
Image registration using the Morphon
algorithm: an ITK implementation

Release 0.00

Jérôme Plumat1, Mats Andersson2, Guillaume Janssens1, Jonathan Orban de
Xivry1, Hans Knutsson2 and Benoı̂t Macq1

jerome.plumat@uclouvain.be

March 5, 2009

1Laboratoire deTélécommunication et Télédéction (TELE), Université Catholique de Louvain, Belgium
2Department of Biomedical Engineering, Linköping University, Sweden

Abstract

Medical image registration is becominga more and more useful component of a large number of appli -
cations. Thepresented methodaimsto enrich the ITK library. Thismethod, called Morphonregistration
algorithm, computesa dense deformationfield accepting inputs from different intensity contrasts. This
article presents its implementationwithin the Insight Toolkit.
In this paper, we provide abrief description of the algorithm, a presentation of the implementation, the
justification of our modifiedclassesandtheresultsgiven bythe algorithm. Wedemonstratethe algorithm
in application of different images intesity constrastsand dimensions.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1527]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 TheMorphon method 3
2.1 The deformation field . 3
2.2 The certainty field . 4
2.3 The smoothing . 4

3 The implementation 5
3.1 Introduction - How to launch . 5
3.2 The source code and its structure . 5

The main file . 5
The complex numbers . 6

2

Matrices Operation and iterations’ initialization . 7
The filtersand the convolutions . 7
Computation of the deformation field . 8
The smoothing . 8

3.3 The 2D and the 3D cases . 8

4 Results 8

5 Future work 9

6 Conclusion 9

7 Remark 9

8 Acknowledgements 11

9 Appendix 11
9.1 classdiagram .11

1 Introduction

The goal of image registration is to geometrically align two images. It aims to find a point to point
transformation from one image (called moving or prototype image, named IM in this paper) to the target
image (called fixed or input image: IF). Many image registration methods were developed in the past
years. The ITK library already includes some non-rigid image registration algorithms like Demons [3, 7],
Block Matching [8], B-Spline [1] or Correspondence-Based Software Toolkit [10]. But computing dense
non-rigid deformation fields from images with different intensity contrasts is still a toughchallenge. The
main advantages of the Morphon algorithm are its sub-pixel precision and its tolerance to gray levels
variations in the two images but also in one image.

The Morphon algorithm started being developed 4 years ago and was presented for the first time in [6].
One of the particularities of this algorithm is its metric: it computes the local phase for each voxel of the
image in order to perform the displacement estimation. Another particularity of this method is the use of
a certainty matrix in order to addaweighting factor to theregularization of the computed displacement field.

This paper is divided in threeparts. First, a brief description of the Morphon algorithm is given. Then,
the implementation is explained and discussed. Finally, results given by the ITK implementation of the
Morphonare presented.

3

Figure 1: TheMorphon’s pipeline scheme.

2 The Morphon method

The Morphon method is a non-rigid and dense deformation field registration method developed at the
Linköping University in Sweden. This section only givesabrief overview of the algorithm moredetails can
be foundin [6, 11].
The images features used to build the dense deformation field (d) are the information foundafter filtering
the imageswith directional quadraturefilters. The characteristics given bythequadraturefiltersare the local
phase. The directional local phases computed at each voxel are used for two purposes: an estimation of the
direction and magnitude of the local displacement and a certainty matrix (C) derived from themagnitude of
the filter response and used for field accumulation and regularization.

The Morphonalgorithm has a multi resolution approach: at each resolution level, the images, the certainty
matrix and the deformation field are resampled to have aspecific size, fixed by a scale parameter. Thefield
andcertainty matrix are iteratively updated in order to achieve convergence at each resolution step. For each
iteration, a sequenceof operations (ill ustrated in Figure 1) isexecuted. Themost important of them are:

• filtering of the deformed IM,

• computation of dl andCl, the increment for the field and certainty,

• computation of d′
a andC′

a, the accumulated field and certainty based onthe increment dl andCl, and
on the previously accumulated field and certainty da andCa,

• regularization of d′
a andC′

a,

• deformation of IM based ond′
a.

In fact, onthefirst levels (i.e. where imagesarethesmallest) the computed deformations arequite important
and have ahigh influence on higher resolution levels. At the opposite, deformations computed on the last
levels have lessinfluenceon the global displacement and are used to compute the local components of the
deformation field.

2.1 The deformation field

The displacement estimation aims to compute amathematical transformation which, when it is applied to
IM, produces an image as close as possible to IF . The displacement is estimated, for each scale, based on
conjugate products of quadrature filters which compute the local phase of each image at each voxel. These

2.2 The certainty field 4

estimates are performed in D×(D+1)
2 directions (where D is the number of dimensions in the image, [4])

-in 2D, threefilters are sufficient but using four filters usually improves the results. The increment at each
iteration, dl is estimated as a solution of a least squares problem andCl is estimated with the amplitude of
the filter response.

Thefield and certainty increments are used to update an accumulated deformation field d′
a:

d′

a =
da ×Ca +(da +dl)×Cl

Ca +Cl
(1)

Noticethat themultiplication (defined with theoperator × here) refers to “point to point” scalar multiplica-
tion. Therefore, if a and b are matrices:

(a×b)(x) := a(x)×b(x) ∀ point x o f the images

and if a is afield and b is amatrix

(ad ×b)(x) := ad(x)×b(x) ∀ dimension d and point x o f the images

2.2 The certainty field

The response of the quadrature filter is the local phase, thus it measures a local “distance“ between the
current voxel and the nearest extreme values. Moreover, edges and lines will have astronger response than
uniform areas. The Morphon method uses the response amplitude as a certainty measure and uses it to
calculate accumulated fields.
Theway to update the certainty measure is similar to thedeformation field update. The algorithm computes
a certainty increment Cl at each iterationandaccumulates them to thepreviously accumulated certainty field
Ca:

C′

a =
C2

a +C2
l

Ca +Cl
(2)

2.3 The smoothing

The Morphonalgorithm uses Gaussian smoothing for two main purposes: to avoid aliasing before down-
sampling the images and to regularize the certainty matrix at each resolution step and the deformation field
at each iteration. For this last purpose, it uses its own smoothing operation in order to take the certainty
measure into account: normalized averaging smoothing (see[5]).
This operation can be resumed with the following pseudo-code, where gauss smooth is the Gaussian
smoothing operation andx the “point to point” scalar multiplication:

A = deformation_field x certainty;
B = gauss_smooth(A);
C = gauss_smooth(certainty);
new_deformation_field = B/C;
D = certainty x certainty;
E = gauss_smooth(D);
new_certainty = E/C;

5

We can seethat thedeformations related with ahighcertainty measurehave ahigh influenceon thesmooth-
ing of their neighbours. In a similar way, the Gaussian smoothing will smooth the certainty weighted by
itself.

3 The implementation

The algorithm has been implemented using the Insight Toolkit. Hence, to use it you need to have the
following software: Insight Toolkit 3.6 version or higher and CMake2.4 version or higher.
To help the users of thesource code, some notations and comments were introduced directly in the code.

3.1 Introduction - How to launch

The Morphon’s ITK implementation tries to respect the ITK spirit. This method supports images from
different modaliti es as input.
Themain global parameters (i.e. thefixed, movingand output images, thenumber of levels, thenumbers of
iterations and thestandard deviations oneach one of them) have to bespecified at runtime. For example the
command

$./itkMorphon hand_indata.png hand_prot.png out.png 10 1.5 10 1.5 10 4.5 10 4.5
10 4.5 10 2 10 2 10 2 10 2 10 2 10 2 10 3.5 10 2.5

calls the Morphonalgorithm with hand indata.tif, hand prot.tif and out.png parameters as respectively the
fixed, moving and output images. The following numbers are [number of iterations, standard deviation]
couples. Thus, in this case, there are 13 levels with a specified number of iterations (10 oneach of them in
this case) and the standard deviations equal to 1.5, 1.5, 4.5, .. on each one of them. Noticethat the standard
deviations aregiven in pixel space and not in real space. Thenumber of levels is specified by thenumber of
[number of iterations, standard deviation] couples.
This application needs, at least, the three first parameters and one couple [number of iterations, stan-
dard deviation] to work correctly.

The given package contains the fixed and moving (which are presented further as the “hands“ results) im-
ages. Youcan also read the ”README” filegiven with thepackage for more information on how to launch
the method.

3.2 The source code and its structure

Because aquite large number of classes and libraries are used to launch the program, a “classdiagram” is
presented in the section 9.1, page 11. This is not a complete diagram. Only useful or modified classes and
useful functions or parameters are ill ustrated in order for it to be printable on a single page and to be more
easily read.

The main file

A simple main function is implemented in the main.cxx file. This function aims to check the parameters,
read the input files, check them and start the pipeline. This function declares the Morphon filter which

3.2 The source code and its structure 6

is implemented in the itkMorphonPipe library. It needs to set the following parameters before using the
Update() Morphonfilter’s command:

• the moving image, set with the command:

SetMovingImage(MovingImageType* MovingImage),

• the fixed image:

SetFixedImage(FixedImageType* MovingImage),

• the number of levels:

SetLevelNumber (int nlevel),

• the number of iterations on each level:

SetIterationsNumber(unsigned int *nofit),

• the standard deviations for each level:

StandardDeviations(int *nofdev),

• the output image’s name(with its extension):

SetOutputName(std::string & OutputName).

The itkMorphonPipe library contains the largest part of the algorithm, it contains the global level loop in
theGenerateData() function. This loopisbasically formed with thepipeline presented in figure1. Notice
that, in the current version of the main.cxx function, the extension of the output image’s name must be
’ .png’ , for the 2D images, or ’ .mha’ f or the 3D images (but it could be easily changed with a few code
modifications).

The complex numbers

Intermediatematrices(i.e., given astheresult of the convolution of theimageswith thequadraturefiltersand
used to compute the deformation field and the certainty matrix) contain complex numbers at each voxels:
M(x) = a+ jb. There are two possibiliti es to implement such kind of complex matrix M within ITK. First,
we can construct two matrices, the first containing the real part and the second containing the imaginary
part. But this isnot efficient at all because thenumber of intermediate matrices stored isequal to thenumber
of filters (and there are 4 filters for 2-dimensional images and 6for 3-dimensional images) and all of them
have the same dimensions as the images.
Thus, wedecided to adopt thesecondimplementation which consists in defining complex matrices:

typedef typename FilterType::ComplexType ComplexType;
typedef itk::Image< ComplexType, ImageDimension > ComplexMatrixType;

Where ComplexType is defined in the file used to construct filters and make convolutions (seefurther for
more informations about this point). In this way, we can produce amore efficient algorithm.

Noticethat the users don’t have to seethese intermediate matrices. But it’s important to explain this partic-
ular point to justify why wehad to modify some ITK classses (as explained further).

3.2 The source code and its structure 7

Matrices Operation and iterations’ initialization

As presented in the previous sections, we compute some specific operations to determine matrices
and fields. Thoses are implemented as a particular function. Most of them are implemented in the
itkMorphonRegistrationFilter library. In addition to compute specific matrices operations, this library
is used to initialize each iteration (with the InitializeIteration() function) and to save the quadrature
coefficients (aims to prevent computing them again at each iteration). The InitializeIteration()
is used to pass those quadrature coefficients to the library which computes the deformation field:
itkComputingMorphonDeformationField.

The normalized averaging smoothing (presented in section 1) is performed at each iteration in the
itkMorphonRegistrationFilter library in the ApplyUpdate function. The operations could be done
by calli ng the smoothing functions wich are declared in the class’s parent: MorphonToolboxFilter. This
wasdone because, this last classis templated over all the data (images and deformation field).

The filters and the convolutions

As said, the Morphon algorithm uses quadrature filters to compute the deformation field. This imple-
mentation uses 4 9×9, and 6 9×9×9 filters respectively for 2D and 3D images but other filters could
be used instead. The filters must be constructed only one time (at the very beginning of the algorithm)
and passed through the algorithm’s functions as a parameter. Filters used by the algorithm are complex
filters and their coefficients are declared as double. To construct thoses filters we implemented the
itkBuildingMorphonFilters library.
By default, this library goes over one of the two files: 2D QuadPhaseFilter.csv or
3D QuadPhaseFilter.csv which contains respectively the coefficients used for the 2D and 3D.
For the 2D, the lth line of the file contains the lth coefficients lines of all filters (thus, 36=4×9, complex
coefficients), this file contains 9 lines - because of the second dimension. For the 3D, the file contains 9
lines and all of them contain 486(6×9×9) elements.

Thoses coefficients are used in the GenerateCoefficients() function in the
itkBuildingMorphonFilters library to create filters. The filters are implemented as QuadFilter
(library itkQuadFilter) objects inherited from itkComplexNeighborhoodOperator library. This is
exactly the same as the classical NeighborhoodOperator library except that we changed the line 144 of
theitkNeighborhoodOperator.h file from

typedef std::vector<double> CoefficientVector;

to

typedef std::complex<double> ComplexType;
typedef std::vector<ComplexType> CoefficientVector;

This was done to support convolution with complex numbers and ensure better efficiency. To the best of
our knowledge, it was the best way to ensure complex convolution with aminimum of changes.

Themain useful function (except constructor) may be the function used to accessto afilter, declared as:

3.3 The 2D and the 3D cases 8

ComplexOperator* GetComplexOp(int ID)

in the itkBuildingMorphonFilters library, with ID as an id of the filter: an integer between 1 and 4 in
2D (and 6in 3D) andComplexOperator is defined as

typedef itk::QuadFilter<ComplexType, ImageDimension > ComplexOperator;

Computation of the deformation field

Thedeformation field iscomputed in theitkComputingMorphonDeformationField library in the

ComputeUpdate(const NeighborhoodType &it, void *gd, const FloatOffsetType &offset)

function. This function computes the deformation field locally. Noticethat the deformations are expressed
in real space(hence, multiplied by the pixel spacing in every dimension).

The smoothing

The Gaussian filtering is used to: smooth the images before resampling at each resolution step and smooth
the deformation field and certainty matrix at each iteration step. As presented in [2], we implemented 1D
Gaussian filters to have an efficient algorithm. The standard deviation of the Gaussian kernels used to
smooth the images were computed to keep as much information as possible while reducing aliasing. The
standard deviations of the Gaussian filters used to filter the deformation fields and certainty are given as
input to the program (seesection 3.1). Thestandard deviation is the same for all filtersat each level.
Theoperationspresented in Sec2.3 areimplemented in library itkComputingMorphonDeformationField
in theApplyUpdate(TimeStepType dt) function.

3.3 The 2D and the 3D cases

The algorithm works on 2D and 3D images. Unfortunately, the 3D is slow. According to us this is due
to the convolution which doesn’t have a really efficient implementation in ITK and, unfortunately, this
algorithm uses 4 or 6 convolutions of the deformed prototype image at each iteration at each level -with
nonseparable quadrature filters. In addition, it also requires 3 convolutions for the smoothing of the field,
of the certainty matrix and of the squared certainty matrix. For the fixed image, the convolution with the
quadrature filters are only needed for the first iteration at each level because the image remains unchanged
throughout a resoltion level. Thoses convolutions could explain the slownessof the algorithm specially in
the threedimensional case.

4 Results

The algorithm was tested with 2D and 3D images (which was stored in a .jpg, .png, .tif, .mha or .mhd
format). The first image tested was the image which was presented in [11]. As ill ustrated onFigure 2(c),
the output of the Morphon algorithm on this image is similar to the fixed image. The internal Gaussian
kernels used to smooth images, fields and matrices are not exactly the same than in the original code. That

9

(a) fixed image (b) prototype image (c) output image

Figure 2: the hand figures: the fixed, the moving and the output images

explains the differences between our results and the results presented in [11].

To ill ustrate the result of the algorithm on 3D images, we registered two intra-patient lung CT im-
ages coming from a respiration correlated sequence (RC-CT). Figures 3(a) and 3(b) ill ustrate the in-
puts and the result. The images are presented with a vtk visualization platform: MedicalStudio ([9],
http://www.medicalstudio.org/). The blue contours are the result of a simple threshold on the out-
put image and ill ustrate the differences between the images.

5 Future work

An efficient convolution: an important and one of the most costly operation is the convolution. This
operation takes approximately 70% of the computational time of an iteration. It’s necessary to have amore
efficient implementation to work on 3D images with resonable time.
Support for other dimensions: For the moment, the method is limited to 2D and 3D images. This is due
to the quadrature filters for which the coefficients areonly computed for 2D and 3D images.

6 Conclusion

Thismethodcomputestheregistration between two imagesbased on quadraturefilter responses. It computes
a certainty matrix and adeformation field.
The implementation is constructed based on the ITK spirit. This implementation works for 2D and 3D
images. To produce efficient algorithm we had to modify some classes. It was done in a way that only the
necessary wasmodified.

7 Remark

During the calculation, the algorithm displays many information like the level, the current spacing, etc. But
it also displays a number at the end of each iteration. This number is the sum of squared difference (SSD)
between pixels of the image and not the actual metric used by the algorithm to compute the registration.
Thus, you don’t have to conclude that because this metric isgrowing up, the registration isgoing wrong.

10

(a) Sagittal orientation

(b) Axial orientation

Figure 3: The3D inputs and output (sagittal and axial orientation): the fixed image (upper left), the moving
image (upper right) and theMorphon’s output (lower left)

11

8 Acknowledgements

Messrs Janssens, Orban deXivry and Plumat thank the F.R.I.A. for its financial support.

9 Appendix

9.1 class diagram

9.1
class

diagram
12

Figure 4: Thesimplified Morphonalgorithm’s classdiagram

References 13

References

[1] S.K. Balci, P. Golland, and W.M. Wells. Non-rigid groupwise registration using b-spline deformation
model. insight-journal.org, pages 1–8, June 2007. http://hdl.handle.net/1926/568. 1

[2] Richard Beare and Gaetan Lehmann. Efficient implementation of kernel filtering. insight-journal.org,
6:1–18, July 2007. http://hdl.handle.net/1926/555. 3.2

[3] Thirion J.-P. Image matching as a diffusion process: an analogy with maxwell ’s demons. Medical
Image Analysis, 2(3):243–260, Sept. 1998. 1

[4] H. Knutsson. Representing local structure using tensors. In The 6th Scandinavian Conference on
Image Analysis, pages 244–251, Oulu, Finland, June 1989. Report LiTH–ISY–I–1019, Computer
Vision Laboratory, Linköping University, Sweden, 1989. 2.1

[5] H. Knutsson and C-F. Westin. Normalized convolution: A technique for filtering incomplete and
uncertain data. Tromsö, Norway, May 1993. SCIA, NOBIM, Norwegian Society for ImageProcessing
and Pattern Recognition. Report LiTH–ISY–I–1528. 2.3

[6] HansKnutssonandMatsAndersson. Morphons: segmentation usingelastic canvasand paint on priors.
Image Processing, 2005. ICIP 2005. IEEE International Conference on, 2:11–1226–9, Sept. 2005. 1,
2

[7] Xavier Pennec, Pascal Cachier, and Nicholas Ayache. Understanding the demon’s algorithm: 3d non-
rigid registration by gradient descent. Medical Image Computing and Computer-Assisted Intervention,
pages 597–605, 1999. ISBN 978-3-540-66503-8. 1

[8] Eduardo Suarez-Santana, Rafael Nebot, Carl-Fredrik Westin, and Juan Ruiz-Alzola. Fast block-
matching registration with entropy-based similarity. insight-journal.org, pages 1–8, June 2007.
http://hdl.handle.net/1926/549. 1

[9] Daniela G. Trevisan, Vincent Nicolas, Benoit Macq, and Luciana P. Nedel. Medicalstudio: a medical
component-based framework. Workshop de Informatica Medica (WIM),, 2007. 4

[10] Chia-LingTsai, C.V. Stewart, A. Perera, Ying-Lin Lee, GehuaYang, andM. Sofka. A correspondence-
based software toolkit for image registration. Systems, Man and Cybernetics, 2006. SMC ’06. IEEE
International Conference on, 5:3972–3977, Oct. 2006. 1

[11] Andreas Wrangsj, Johanna Pettersson, and Hans Knutsson. Non-rigid registration using morphons.
Lecture notes in computer science (Lect. notes comput. sci.) ISSN 0302-9743, June 2005. 2, 4

