to non-continous tensor �elds which, in terms of optics
and light-beams that are actually geodesics, corresponds to a generalized law of
refraction on the boundary between two neighboring pixels o r voxels.

For many applications in computer graphics, speed and ease of implementation is
an issue. For this reason we will also derive Taylor approxim ations of the exponential
map. Directly from the geodesic equation, we have the secondorder derivative of our
geodesic curve. Given the initial value of the position and d erivative, x(0) and _x(0),
we have everything needed in order to make a second order Taylor approximation
of a geodesic, valid for small values oft :

~x i (t ) = x i (0) + _x i (0)t �
1
2

nX

j =1

nX

k =1

� i
jk _x(0) j _x(0)k t2 + O(jj _x(0) i t jj 3); (20)

which for t = 1, according to Eq. 16, yields for a coordinate system in whi ch pi = 0,

expp (vi ) = 0 + vi �
1
2

nX

j =1

nX

k =1

� i
jk vj vk + O(jj vi jj 3 ) = qi ; (21)

This approximation will only be valid around a small neighbo rhood to p. As of
today, it is not entirely clear how good this approximation i s and more research is
needed, to �nd bounds on the approximation error and perhaps also derive higher
order Taylor approximations for geodesics. As will be shown in the experimental
section, this approximation is however good enough to be useful.
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9 Geodesic Spheres and Warped Coordinate Systems

Using Eqs. 16, 17 or the approximation Eq. 21 , we are able to explicitly map unit
vectors in TpM to coordinates on the manifold and thereby paint unit sphere s.
By choosing the special coordinate system derived above,ci , in combination with
these formulas, we may also navigate on the manifold using a Riemannian normal
coordinate system that is aligned with the major and minor ax es of the unit circle.
This allows us to map not only spheres, but in fact any glyph th at is naturally
de�ned in the ellipse- or ellipsoid aligned coordinate syst em. In this chapter we will
demonstrate this by mapping the aligned unit box by using Rie mannian normal
coordinates. This will result in a box glyph with approximat ely unit length sides,
which has its major axis along the main eigenvector of the local metric, but on a
larger scale has its shape deformed according geodesics emanating from its center
point.

10 The Logarithmic Map

The function log p (q) is a function which maps points q on the manifold to the tangent
space inp, TpM , and it is the inverse of expp (vi ). While the exponential function is
fairly easy to calculate numerically by solving a second order ODE, the estimation
of the logp (q) mapping has attracted less attention in the literature, pe rhaps by the
infeasibility of fast and accurate solutions. From the Tayl or approximation in Eq.
21 it is however straightforward to derive the second order T aylor approximation for
this inverse,

logp (qi ) = 0 + qi +
1
2

nX

j =1

nX

k =1

� i
jk qj qk + O(jjqi jj 3): (22)

In our experience this approximation is less stable than the Taylor approximation of
expp (vi ) in Eq. 21, i.e. it is only valid in a small neighborhood aroun d p, and for this
reason we have not used the second order Taylor approximation of this mapping in
our experiments.

A recently proposed method to calculate the log p (q) map is the LogMap method
[3, 4]. One way to explain this method is to study how the intri nsic mean is computed
[12, 8]. Let f x i g be N data points in a manifold M and seek the minimizer to the
function

f (p) =
1

2N

NX

i =1

d2(p; x i ); (23)

where d2(p; x i ) is the squared geodesic distance between pointsp and x i . Then the
gradient of f is [19, 12]

r f (p) = � gst
1
N

NX

i =1

logp x i : (24)

Setting N = 1 and x1 = x gives the following formula for log p ,

logp (x) = � gst 1
2

r y d2(y; x)

�
�
�
�
y = p

: (25)
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The metric gst and the inverse metric gst = ( g� 1)st have been added here to handle
the general case, but choosing an ON-basis forTpM yield gst = gst = � st and allow
us to identify co- and contravariant vectors. With the formu la above, estimating
logp (q) becomes a matter of estimating geodesic distances onM . If distances d(x; y )
are known for all x 2 N (p), where N (p) is some small neighborhood ofp, and for all
y 2 M , then the gradient of the squared distance function can be easily estimated
numerically by �tting a second order polynomial which is the n di�erentiated analyt-
ically. (The reason for using the squared distance function is simply that it is much
easier to approximate using a �nite set of basis functions, c ompared to the plain
distance function which has a discontinuity in its origin.) Distance functions in turn
can be estimated numerically for manifolds by solving the ei konal equation, e.g. by
using level-set methods for front propagation [18, 21], or ordered upwind methods
such as fast marching [23, 21] and the Dijkstra algorithm [2] . In some special cases
(e.g. the sphere, the cone, the Poisson disk model of the hyperbolic plane, ...) the
distance function can also be derived analytically. In this chapter we focus mainly
on the expp (vi ) map, since it is the most convenient mapping to use if one has a
glyph that is described by a set of connected vertices. We note however that if the
glyph is given by a texture, the LogMap method might be conven ient since it yields
a mapping from points q on the manifold directly to texture coordinates vi . It also
has the computational advantage that it calculates the mapp ing for all points in the
manifold in one step, given only a few global distance functi ons from points around
p. This property makes the LogMap method more useful when many points are to
be mapped, since the ODE solution of the exponential map then requires that a
large set of separate ODEs are solved.

11 Experiments

In this section we describe some experiments performed on a simulated synthetic
2-dimensional DT-MRI dataset, where Rician noise and parti al volume e�ects have
been introduced using realistic parameter settings representative for common clinical
protocols. This dataset consists of a 2-D tensor �eld with 2 � 2 symmetric positive
de�nite tensors. We have chosen a 2-D dataset because it demonstrates several
features of glyph warping and yet it is easy to visualize in pr int, but it is important
to note that glyph warping using exponential maps is not rest ricted to 2-D, but
works in any dimensions. In Fig. 5 we show a close up of the tensor �eld displayed
using three variants of sphere-glyphs. The �rst variant is t he metric sphere, which
may be seen as a �rst order approximation to the geodesic equations. The second
and third image shows the second order approximation and the numerically derived
solution to the geodesic ODE. In Fig. 6 we demonstrate the e�e ct on a global scale,
once again we use the sphere-glyph. The di�erence is more subtle now, but experts
in tensor image processing still agree that the two rightmos t images have a softer
appearance. In a third experiment, see Fig. 7, we once again tried the three variants
of glyph warping, but this time we used the box glyph instead. Here the di�erences
are more obvious. We note that both curvature and changes in t ensor shape may
be seen in the two rightmost visualizations. Again there is l ittle di�erence between
the second order Taylor approximation and the numerical ODE solution. Compared
to the sphere-glyph, the box contains straight lines, which is the main reason why
it is easier to see the e�ect of the non-linear mapping. In a fo urth experiment, see
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Fig. 5. Left: In a �rst order approximation of the geodesic normal co ordinates, the
unit sphere is equivalent to the well known metric ellipsoid . Middle: In a second
order approximation of geodesic normal coordinates, similar to exact geodesic co-
ordinates, the unit sphere might be bent. Right: Numericall y solving the Geodesic
ODE results in almost exact geodesic coordinates. Despite the visible deformation of
the Riemannian normal coordinate system attached to the center point, the geodesic
sphere glyph looks almost the same in all three examples. Forthis reason, geodesic
spheres may not always be the best choice from a human perceptual point of view.
The box glyph overcomes some of these limitations.

Fig. 6. Left: Metric sphere glyphs painted in a �rst order approxima tion of the
geodesic normal coordinate system, equivalent to metric ellipsoids. Middle: Metric
sphere glyphs painted in a second order approximation of geodesic normal coordi-
nates. Right: Metric sphere glyphs painted in true geodesic coordinates found by
numerically solving the geodesic equation.

Fig. 8, we tried glyph-warping on somewhat more exotic glyph s. In the image to
the left we have used texture maps of soda cans as tensor glyphs. In the next image
we used a creation inspired by superquadratics. Finally in t he third image we have
used glyph-warping on anisotropy adaptive superquadratic s as de�ned in [13], where
isotropic glyphs have been assigned round glyphs and anisotropic glyphs have a more
box-shaped appearance. Finally the method was tested on real DTI data, acquired
at CMIV.
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Fig. 7. Left: Tensor box glyphs painted using a �rst order approxima tion of geodesic
normal coordinates. Middle: Tensor box glyphs painted usin g a second order ap-
proximation of the box glyph. Note that glyphs are not only be nt, they also vary
in thickness that gives information that is di�cult to see wh en painting geodesic
spheres. Right: True geodesic coordinates.

Fig. 8. Warping various glyphs. Left: A soda can glyph. Middle: A sup erquadratic
glyph. Right: Anisotropy adaptive superquadratic glyphs.

Taylor-1 vs. ODE Taylor-2 vs. ODE
High-resolution 0.0694 0.0475
Low-resolution 0.1988 0.1738

Table 1. A table showing an increased accuracy of the second order approximation
to the geodesic coordinate system, compared to the �rst order approximation. The
error measured is the standard deviation of the x- and y-coordinates for all glyphs
in the images shown in Fig. 10, compared to the true ODE soluti on.

12 Conclusion

We have presented a framework for visualization of metric te nsor �elds in manifolds
based on the Riemannian exponential map and its inverse the Riemannian logarithm
map . It extends some of the previous methods for painting gly phs based on tensor
eigen decomposition and metric spheres.
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Fig. 9. An anatomical image of a human brain. The square marks the area studied
in detail in the DTI examples presented below.

Di�erent from other proposed visualizations of tensor �eld s using glyphs, this
glyph is not strictly a local function of the tensor �eld in a p oint, but rather the
result from an integration around this point in the manifold . The proposed method
for warping glyphs works not only in R2 , seen in the experiments, but also eas-
ily generalize to R3 . By changing the glyph or modifying the tensor �eld, e.g. by
exponentiation of the tensors, we obtain visualizations emphasizing di�erent char-
acteristics in the tensor �eld. We have derived this glyph wa rping from derivatives
of the metric tensor �eld, without any reference to any embed ding of the mani-
fold (tensor �eld) being studied. Depending on the need for a ccuracy or speed, one
may choose either numerically accurate geodesic warping bysolving the ODE using
e.g. the Runge-Kutta method or alternatively, choose the fa ster version where the
bending of the glyphs is calculated using a Taylor approxima tion of the geodesic.

In summary the Riemannian exponential map, and its inverse t he Logarithm
map, provides a framework for warping glyphs and visualizin g geodesics on a man-
ifolds known only by a space-variant metric in Rn .

13 Acknowledgments

We thank Magnus Herberthson for valuable discussions on tensors and manifolds and
Carl-Fredrik Westin for discussions on the application of t hese glyphs to Di�usion
Tensor MRI data. We are also grateful for the �nancial suppor t from: The Manifold
Valued Signal Processing project, Swedish Research Council (Vetenskapsr�adet, grant
2004-4721), CMIV (http://www.cmiv.liu.se), the Center fo r Medical Image Science



18 Anders Brun and Hans Knutsson

Fig. 10. Tensor glyphs of the planar components of the Di�usion Tenso r �eld in
a human brain, shown in high resolution (Top) and low resolut ion (Bottom). Left:
First order glyph approximation. Middle: Second order glyp h approximation. Right:
exact geodesic coordinates. Apparently the second order approximation introduce
errors, compared to the true geodesic coordinates, for large glyphs.

and Visualization and MOVIII (http://www.moviii.isy.liu .se/), the center for Mod-
elling, Visualization and Information Integration funded by the Swedish Foundation
for Strategic Research, SSF.

References

1. V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Eucl idean metrics for
fast and simple calculus on di�usion tensors. Magnetic Resonance in Medicine,
56(2):411{421, August 2006.

2. M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. G raph approxi-
mations to geodesics on embedded manifolds. Technical report, Department of
Psychology, Stanford University, 2000.

3. A. Brun. Manifolds in Image Science and Visualization . PhD thesis, Linkping
University, 2007. Linkping Studies in Science and Technology Dissertations, No.
1157, ISBN 978-91-85715-02-2.

4. A. Brun, C.-F. Westin, M. Herberthson, and H. Knutsson. Fa st manifold learn-
ing based on riemannian normal coordinates. In Proceedings of the 14th Scandi-
navian Conference on Image Analysis (SCIA'05) , Joensuu, Finland, June 2005.

5. B. Cabral and L. Casey Leedom. Imaging Vector Fields Using Line Integral
Convolution. In J. T. Kajiya, editor, SIGGRAPH93 , CGPACS, pages 263{270,
New York, 1993. ACM Press/ACM SIGGRAPH.



Tensor Glyph Warping 19

6. T. Delmarcelle and L. Hesselink. Visualizing second-order tensor �elds with
hyper streamlines. IEEE Computer Graphics and Applications , 13(4):25{33,
1993.

7. L. Feng, I. Hotz, B. Hamann, and K. Joy. Anisotropic noise s amples. Transac-
tions on Visualization and Computer Graphics , 2008.

8. P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi. Principal g eodesic analysis
for the study of nonlinear statistics of shape. IEEE Transactions on Medical
Imaging, 23(8):995{1005, August 2004.

9. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision .
Kluwer Academic Publishers, 1995. ISBN 0-7923-9530-1.

10. I. Hotz, L. Feng, H. Hagen, B. Hamann, K. Joy, and B. Jeremi c. Physically based
methods for tensor �eld visualization. In Proceedings of IEEE Visualization
2004, pages 123{130, 2004.

11. C. J. Isham. Modern Di�erential Geometry for Physicists (World Scienti �c
Lecture Notes in Physics). World Scienti�c Publishing Company, 1989.

12. H. Karcher. Riemannian center of mass and milli�er smoot hing. Commun. Pure
Appl. Math , 30(5):509{541, 1977.

13. G. Kindlmann. Superquadric tensor glyphs. In Proceedings of IEEE TVCG/EG
Symposium on Visualization 2004, pages 147{154, May 2004.

14. G. Kindlmann, D. Weinstein, and D. Hart. Strategies for d irect volume rendering
of di�usion tensor �elds. IEEE Transactions on Visualization and Computer
Graphics, 6(2):124{138, 2000.

15. G. Kindlmann and C.-F. Westin. Di�usion tensor visualiz ation with glyph pack-
ing. IEEE Transactions on Visualization and Computer Graphics , 12(5), 2006.

16. H. Knutsson, R. Wilson, and G. H. Granlund. Anisotropic n on-stationary image
estimation and its applications | Part I: Restoration of noi sy images. IEEE
Transactions on Communications , 31(3):388{397, March 1983.

17. T. McGraw, Baba C. Vemuri, Z. Wang, Yun Chen, M. Rao, and T. Mareci. Line
integral convolution for visualization of �ber tract maps f rom dti. In MICCAI
'02: Proceedings of the 5th International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention-Part II , pages 615{622, London, UK,
2002. Springer-Verlag.

18. L. O'Donnell, S. Haker, and C.-F. Westin. New approaches to estimation of
white matter connectivity in di�usion tensor MRI: Elliptic pdes and geodesics
in a tensor-warped space. In Fifth International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI'02 ), pages 459{466,
Tokyo, Japan, 2002.

19. Xavier Pennec. Probabilities and statistics on riemann ian manifolds: A geo-
metric approach. Research Report 5093, INRIA, January 2004. An extended
version will appear in the Int. Journal of Mathematical Imag ing and Vision.

20. R. Schmidt, C. Grimm, and B. Wyvill. Interactive decal co mpositing with
discrete exponential maps. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers ,
pages 605{613, New York, NY, USA, 2006. ACM.

21. J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge, 2001.
ISBN 0 521 64204 3.

22. A. Sigfridsson, T. Ebbers, E. Heiberg, and L. Wigstr•om. Tensor �eld visualiza-
tion using adaptive �ltering of noise �elds combined with gl yph rendering. In
Proceedings of IEEE Visualization 2002 , pages 371{378, Boston, Massachusetts,
2002.



20 Anders Brun and Hans Knutsson

23. John N. Tsitsiklis. E�cient algorithms for globally opt imal trajectories. IEEE
Trans. Automat. Control , 40(9):1528{1538, 1995.

24. J. van Wijk. Spot noise: Texture synthesis for data visua lization. In Proceedings
of ACM SIGGRAPH 1991 , volume 25, pages 309{318. Addison Wesley, 1991.

25. A. Vilanova, Song Zhang, G. Kindlmann, and David H. Laidl aw. An intro-
duction to visualization of di�usion tensor imaging and its applications. In
Visualization and Image Processing of Tensor Fields. Springer-Verlag, 2005. In
Press.

26. Robert M. Wald. General Relativity . University Of Chicago Press, June 1984.
27. C-F. Westin. A Tensor Framework for Multidimensional Signal Processing .

PhD thesis, Link•oping University, Sweden, SE-581 83 Link•oping, Sweden, 1994.
Dissertation No 348, ISBN 91-7871-421-4.

28. L. Ying and E. J Cand�es. Fast geodesics computation with the phase ow
method. ??, 2006.

29. X. Zheng and A. Pang. Hyperlic. In Proceedings of IEEE Visualization 20003,
pages 249{256, Seattle, Washington, 2003.


