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Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN

B. Alling,* T. Marten, and I. A. Abrikosov
Department of Physics, Chemistry and Biology, IFM, Linköping University, SE-581 83 Linköping, Sweden

�Received 12 June 2010; published 29 November 2010�

We use first-principles calculations to study the effect of magnetic disorder and electron correlations on the
structural and thermodynamic properties of CrN. We illustrate the usability of a special quasirandom structure
supercell treatment of the magnetic disorder by comparing with coherent potential approximation calculations
and with a complementary magnetic sampling method. The need of a treatment of electron correlations effects
beyond the local density approximation is proven by a comparison of LDA+U calculations of structural and
electronic properties with experimental results. When magnetic disorder and strong electron correlations are
taken into account simultaneously, pressure- and temperature-induced structural and magnetic transitions in
CrN can be understood.

DOI: 10.1103/PhysRevB.82.184430 PACS number�s�: 75.10.�b, 75.20.En, 75.20.Hr

I. INTRODUCTION

Transition-metal nitrides have attracted much interest due
to their excellent performance in a long range of industrial
application such as hard protective coatings on cutting tools,
diffusion barriers, and wear resistant electrical contacts. CrN
is not as hard as for instance TiN �Ref. 1� but it is superior to
TiN in solving large concentrations of AlN in the rocksalt
phase giving rise to the Cr1−xAlxN solid solutions highly val-
ued in hard-coatings applications.2–4 Furthermore, CrN on its
own can be found in coating application for metal-forming
and plastic-molding purposes.5,6 From a fundamental physics
point of view the study of CrN has provided new insights but
also raised questions about magneto-driven structural transi-
tions. It is known that a magnetic order-disorder transition at
temperatures around 280 K is associated with an orthorhom-
bic to cubic structural transition,7 recently observed to be
reversible under small pressures.8 On the other hand in epi-
taxially stabilized cubic thin films no sign of magnetic order-
ing has been seen.9–11 Recently Bhobe et al.12 highlighted the
importance of electron correlations in CrN based on photo-
emission spectroscopy. On the theoretical side the concept of
magnetic stress has been introduced and used within a local
density approximation �LDA� framework to explain the
orthorhombic distortion.13,14 More recently it was shown
theoretically that taking strong electron correlations into ac-
count in the calculations at the level of the local spin-density
approximation plus a Hubbard U-term �LDA+U� could im-
prove the agreement between calculations and experiments
by opening up a small band gap at the Fermi level.15 How-
ever, all these calculations considered only ordered magnetic
structures while most experimental measurements, especially
of the band structure, are performed above the Néel tempera-
ture.

Unlike what is sometimes assumed, most magnetic sys-
tems retain magnetic moments also above their critical Curie
or Néel temperature. Indeed local moments are typically
present although long-range order between them is lost. CrN
is such a system where the experimentally observed struc-
tural �lattice spacing� and electronic properties �semiconduct-
ing behavior� of the paramagnetic cubic phase cannot be
even qualitatively reproduced by nonmagnetic calculations.13

At the same time, when performing first-principles calcula-
tions modeling such disordered cases, ordered magnetic
structures should not be used because they might give rise to
order-specific features, like the well-known mixing anomaly
in the Fe1−xCrx �Ref. 16� system. This means that a disor-
dered magnetic state must be considered in order to fully
understand the physics of paramagnetic CrN at room tem-
perature.

For such a purpose the disordered local moments �DLM�
�Ref. 17� method has been suggested and implemented
within the coherent potential approximation �CPA� �Ref. 18�
treatment for disorder. The DLM-CPA method was used in
Ref. 19 to demonstrate the importance of the magnetic de-
gree of freedom when paramagnetic cubic CrN was alloyed
with AlN. Even though the DLM-CPA treatment of magnetic
disorder is an excellent approximation in many cases, a di-
rect method for calculating the electronic structure of mag-
netically disordered systems within a conventional supercell
methodology is highly desirable. This is so since the CPA is
most often combined with other approximations, e.g., the
spherical approximation for the single-particle potential, im-
posing certain limitations on the treatment of materials with
complex underlying crystal lattices. Moreover, in magnetic
alloys, such as Cr1−xAlxN or Fe1−xNix,

20,21 or in the presence
of defects such as nitrogen vacancies in CrN, local lattice
relaxations and other local environment effects might be im-
portant and they are beyond the reach of the single-site CPA
theory. Furthermore, if the magnetic and vibrational thermo-
dynamics of solids are ever to be treated simultaneously on
the same footing, a supercell treatment of magnetism, com-
patible with quantum molecular-dynamics simulations needs
to be developed.

In this work we apply two different supercell approaches
to treat the magnetic disorder of the paramagnetic phase of
CrN and compare them with DLM-CPA calculations. First
we apply the special quasirandom structure �SQS� method,22

developed to treat chemically disordered alloy systems. Sec-
ond, to gain further confidence, we propose a magnetic sam-
pling method �MSM� and show that the two methods give
equivalent results.

Furthermore we investigate the impact of strong electron
correlations on structural and electronic properties of CrN at
the level of LDA+U calculations. Considering both mag-
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netic disorder and strong electron correlations simulta-
neously we analyze the magnetostructural transition in CrN.

II. CALCULATIONAL DETAILS

In this work electronic structure calculations are per-
formed within a density-functional-theory framework and
the projector augmented wave �PAW� method23 as imple-
mented in the Vienna ab initio simulation package
�VASP�.24,25 Both the LDA,26 the generalized gradient ap-
proximation �GGA� �Ref. 27� and a combination of the LDA
with a Hubbard Coulomb term �LDA+U� �Refs. 28 and 29�
methods are used for treating electron exchange-correlation
effects. The Hubbard term is applied only to the Cr 3d orbit-
als. In this implementation of the LDA+U method, using the
double-counting correction scheme according to Dudarev et
al.,29 there is only one free parameter corresponding to
Uef f = �U−J�. In the following the simple notation U is used
for Uef f. The energy cutoff for plane waves included in the
expansion of wave functions are 400 eV. Sampling of the
Brillouin zone was done using a Monkhorst-Pack scheme30

on a grid of 5�5�5 �64-atom supercells�, 9�9�9 �48-
atoms supercells�, 13�13�13 �8-atom cells�, and 21�21
�21 �2-atoms cells� k points. To find the optimal cell geom-
etry for the orthorhombic structure an automatic optimization
procedure was used independently for each volume. We also
apply the exact muffin-tin orbitals �EMTO� method31,32 in-
cluding the full charge-density technique33 in which the
DLM-CPA treatment of magnetic disorder is implemented.
The EMTO basis set included s, p, d, and f orbitals, and the
total energies were converged within 0.5 meV/f.u. with re-
spect to the density of the k-point mesh.

III. SUPERCELL APPROACH TO MAGNETIC DISORDER

A. Energy of a disordered magnet

In this work we discuss the thermodynamics of the high-
temperature paramagnetic phase of CrN. The modeling of
such a state is a nontrivial many-body problem. This issue
has been discussed in the literature,17,34 where it was shown
that this state can be simulated within the DLM approach.
Indeed, according to Ref. 34 the latter model gives a “static
approximation” to the complete theory where charge and
spin fields are dynamically fluctuating both in space and
time. Though the dynamics of the fluctuations is neglected in
the DLM picture, it does capture the important part of the
correlations and is highly attractive for practical applications
because it significantly simplifies the problem. This approach
should be particularly suitable in the case of CrN due to the
robust local moments19 and a half-filled t2g band without any
sign of a Kondo resonance.9 This model was also used with
considerable success in practical applications.16,35,36

We will now try to establish at what conditions the DLM
description, traditionally implemented within the CPA, can
be extended toward a supercell technique, and therefore can
be combined with very accurate full-potential treatments of
the one-electron problem. We will base our discussion on the
classical Heisenberg model with the Hamiltonian

Hmag = − �
i�j

Jijei · e j = − �
�

J�n����� , �1�

where Jij are the interaction parameters, ei is a unit vector in
the direction of the magnetic moment on site i �ei=Si /M,
where M is the magnitude of the magnetic moments�, � cor-
responds to a specific coordination shell, n� is the number of
atoms in the � : th coordination shell on the lattice, and ����
is the spin-correlation functions to be defined below.

This model is consistent with the DLM approach and is
usually giving a good description of the magnetism of itin-
erant electron systems when they display a Heisenberg-type
behavior of the magnetic moments. Such a behavior is in-
deed present in CrN where the magnetic moments have been
shown to be formed due to a magnetic split of the Cr t2g
nonbonding d states present at the Fermi level.13 The mo-
ments are large and they present stable values regardless if
they are ordered in a ferromagnetic configuration, antiferro-
magnetic configuration, or a disordered local moments con-
figuration. In this work, when using the GGA, we obtain Cr
magnetic moments of 2.46 �B in the ferromagnetic state,
2.37 �B in the cubic single layer �001� ordered antiferro-
magnetic �AFM �001�1� state, 2.41 �B in the orthorhombic
double layer �011� ordered antiferromagnetic �AFM �011�2�
state, and 2.49 �B as the mean value in the DLM calcula-
tions. In the LDA+U calculations with U=3 eV, the corre-
sponding values are 2.96 �B, 2.72 �B, 2.81 �B, and
2.82 �B, respectively. Similar results were found in Ref. 19.
We note that the Heisenberg model, although limited to the
first two nearest-neighbor interactions, was applied in Ref.
14 for analyzing magnetic-induced stress. However, one
should be aware that it has been shown that the interaction
parameters Jij could depend quite substantially on the global
magnetic state even if the magnetic moments are almost
constant,37 underlining the importance of a reliable method
directly accessing the disordered magnetic state.

The paramagnetic state of CrN can within this model be
described as a disordered distribution of Cr magnetic mo-
ments on the lattice, lacking long-range order. Similar situa-
tions are believed to be present in many other systems such
as bcc Fe and its alloys at high temperatures,35,38 NiMnSb
above the Curie temperature37 as well as a large number of
f-electron systems.34 The next problem we encounter is thus
how to calculate the energy of such a disordered magnet
using a supercell technique.

In order to create an adequate supercell that can be used
we need to know the characteristics of the random distribu-
tion. An ideally random distribution of magnetic spins, cor-
responding in the Heisenberg model �Eq. �1�� to infinite tem-
perature, is characterized by the vanishing of all the average
spin correlation functions

���� =
1

N
�

i,j��

ei · e j = 0, ∀ � , �2�

where N is a normalization constant.
Two important observations can be made from Eqs. �1�

and �2�. First, in order to calculate the total energy of the
ideal random distribution, the structure we use in simulations
has to fulfill the condition in Eq. �2� only for the coordina-
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tion shells � where the interaction parameters J� are non-
negligible. Second, one realizes that even though the disor-
dered spin state is utterly noncollinear, its energy can be
calculated using a collinear state as long as the parallel
�Si ·S j =+1M2� and antiparallel �Si ·S j =−1M2� spin pairs ex-
actly cancel on each relevant coordination shell resulting in
��̃�

col�=0. Thus, it is these characteristics that we should aim
for in our simulation of the high-temperature paramagnetic
state.

It is not directly obvious how to create a supercell fulfill-
ing these properties but it is in fact a situation very similar to
the problem of modeling chemical disorder in the form of a
binary substitutional random alloy.39 The DLM-CPA method
mentioned above can actually be seen as just a CPA treat-
ment of a random alloy of atoms with spin-up and spin-down
oriented magnetic moments. If we follow this analogy to the
supercell framework it is the SQS methodology, first sug-
gested by Zunger et al.22 that has proven to be the most
accurate approach for direct calculations of the total energy
or related properties of the disordered state. The agreement
between the CPA and SQS methods for chemical disorder in
the B1 structure was demonstrated for the Ti1−xAlxN system
in Ref. 40 using the same electronic structure methods as in
this work. Here we use the 48-atom �24 chromium +24 ni-
trogen� SQS structure suggested in Ref. 40 for Ti0.5Al0.5N to
model the Cr0.5

↑ Cr0.5
↓ N paramagnetic phase. That structure has

��̃�
col�=0 for the first seven coordination shells with the ex-

ception of a small nonzero value on the fifth shell. For com-
parison reasons we also use a 64-atom �32 chromium +32
nitrogen� SQS structure based on a cubic 2�2�2 conven-

tional unit cell geometry with ��̃�
col�=0 for the first seven

shells with the exception of small nonzero values on the third
and seventh shells. We used the SQS method in a study of
the bulk modulus of the paramagnetic phase of CrN �Ref. 41�
as well as to get a CrN reference energy in a study of
Ti1−xCrxN.42 However the reliability of the method was ques-
tioned in Ref. 43.

To check if the SQS method is reliable to model magnetic
disorder on the cubic lattice of CrN we show in Fig. 1 a
comparison of energy-lattice parameter curves for different
magnetic states including the disordered DLM state calcu-
lated with the SQS-PAW �left panel� and CPA-EMTO �right
panel� methods employing the GGA functional for exchange-
correlation effects. The energies are given relative to the
nonmagnetic energy minimum. The agreement between the
two different treatments of disordered magnetism is clearly
seen as the disordered state is placed in a very similar rela-
tion to ordered magnetic and nonmagnetic calculations in the
two methodological frameworks.

Here we note that the accuracy of the DLM-CPA treat-
ment of a completely disordered magnetic state is established
analytically on the single-site level in Ref. 17. We therefore
view very good agreement between SQS and DLM-CPA cal-
culations as a strong proof that the former technique is ca-
pable to describe the energy of a paramagnetic state, at least
at the same level of accuracy. In particular, it is clear that the
SQS method does not suffer from imposed periodic bound-
ary conditions or the fact that one technically speaking deals
with one selected antiferromagnetic configuration. As soon

as conditions given by Eqs. �2� and �1� are fulfilled, the SQS
represents a quasirandom rather than ordered magnetic state.
As for some minor differences between the results presented
in the two panels of Fig. 1, they come from the usage of
different underlying methods for the electronic-structure cal-
culations, PAW and EMTO.

In order to further establish the reliability of the SQS
approach, using the same PAW methodology, we first com-
pare the results calculated for the two different SQS geom-
etries considered in this work. The energy difference be-
tween them is 0.003 eV/f.u. Due to the translational
symmetry the SQS based on the 2�2�2 conventional unit
cells has the problem that the correlation function on the
eighth correlation shell is exactly 1 and this is probably the
main source of the small difference between the two SQSs.

Next we suggest a different method to calculate the en-
ergy of a magnetic state approximating that in Eq. �2�: the
MSM. Within the MSM the directions �up and down� of
magnetic moments of the Cr sites of a large supercell are
chosen using a random number generator. A large set of dif-
ferent such distributions, magnetic samples, are then created.
Their energies are calculated and the average energy is taken
as the energy of the disordered state. Individually these su-
percells typically do not satisfy the conditions of Eqs. �1� and
�2� but their average should, given that a sufficiently large
number is considered. Although the SQS formalism was sug-
gested in a reaction against the inaccuracies of random num-
ber distribution schemes,22 we note that the supercell sizes
and particularly the number of calculations possible to treat
with today’s computational resources are orders of magni-
tude larger as compared to those back in 1990.

Figure 2 shows the calculated energies of 40 different
randomly generated magnetic samples with up and down
collinear moments on the ideal lattice points of a 32 Cr-
atoms �2�2�2 conventional unit cells� B1 CrN supercell.
Their accumulated average energy is shown with a solid line
and compared to the energy of the SQS generated configu-

FIG. 1. �Color online� The energies as a function of lattice pa-
rameter of different magnetic states of cubic B1 CrN as calculated
with the PAW and EMTO methods and the GGA exchange-
correlation functional. The disordered phase �circles� is modeled
with the SQS method in the PAW calculations and the DLM-CPA
method in the EMTO calculations.
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ration on the same underlying geometry. The latter is taken
as the reference energy. Although the individual energies of
the randomly generated supercells can differ as much as
−0.02 eV / f.u. and +0.035 eV / f.u. from the SQS value, the
accumulated average after the consideration of 40 different
samples, called magnetic iterations, differs only by 0.001
eV/f.u. Between iteration 20 and 40, the average is never
more than 0.001 eV/f.u. above or 0.0015 eV/f.u. below the
value at iteration 40 showing that the mean energy is con-
verging. If needed one could use even more sampled struc-
tures to converge the value with a higher accuracy than the
40 used in the present work. With this said we conclude, by
our comparison with the DLM-CPA calculations as well as
the internal agreement between SQS and MSM methods that
both the considered supercell approaches can be used to cal-
culate the total energy of a disordered collinear magnetic
state of CrN with an accuracy of a few meV/f.u. on a fixed
ideal B1 lattice.

B. Noncollinear considerations

Finally, we note that for systems where the energetics of
the noncollinear disordered state is believed not to be well
described by Eq. �1�, for instance, due to non-negligible con-
tributions from biquadratic terms in the Hamiltonian

Hmag = − �
i�j

Jijei · e j − �
i�j

Kij�ei · e j�2 = − �
�

�J�n�����

+ K�n������ , �3�

where in the fully disordered state

���� =
1

N
�

i,j��

�ei · e j�2 =
1

3
, ∀ � �4�

the MSM method could still be used with a straight forward
generalization: Instead of the random number generation of

collinear spins �up and down in ẑ� which would give

��̃�
col�=1, one can generate a set of different noncollinear

supercells with six types of local moments describing up and
down along x̂, ŷ, and ẑ. Such a noncollinear set, given that
the supercells are large enough and that the number of su-
percells is large enough, will reproduce both the bilinear �Eq.

�2�� ��̃�
nc�=0, and biquadratic �Eq. �4�� ��̃�

nc�= 1
3 , correlation

functions of the disordered state. In principle, but cumber-
some in practise, also the SQS method can be used in this
case by constructing a large supercell of six components with
vanishing correlation functions between them all.

Unfortunately, many electronic-structures methods suit-
able for supercell calculations, where noncollinear treatment
of magnetism is implemented, have no means to locally con-
strain the axis along which the spin density matrix is diago-
nal, i.e., the direction of the local moments. In such cases,
the control of the spin correlation functions of the supercell,
the foundation of the scheme presented here, is lost. Further-
more, calculations of noncollinear magnetic systems are
rather time consuming, and we leave the first-principles in-
vestigation of explicit effects of noncollinearity in disordered
magnets to future studies.

IV. EFFECT OF STRONG ELECTRON CORRELATIONS

Having established methods to treat the magnetic disorder
within a supercell framework we now turn to the problem of
electron exchange-correlation energies. Even though LDA
calculations qualitatively revealed the energetics of CrN
�Refs. 13 and 14� the electronic structure did not reproduce
the experimentally observed semiconducting behavior. Thus
one could doubt the accuracy of LDA predictions of struc-
tural and magnetic energy differences of relevance for under-
standing the orthorhombic to cubic transition in this system.
Recently Herwadkar et al. studied CrN using the LDA+U
approach with focus on the electronic structure of ordered
magnetic structures. They calculated the value of U and J,
the screened Coulomb and exchange terms, respectively, us-
ing constrained LDA approaches and achieved U=3 eV and
J=0.9 eV.15 However, they suggested a span of U values
from 3–5 eV to be reasonable. Even though such an ab initio
approach to obtain the values of the U and J parameters are
appealing, the uncertainties are to large for a quantitative a
thermodynamic analysis. Bhobe et al.12 attempted to mea-
sure the value of U by means of resonant photoemission and
estimated it to be �4.5 eV both below and above the tran-
sition temperature.

In order to obtain the most suitable value Uef f, for which
the LDA+U method best describes the properties of CrN of
relevance for this work, we perform a careful comparison of
structural parameters and electronic structure obtained with
LDA+U calculations for various values of U with experi-
ments. For comparison also the results obtained with the
generalized gradient approximation, GGA, are presented.

First the lattice parameter of the cubic paramagnetic
phase, modeled with the SQS approach, is presented in Fig.
3. The experimental value obtained for bulk CrN by Corliss
et al. �Ref. 7� is 4.13 Å, while both Herle et al.,44 and more
recently, Rivadulla et al.8 obtained 4.148 Å. Values obtained

FIG. 2. �Color online� The calculated energies of the different
random number generated magnetic configurations of a 32 Cr-
atoms B1 CrN supercell �circles�. The accumulated average of the
random number generated configurations, called magnetic itera-
tions, is shown with a solid line. All values are plotted relative the
energy minimum of a SQS-based magnetic configuration on the
same underlying structure.
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for CrN in thin films are typically slightly larger9,10 but in-
clude strain effects not considered in the calculations. The
result obtained with the pure LDA functional is a
=4.022 Å. Using GGA we obtain a=4.149 Å. The LDA
+U approach gives increasing lattice spacing with increasing
U. The lattice parameter of Corliss et al. is obtained with
U=2.9 eV. The value of Herle et al. and Rivadulla et al. is
obtained with U=3.8 eV. Since the reported experimental
values are measured at room temperature while the calcula-
tions with the exception for the magnetic disorder, corre-
sponds to a 0 K situation, one might object that the compari-
son is not completely fair. However, thermal expansion
between 0 K and room temperature is typically small in this
class of hard ceramics.

Since also the physics of the orthorhombic phase must be
well described by our theoretical model, we compare in Fig.
4 the calculated value of the angle � with the experimental
finding in Refs. 7 and 8. � describes the angle between the
axis of the conventional unit cell of the cubic B1 lattice, that
is distorted in the orthorhombic phase, see the inset in Fig. 4.
The experimental value is 88.3° according to Corliss et al.7

or 88.4° according to Rivadulla et al.,8 while both LDA and
GGA calculations underestimate this angle, thus overestimat-
ing the distortion. On the other hand, as can be seen in Fig. 4,
a value in agreement with the experiment is obtained with
the LDA+U method for U=3.0 eV.

Finally, in Fig. 5 we compare the calculated total elec-
tronic density of states of the valence band of the disordered
magnetic state �calculated with the SQS method� with the
ultraviolet photoemission spectroscopy measurement of the
cubic paramagnetic phase obtained by Gall et al.9 Figure 5
shows in different panels �from top to bottom� the density of
states obtained with GGA, and LDA+U with U from 0 eV
�LDA� to U=5 eV. In all panels the experimental results are
shown with dashed lines. In all cases we use the lattice spac-
ing corresponding to the equilibrium of the particular choice
of exchange-correlation scheme. The GGA, and even more

so the LDA, gives an overlap of the peaks close to the Fermi
level. These peaks correspond primary to Cr spin-up non-
bonding �below EF� and a combination of spin down Cr non-
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FIG. 3. �Color online� The calculated cubic lattice parameter for
the magnetically disordered state within the LDA+U �circles� and
GGA �square� approximations. The experimental bulk value found
by Corliss et al. �Ref. 7� and the common value found by Herle et
al. �Ref. 44� and Rivadulla et al. �Ref. 8�, are shown with solid and
dashed horizontal lines, respectively.
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FIG. 4. �Color online� The calculated angle � in the distorted
orthorhombic state between the axes of the conventional B1-cell.
Values using the LDA+U approximation �circles� and the GGA
approximation �square� are shown together with the experimental
value found by Corliss et al. �Ref. 7� �solid horizontal line� and
Rivadulla et al. �Ref. 8� �dashed horizontal line�. Inset: the defini-
tion of the angle � with respect to the orthorhombic unit cell
�dashed lines� shown in a 001 plane of the cubic B1 structure. The
relative directions of the spins of Cr atoms following Ref. 7 are also
shown �solid circles: z=0.0 and open circles: z=0.5�.

FIG. 5. �Color online� The calculated valence-band electronic
density of states �solid line in all frames� of the cubic magnetically
disordered state using the GGA approximation �top panel� and
LDA+U approximation with different values of U. For comparison
the experimental ultraviolet photoemission spectroscopy measure-
ment by Gall et al. �Ref. 9� is shown by a dashed line in all frames.
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bonding and Cr spin-up antibonding states �above EF�. Both
peaks also have small admixture of N p character.15 When
the U value in the LDA+U approach is increased, the occu-
pied Cr spin-up nonbonding state becomes more localized
and shift down in energy. At the same time the unoccupied
states are shifted up and at a value of U between 2 and 3 eV
a small gap opens at EF, in agreement with the experiment.9

Actually the LDA+U approximation with U=3 eV excel-
lently describes the Cr spin up nonbonding state while the
bonding states on the other hand are shifted to slightly too
high energies.

In summary, the LDA+U approximation with U values
between about 3 and 4 eV reproduces the cubic paramagnetic
lattice parameter, the value U=3 eV reproduces experimen-
tal measurement of the angle � in the orthorhombic phase,
and a value of U between 2 and 3 eV gives a good descrip-
tion of the electronic structure of the valence band of the
cubic paramagnetic phase. Thus we conclude that within the
LDA+U approximation, the value U=3 eV gives an optimal
description of the physical properties of the system. This
value is safely within the range suggested in Ref. 15 corre-
sponding to U=3.9 if their choice of J=0.9 is used, and not
to far away from the experimental estimate in Ref. 12.

In the following sections we use the LDA+U approxima-
tion with effective U=3 eV in our calculations. However,
since the GGA approximation has already been used in many
studies on related systems, we present also results using the
GGA to illustrate the effect of strong electron correlations.

V. ENERGETICS OF MAGNETIC AND
CRYSTALLOGRAPHIC PHASES OF CrN

We now have the theoretical tools needed to study the
magnetostructural transition in CrN. In Fig. 6 we consider
the total energies, as a function of volume of different crys-
tallographic and magnetic phases of CrN. The left panel
shows the results obtained with the GGA functional while

the right panel shows the results obtained with LDA+U �U
=3 eV�. Cubic phases are shown with open symbols while
orthorhombic �orth.� structures are shown with solid sym-
bols. The paramagnetic cubic phase is modeled with the SQS
disordered local moments method �denoted cubic dlm� keep-
ing the atoms fixed at B1 lattice points. The energy of a
disordered magnetic configuration on the lattice points of the
orthorhombic structure is also shown for comparison and
denoted orth. dlm. The minimum energy of the cubic collin-
ear disordered magnetic phase is taken as the reference
value. Furthermore, the energy of the experimental ground
state structure,7 the orthorhombic distorted double �011�-
layered antiferromagnetic ��011�2 afm� structure schemati-
cally shown in the inset of Fig. 4, is shown as is the energy
of the same magnetic ordering on the cubic lattice. Also a
single layer �001�-ordered antiferromagnetic state
��001�1 afm� on the cubic lattice and the ferromagnetic cu-
bic phase are shown.

One can see that the GGA and LDA+U calculations are
in reasonable qualitative agreement with each other. How-
ever, the GGA gives considerably larger energy differences
between the orthorhombic and cubic phases as compared to
the LDA+U calculations. Also the order of the two consid-
ered antiferromagnetic states for the cubic phase are re-
versed. In the GGA framework the �001�1 antiferromagnetic
state is lower in energy, in line with previous works.13,19 In
the LDA+U framework on the other hand, the �011�2 anti-
ferromagnetic state is lowest in energy also in the cubic
phase.

One interesting comparison can be made between the in-
troduction of a Hubbard U term in this work and the alloying
of CrN with AlN studied in Ref. 19. In that work it was
found that the DLM-CPA state became lower in energy as
compared to the �001�1 antiferromagnetic state when a cer-
tain amount of Al was substituted for Cr. The point is that
upon alloying of CrN with AlN,19 and more generally upon
alloying transition metal nitrides with AlN,45 the inclusion of
Al favors a localization of the transition metal nonbonding d
states. Obviously, the strong electron correlations lead to a
similar effect which explains the similar evolution of the
magnetic energies in the two cases.

VI. MAGNETOSTRUCTURAL TRANSITION IN CrN

Qualitatively our calculated values agree with the experi-
mental observation of the stability of the orthorhombic state
at low temperatures and a cubic state at higher temperatures.
In this work we denote the temperature for this structural
transition TS in order not to confuse it with the hypothetical
isostructural Néel temperatures, TN, of a magnetic order-
disorder transition on a fixed lattice. This is so since the
disordered paramagnetic phase has a considerable magnetic
entropy making it more competitive at higher temperatures.
Since the energy of the cubic dlm state is considerably lower
than the orthorhombic dlm state the magnetic disordering is
accompanied by a structural transition. The fact that no signs
of magnetic ordering was observed in the epitaxially stabi-
lized cubic phases in Ref. 9 and 10 can be understood from
the fact the energy differences between antiferromagnetic

FIG. 6. �Color online� The calculated energy versus volume
curves for different magnetic states in CrN using the GGA approxi-
mation �left panel� and LDA+U �U=3 eV� �right panel�. The en-
ergy minimum of the cubic collinear disordered DLM is used as
reference energy.

ALLING, MARTEN, AND ABRIKOSOV PHYSICAL REVIEW B 82, 184430 �2010�

184430-6



and disordered magnetic phases in the cubic geometry are
small, indicating a very low Néel temperature for undistorted
cubic CrN. In the orthorhombic structure on the other hand
the difference is almost an order of magnitude larger indicat-
ing that the orthorhombic antiferromagnetic state should be
well below its isostructural Néel temperature at the experi-
mental transition point TS

expt=280–287 K.7,8 This result is in
line with the experimental observation that the extent of the
orthorhombic distortion, measured with the value of the
angle �, is, in principle, the same at 286 K: 88.4°,8 273 K:
88.3°,46 and 77 K: 88.3°,7 where the authors of the latter
reference stated that no differences was seen when the tem-
perature where further decreased down to the liquid-helium
regime. If there had been a large degree of partial magnetic
disorder in the orthorhombic phase one would expect a
change in the value of this angle. Thus it is reasonable to
assume that the transition is governed by the competition in
terms of free energy between a disordered paramagnetic cu-
bic phase with high magnetic entropy and a highly ordered
antiferromagnetic orthorhombic phase with low magnetic en-
tropy. Such a phase transition, including an abrupt change in
both energy and entropy is in line with the experimental
finding of a first-order phase transition displaying a hyster-
esis behavior during heating-cooling cycles.46

Using our obtained structural energy differences we can
estimate the transition temperature theoretically. At tempera-
tures considerably above the �isostructural� Néel tempera-
ture, such as in the case of paramagnetic CrN at room tem-
perature, the entropy of a system with local moments can be
approximated by the mean-field term

Smf = kB ln�M + 1� , �5�

where M is the magnitude of the magnetic moment �in units
of �B� and kB is the Boltzmann constant. In the LDA+U
approach we find that the average magnetic moments are
MLDA+U=2.82 �B. In the GGA calculation MGGA=2.49 �B.

Using these values and the approximations above the tran-
sition temperature can be obtained from the condition that at
the critical temperature, the two phases should have the same
free energy, F

Fafm
orth�TS� = Fpara

cub �TS� ⇔ Eafm
orth = Epara

cub − TSSmf , �6�

where TS denotes the critical temperature for the structural
transition which is in reality also the magnetic ordering tem-
perature. In our case we get TS

LDA+U=498 K using LDA
+U and TS

GGA=1030 K using the GGA calculation. This
mean-field estimates should be compared to the experimental
value of TS

expt=280–287 K.7,8 It is well known that the
mean-field approximation, in general, overestimates mag-
netic ordering temperatures by as much as 50% as compared
to more reliable thermodynamics treatments. However, in the
GGA calculation the error is so large that we instead interpret
this result as one more argument that the GGA approxima-
tion overemphasizes the orthorhombic distortion, both in
geometric distortions visible in Fig. 4, and in the energy
differences between the orthorhombic and cubic phases. The
transition temperature derived from the LDA+U calculation
is closer but still considerably above the experimental mea-
surement, giving an overestimation of TS with 74%. We sug-

gest that magnetic short-range order coupled with the vibra-
tional degree of freedom is of importance to quantitatively
determine the transition temperature in CrN. Other possibili-
ties that should be considered are that nitrogen off-
stoichiometry or explicit effects of noncollinear magnetism
could influence the transition temperature. Moreover, one
should remember that the LDA+U approach is an approxi-
mate method not free from errors, for instance, in the exact
choice of U, possibly affecting quantitative values of the
important structural energy difference.

Recently Rivadulla et al.8 showed that the temperature-
induced orthorhombic to cubic phase transition could be re-
versed with increasing pressure. At room temperature, a pres-
sure as low as 1–2 GPa was enough to push the system back
into the orthorhombic structure. Magnetic measurements
showed that it was the antiferromagnetic ordered structure
that reappeared.8 Qualitatively the pressure effect can be un-
derstood from the results in Fig. 6: since the orthorhombic
phase is slightly lower in volume as compared to the para-
magnetic cubic phase, it will be relatively more favorable at
elevated pressures according to the minimization of the
Gibb’s Free energy

G�T,p� = E + pV − TS . �7�

The derived pressure-temperature phase diagram of CrN
is shown in Fig. 7. The results from the theoretical calcula-
tions using Eq. �7� with the mean-field approximation for the
magnetic entropy of the cubic phase, Eq. �5�, and the LDA
+U approximation for exchange-correlation effects are com-
pared to the experimental low-pressure results from Ref. 8
and a linear extrapolation of these values to medium pres-
sures. The qualitative picture, with increasing transition tem-
perature with increasing pressure is rather well reproduced
by the calculations although the absolute values of the tem-
peratures are too high.

These results inspire us to propose a possible way to con-
clude the discussion of the value of the bulk modulus of
cubic CrN.8,41,43 We suggest that in order to measure the

FIG. 7. �Color online� The calculated pressure-temperature
phase diagram of CrN using the LDA+U �U=3 eV� method and
considering the cubic paramagnetic phase as a disordered magnetic
state. The experimental measurements of Rivadulla et al. �Ref. 8� at
low pressures are shown with a bold black line while a linear ex-
trapolation to higher pressures is shown with a thin black line.
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compressibility of the cubic paramagnetic phase of CrN with
higher accuracy as compared to Ref. 8, the experiment
should be conducted at slightly higher temperatures where
the cubic phase is stable over a larger pressure range.

VII. CONCLUSIONS

We have used two different supercell approaches to model
disordered magnetism of paramagnetic materials, the special
quasirandom structure method and the magnetic sampling
method, and applied them for the study of CrN. The SQS and
MSM methods are shown to give equivalent results for cal-
culations of disordered local moments on a fixed B1 lattice
in cubic CrN and both of them agree with DLM-CPA calcu-
lations. We show that it is straightforward to extend the
MSM method to calculations of noncollinear disordered
magnetism.

CrN is a correlated material which is better described with
an LDA+U approach then with the GGA or LDA function-
als. By comparing the calculated structural parameters and
electronic structure of CrN with experiments we find that
Uef f =3 eV is a suitable value to use in the simulations.

Considering both magnetic disorder effects and strong
electron correlations, the orthorhombic to cubic phase tran-

sition of CrN as a function of temperature and pressure can
be qualitatively explained. In particular, we show that it
should be understood as a transition from a magnetically
ordered orthorhombic phase to a magnetically disordered cu-
bic phase. Considering magnetic entropy within the mean
field approximation, the calculated transition temperature
TS=498 K is an overestimation of the experimental value
280–287 K. Magnetic short-range order coupled with vibra-
tional effects are likely to be of importance for determining
the quantitative value of TS. Since the transition also depends
sensitively on the structural energy difference between the
cubic and orthorhombic phases, which is shown to be very
sensitive to the exchange-correlation functional, a strong
electron correlations method beyond the LDA+U approach
might be needed to reveal the details of the CrN phase tran-
sition.
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