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Abstract A systematic approach to the power con-
sumption of analog circuits is presented. The power

consumption is related to basic circuit requirements, as

dynamic range, bandwidth, noise figure and sampling

speed and is considering basic device and device scaling
behavior. Several kinds of circuits are treated, as sam-

plers, amplifiers, filters and oscillators. The objective is

to derive lower bounds to power consumption in analog

circuits, to be used as design targets when designing

power-constrained analog systems.

Keywords Low power design · fundamental limits ·
dynamic range · technology scaling · analog building

blocks

1 Introduction

Power consumption is a very critical issue in modern

electronic systems. For digital systems, power consump-

tion research during the early 1990ies has lead to a very
good understanding of this issue, and to good meth-

ods and tools for power savings [1],[2]. Analog systems

are far more complicated, and there has been less dedi-

cated research on the power consumption of analog cir-
cuits. Instead, textbooks concentrate on performance

requirements rather than on power consumption as the

primary design goal. We will here make an attempt to
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treat power consumption in analog circuits in a sys-
tematic way, with the objective to complement present

performance-centric design methods with power-centric

design techniques. An important element in a system-

atic treatment is to derive lower bounds to the power
consumption of a circuit with defined task and perfor-

mance. Such a lower bound can then be utilized as a

design target for any low-power analog design task. It

can also be used for the estimation of power consump-

tion in early system design, or for comparisons between
different approaches to solve a specific signal processing

problem.

Eric Vittoz pioneered low power techniques already
1980 [3] and presented the first analysis of power con-

sumption in analog circuits some 10 years later [4], [5].

This analysis of power consumption in analog circuits

was further developed by Enz and Vittoz in [6]. Later,
Bult [7] and Annema et. al. [8] looked into the effect

of scaling on analog power consumption, an analysis

which Bult then developed into a more comprehensive

analysis of analog power consumption [9, (chapter by

Bult)]. In addition, power issues in designing radio fre-
quency circuits and systems has been discussed in [10]

and [11]. More recently, Sundström, et. al., presented a

more quantitative analysis of the lower power bounds

in analog-to-digital converters [12]. The present work
follows many of the ideas developed in [8], but aims at

a more quantitative analysis with the objective to de-

fine lower power bounds related to requirements, as in

[12].

As an introductory example, let us study the power

consumption of an ideal sampler (sample-and-hold cir-

cuit) [4]. An ideal sampler will follow an analog sig-
nal and then sample and hold its value for a period

of time. The main performance measures are sampling

rate (number of sampling instances per unit time) and

Manuscript
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2

dynamic range (the signal-to-noise ratio at maximum

input signal). Other performance measures are accuracy

and signal bandwidth, which will be discussed later. See

Figure 1. When the switching transistor is open, the

noise voltage at the output can be estimated to (“clas-
sical kT/C-noise”, assuming the only noise source being

the amplifier output resistance and switch series resis-

tance):

v2

nS =
kT

CSn

. (1)

Assuming a full scale voltage (peak-to-peak voltage) at

the input of VFS will allow a maximum rms sine voltage

of

vs =
VFS

2
√

2
. (2)

This gives a dynamic range of the circuit of D:

D =
v2

s

v2

nS

=
V 2

FS · CSn

8kT
(3)

In order to meet a certain D requirement, we thus need

a capacitor CSn of

CSn =
8kTD

V 2

FS

(4)

In order to charge this capacitor in time T to the full

scale voltage VFS we need a charging current of I =

CSnVFS/T . With a sampling frequency of fs, we may

assume that we use half a sampling period for capac-

itor charging, T = 1/2fs. Finally, assuming that we
have an ideal amplifier, with maximum output current

equal to the supply current and maximum output volt-

age equal to supply voltage, we may calculate the power

consumption of the sampler:

PSn = IVFS = 16kTfsD (5)

This formula gives some insight in analog power con-

sumption. We note that it is proportional to the dy-

namic range of the signal and the sampling rate (or
signal bandwidth). The fact it is proportional to kT

indicates that it is bounded by thermal noise. Further-

more, we note that this expression is independent of

which technology is used.

So, what happens at very low dynamic ranges? Then
the capacitance becomes very low. What can happen is

that CSn in eq. (4) becomes lower that what can be

implemented in a given technology. We thus need to

replace CSn in the above formulas with CS :

CS = max(CSn , Cmin), (6)

where Cmin is the smallest capacitor which can be im-

plemented. So, for low dynamic ranges, the power con-

sumption will be technology dependent through Cmin

and VFS :

PST = 2fsCminV 2

FS (7)

We may note that PST is strongly scaled with MOS

technology, as both Cmin and VFS are scaled with fea-

ture size in new technology nodes. This is then very

similar to the digital case, where power is proportional
to CV

2

dd . See also Figure 2. This introductory example

gives some basic insights in the lower bound for power

consumption of analog circuits. We will come back to

similar results later. In the following we will start to
look at the transistor in section 2. We then discuss OTA

and feedback in section 3, a single pole filter in section 4,

and a comparison between a digital and an analog filter

implementation in section 5. In section 6 we continue

with low noise amplifiers and then we finish the circuit
studies with voltage controlled oscillators in section 7.

We finalize our paper with a discussion in section 8 and

a conclusion, section 9.

2 The Transistor

Let us consider a simple transistor circuit, as in Fig-

ure 3. As in the above example, we start to look at
the thermal noise. For an MOS transistor we normally

express the drain noise current in terms of transistor

transconductance, gm as:

i2dn = 4kTγgmBn, (8)

where γ is a noise factor (2/3 for a long channel MOS)

and Bn is the system noise bandwidth [13]. In the fol-

lowing we neglect noise contributions from other sources

than the transistor drain current (as the drain current
noise normally dominates). The output noise voltage,

vdn will be v2

dn = R2i2dn . Again, assuming that the out-

put full scale voltage is VFS , corresponding to a max-

imum output as eq. (2), we may express the dynamic

range, D, as:

D =
v2

s

v2

dn

=
V 2

FS · gm

32kTγA2
vBn

, (9)

where we introduced the DC gain of this stage, Av0 =

gmR. From eq. (9) we may now calculate the gm needed

to reach the dynamic range, D:

gm =
32kTγA2

v0Bn

V 2

FS

D. (10)

To achieve a certain transconductance, gm, we need to

supply the transistor with a bias current ID = gmVeff ,
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3

where we have introduced the parameter Veff (of the

order of 50 mV to 1 V, see below). Using ID together

with the supply voltage, again assumed to be VFS , we

can calculate the power consumption as:

PTn = 32kTγA2

v0Bn
Veff

VFS

D (11)

We may note large similarities to eq. (5), particularly

considering the close relation between sampling frequency,

fs, and bandwidth, Bn.
Quite often the transistor will have a capacitive load.

Assuming the circuit in Figure 3 has a capacitive load

of CLn in parallel to R we have Bn = 1/4RCLn (noise

bandwidth of a single pole low-pass filter). Inserting
this expression into eq. (9) gives the dynamic range:

D =
V 2

FS · CLn

8kTγAv0

, (12)

where we again used G = gmR. Then we need to choose

CLn to meet the dynamic range requirement:

CLn =
8kTγAv0

V 2

FS

D (13)

which is quite similar to eq. (4). In this case we need

to consider the speed requirement in order to estimate

power consumption. With a required gain of Av0 =

gmR and bandwidth of B = 1/2πRCLn we will have a

requirement on gm as:

gm = 2πCLnAv0B =
16πkTγA2

v0B

V 2

FS

D, (14)

which is the same expression as eq. (10) above (consid-

ering the difference between B and Bn). Therefore we

will also have the same power consumption as above

(eq. (11)).
We may also note that we have a possible scheme

for low power design here. The required dynamic range

sets a capacitance value (just as for the sampler). By

then adding a gain and bandwidth requirement, we may
set a value of gm, which in turn leads to the (minimum)

power consumption.

Let us now discuss the various parameters involved

in the above discussion. Starting with Veff , this param-

eter is just defined by [12]:

Veff =
ID

gm
. (15)

For a classical long channel MOST in strong inversion

Veff ≈ (VG − VT )/2, where VG and VT are the gate

voltage and threshold voltage respectively. For weak in-
version, that is for VG < VT , Veff = mkT/q, with m

slightly larger than 1. For a modern submicron MOST

Veff tends to fall above these values, see Figure 4 [12].

Regarding γ, its value is 2/3 for a long channel

MOST, whereas it is larger, 1.5 - 2, for a submicron

device [13].

Returning to Veff , from the above formulas (eq. 11)

we can conclude that a small Veff is preferred to save

power. But, there are some constraints in how to choose

Veff . First, transistor speed depends on gate bias, so a
low VG (and low Veff ) will lead to reduced speed.

One measure of transistor speed is fT , the frequency
at which the transistor current gain equals unity. In Fig-

ure 5 we show typical values of fT versus gate voltage

for two process nodes. Compare Figure 4. We note quite

a difference here between the two processes; in the 350-

nm process we need to keep quite a large Veff in order
to keep transistor speed, however for the 90-nm pro-

cess we do not gain much speed above VG ≈ 100 mV,

corresponding to a Veff ≈ 100 mV.

Another constraint is related to input voltage am-

plitude. If the input voltage amplitude is large com-

pared to Veff , then we can expect a highly nonlinear

response of the transistor. Without going too deep into
nonlinear behaviors here, let us just conclude that for

an input voltage swing of VFS ,in = Veff (where VFS ,in

is the peak-to-peak gate voltage), the transistor current

will vary roughly between IDC /2 and 3IDC/2 (assum-
ing gm constant in this region; IDC is the DC drain

bias). Thus limiting the input peak-to-peak swing to

Veff is a reasonable first attempt to relate Veff to input

swing.

A few final notes on the transistor. In the above

text we assumed that the maximum output voltage

swing, VFS is equal to the supply voltage, Vdd . If this is
not the case, it follows from the derivation of eq. (11)

that the power consumption will increase by 1/ηv =

Vdd/VFS , where we define ηv as the voltage efficiency.

In a similar way, we may define a current efficiency
ηi = ID/(ID + Ib), where Ib is the current consumption

of a possible bias circuit, needed to support the transis-

tor with proper bias. It is important to note that also

Ib may need to be chosen in such a way that the noise

level meets the requirements. With these definitions,
the power consumption will thus increase by 1/ηv · ηi.

Transistors are often used in a differential configura-
tion, Figure 6. Let us combine two identical transistor

stages (Figure 6 a) into one differential stage (Figure 6

b). The differential input voltage is then 2vi and the

differential output voltage 2v0 . The output noise volt-

age squared will be 2v2

dn . As a result the differential
circuit will have a dynamic range of

Ddiff =
(2v0)

2

2v2

dn

= 2
v2

0

v2

dn

= 2Dsingle . (16)
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In the same time the power consumption is doubled,

as we have two identical stages. However, if we now

reduce each supply current in half, thus keeping the

same power consumption, then we will also keep the

dynamic range, as D is proportional to gm and there-
fore to supply current (at fixed Veff , eq. (9)). So, we

can conclude that eq. (11) is valid also for a differential

circuit. We may note that also the single stage capac-

itance is halved in a differential circuit, thus making
the total capacitance the same. Another issue is cur-

rent re-use, meaning that a bias current may be used

by more than one transistor. An excellent example is

the inverter amplifier, where one NMOS and one PMOS

transistor contributes to the transconductance utilizing
the same bias current, Figure 7 a). Here, both tran-

sistors contribute to gm, so the total transconductance

is Gm = gmn + gmp . The supply current is given by

IDC = gmnVeffn = gmpVeffp making the supply current
equal to:

IDC =
Gm

1

Veffn
+ 1

Veffp

. (17)

So, for a given transconductance, we can expect only
half of the power consumption compared to a single

transistor stage. Another example of current reuse is the

cascode stage (Figure 7 b), where one common source

stage and one common gate stage share the same sup-
ply current. A cascade stage therefore has no power

cost (except that it may reduce the voltage swing, thus

reducing the voltage efficiency).

Now, do we have a technology effect similar to the

minimum capacitor constraint described in the intro-
duction? Of course, also here we have a minimum ca-

pacitance, Cmin , corresponding to the minimum node

capacitance which can be implemented in the particu-

lar technology used. We should then replace CLn in eq.
(14) with CL = max(CLn, Cmin). If CLn is the largest,

power consumption is given by eq. (11); if Cmin is the

largest it is given by

PTCm
= 2πCminVeff VFSAv0B. (18)

Note that in the differential case each transistor re-

quires Cmin , so the total power will double compared

to the single ended case when Cmin controls power.

We may now give a more detailed scheme how to de-

sign a circuit with minimum power consumption. Start-
ing with the dynamic range requirement, we calculate

CLn from eq. (13). We then compare to Cmin and choose

CL = max(CLn, Cmin). Then we calculate the required

gm from eq. (14). Next, we need to decide on Veff . Veff is
constrained by the input voltage swing (which is a part

of our requirements) and by fT . fT needs to exceed the

gain-bandwidth product of the circuit, Av0B. This can

be concluded from the following argument. We expect

that the drain capacitance, Cd, is somewhat lower than

Cg, but follows Cg with changing transistor size (width;

we assume length constant). In the same time we expect

that the drain capacitance must be smaller than CL, as
it is a part of CL. In conclusion, we expect that Cg must

be smaller than CL. Furthermore, fT = gm/2πCg (by

definition). Inserting gm from eq. (14) and Cg < CL we

arrive to fT > Av0B.
So, Veff thus have a lower bound given by VFSin

or Av0B, whichever give the largest bound. Choosing

Veff equal to this lower bound gives minimum current

consumption for achieving the required gm calculated

from eq. (14). Finally, we should strive for the largest
possible voltage and current efficiencies ( ηv and ηi),

finally arriving to a minimum power solution meeting

our requirements ( D, B, Av0 , VFS and VFSin ).

An interesting issue in this context is the effect of
technology scaling. First considering the capacitance

choice, it is in fact very similar to the sampling case.

Either CL is limited by the dynamic range (eq. (13)), or

by Cmin . In the first case, power consumption is given

by eq. (11), in the second case by eq. (18), see also
Figure 2. In the first case the power consumption is

proportional to Veff /VFS , which is relatively indepen-

dent of the process. Both voltages are expected to scale

with the smallest feature size. However, for deep sub-
micron processes VFS tend to scale faster than Veff ,

which may lead to an increased power with smaller de-

vices (as pointed out in [8]). For the second case, we

have a strong scaling effect as power is proportional to

CminVeff VFS , which is very similar to the sampling case
(eq. (7)) and to the digital case, CminV 2

dd .

3 OTA and Feedback

We will use a simple operational transconductance am-

plifier (OTA) as prototype stage for various circuit ap-

plications. A simple OTA could be just a differential
stage as in Figure 6 b). Such a stage often has too low

voltage gain due to a too low output impedance. It can

be improved by adding a cascode stage, as in Figure 7

b, or by adding a second gain stage, as in Figure 8. For
the first two cases, the above single transistor formulas

are mainly valid. For the two-stage case, the first stage

has a voltage gain of Av1 = gm1RL1 and the second

stage has a transconductance of gm2 . Together we have

a transconductance of G = Av1 gm2 . The output noise
current of the OTA can be expressed:

i2on = 4kTγBgm1R2

L1 g2

m2 + 4kTγBgm2 , (19)

where the two terms represents the contributions from

the first and second stage respectively. The second term
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divided by the first term can be expressed as gm1/(A2

v1 ·
gm2 ), indicating that this term may be discarded if the

voltage gain in the first stage can be made high. So, if we

have a reasonable voltage gain in the first stage, a lower

gm2 , and therefore a lower bias current, is required for
the second stage. On the other hand, there may be other

requirements, controlling gm2 instead of noise. We will

come back to these issues later. Let us now put the

OTA into a feedback configuration, see Figure 9. It is
easily shown that the voltage gain of this configuration

is given by

Av =
vo

vi
= − GZf–1

GZi + 1
(20)

which for large G becomes −Zf/Zi. Note that for rel-

atively large voltage gain, the input voltage swing is

considerably smaller than VFS , just relaxing the re-
quirement on Veff , which may save power. We may

also use this expression for the case Zi = 0 for which

Av = −(GZf − 1). We may also calculate the output

impedance for this stage:

Zout =
Zi + Zf

1 + GZi
(21)

and its input impedance:

Zin = Zi +
1

G
. (22)

Let us now apply these results on a switched C am-

plifier with fixed voltage gain, Av0 . We are only in-
terested in the relation between amplifier performance

and power consumption here, so we therefore disre-

gard switching schemes, switches, offset compensation

schemes, etc.. We can then just replace the impedances
with capacitors in the above expressions. The voltage

gain is thus given by (from eq. (20) with Zx replaced

by 1/sCx):

Av0 = − Ci

Cf
(23)

and the output admittance in the Laplace domain:

Yout = s
CiCf

Ci + Cf
+ G · Cf

Ci + Cf
, (24)

which is the same results as derived for a single stage

amplifier in [12].
Following the scheme discussed in section 2, we start

to calculate the output noise voltage from eq. (19):

v2

on = 4kTγ · Bngm1R
2

L1 · g2

m2αR2

L, (25)

where we have introduced α = 1 + gm1/A2

v1 gm2 , in-

dicating the effect of the second stage noise. By com-

paring to our earlier results we note that by making

α = RL1 gm2 = 1 eq. (25) is valid also for single stage

amplifiers. Introducing the noise bandwidth in this case,

Bn = 1/(4RLCL) we arrive to:

v2

on =
kTγ

CL
· Ci + Cf

Cf
· gm2RL1α, (26)

where we used the real part of eq. (24) as RL and

the imaginary part as CL. Introducing the required dy-

namic range, as above, we may then arrive to a required
capacitance

CLn = 8kTγ(Ci + Cf ) · gm2RL1 · α

CfV 2

FS

· D, (27)

which expression is similar to eq. (13). Again, making

α = RL1 gm2 = 1 eq. (27) is valid for single stage am-

plifiers.

Next is to relate this expression to speed. As we are
discussing a switched-C amplifier, settling time, related

to sampling rate, may be a better parameter than band-

width. We consider our amplifier to be dominated by

the output pole with time constant τ = RLCLn where
RL is found from eq. (24) . For a single pole amplifier,

we expect the output to settle within 90% of its final

value within the settling time Tse = τ ln 10. Starting

with a single stage amplifier and following [12],we have

with this criterion

gm = (1 +
Ci

Cf
)
ln 10

Tse

CLn, (28)

requiring a supply current of ID = gmVeff . We also

need to consider slewing, that is before entering the
linear behavior the output voltage of the amplifier may

be controlled by the maximum output current, ID. The

worst case slewing time, Tsl , is given by:

Tsl =
CLn · VFS

ID
. (29)

Let us set the total time for slewing and settling, Ts =

Tsl +Tse and note that ID is the same for both criteria.

We can then calculate ID from these expressions:

ID =
VFSCLn

Ts
·
(

1 + (1 +
Ci

Cf
) · ln 10 · Veff

VFS

)

(30)

Here the first term in the parenthesis corresponds to
slewing and the second one to settling. By inserting

CLn from eq. (27) we finally arrive to the current con-

sumption and by multiplying with Vdd to the power

consumption. Returning to the two-stage case, we have

G =
Ci + Cf

Cf
· ln 10

Tse

CL

=
8kTγ(1 + Ci

Cf
)2gm2RL1α ln 10

V 2

FSTse

D. (31)
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As G = gm1RL1gm2 , eq. (31) reduces to:

gm1 =
8kTγ(1 + Ci

Cf
)2α ln 10

V 2

FSTse

D. (32)

which equation is very similar to eq. (14), particularly

if we consider that Ci/Cf is the voltage gain and Tse is

proportional to the inverse of the sampling frequency.

From this requirement of gm1 we can finally calculate
the bias current of the first stage, ID1 .

Regarding the second stage, we need to make sure

that its noise contribution is low enough, that is α is

close to 1, and gm2 ≫ gm1/A2

v1 . This can hopefully be
fulfilled without power penalty (keeping gm2 < gm1 )

with a large enough voltage gain of the first stage. In

addition, the second stage has to fulfill the slewing cri-

terion, thus requiring the supply current (see eq. (29))

ID2 =
CLnVFS

Tsl

. (33)

4 A Single-Pole Filter Realization

Even though we do not intend to extend our tutorial to

cover higher-order filters, we would like to touch upon
a single-pole realization and what the impact on power

dissipation is using our definitions found in the previous

chapters.

We continue with the transconductance amplifier,
OTA, as outlined in chapter 3, considering only the

simplest possible implementation of such an amplifier,

the single transistor. For a general transconductance

amplifier, the output current is given by

iout = gm · vin (34)

and the symbol is shown in Figure 10.

The first-order filter, i.e., the realization of a single,

real-valued pole, can be implemented using a combi-

nation of transconductance elements together with a

capacitor as illustrated in by the single-ended filter in

Figure 11. The transconductance-C (or Gm − C) filter
has the advantage on not relying on a resistance to set

the pole, but instead a transconductance which quite

often is somewhat simpler to tune. The filter transfer

characteristics can be derived by summing the currents
floating towards the output node:

i1+i2+iC = −gm1 ·Vin−gm2 ·Vout−Vout ·sCL = 0. (35)

In the Laplace domain, the transfer function, H(s), be-
comes

H(s) =
−gm1

sCL + gm2

= − gm1/gm2

1 + s
gm2 /CL

= − Av0

1 + s/p1

(36)

from which we identify the voltage gain Av0 = gm1/gm2

and the real pole at p1 = gm2/CL. In its simplest imple-

mentation the transconductor can be a common-source

amplifier as illustrated in Figure 12. The transconduc-

tance of this particular topology is then given by the
transistor transconductance itself. We assume also that

the sketched load is large enough, preferably it is a con-

stant current source, such that the delta current flow-

ing out of the block is well defined. Figure 13 shows the
transistor-level implementation of the first-order pole,

where we have replaced the components with the cor-

responding subblocks using NMOS transistors as gain

stages.

We start by applying the same reasoning as we did

in the previous chapters. The drain noise current in

terms of transistor conductance will now be:

i2dn1 = 4kTγgm1Bn (37)

and

i2dn2 = 4kTγgm2Bn, (38)

where Bn is the bandwidth of the common pole and the

total noise current becomes

i2totn = i2dn1 + i2dn2 = 4kTγ(gm1 + gm2 )Bn. (39)

The noise voltage on the output is determined by the

load transconductance (assuming high output impedance
in for example current sources if they would be used to

form the load):

v2

totn =
i2totn
g2

m2

(40)

Further on, the noise bandwidth is also given by the fil-

ter bandwidth, i.e., Bn = p1/4 = gm2/4CL. This gives

us the following relation

v2

totn =
i2totn
g2

m2

= 4kTγ · gm1 + gm2

g2

m2

· gm2

4CL

=
kT

CL
· γ · gm1 + gm2

gm2

=
kT

CL
· γ · (1 + Av0 ) (41)

where Av0 is the filter DC (absolute) gain. The dynamic

range - assuming full-swing at the output of the filter -

is once again

D =
v2

s

v2
totn

=
V 2

FS/8

kTγ(1 + Av0 )/CL

=
V 2

FS · CL

8kTγ(1 + Av0 )
. (42)

To continue our argument, we will revert back the ex-

pression by reinserting the pole, p1 = gm2/CL, since

from a filter design point of view, our specification points
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are p1 and Av0 . The dynamic range can therefore be ex-

pressed as:

D =
V 2

FS · CL

8kTγ(1 + Av0 )
=

V 2

FS · gm2

8kTγ(1 + Av0 )p1

. (43)

We can express the required transconductance as func-

tion of the desired dynamic range:

gm2 = D · 8kTγ(1 + Av0 )p1

V 2

FS

(44)

The total current through the two branches, ID = ID1+

ID2, is given by

ID = gm1Veff + gm2Veff

= (1 + Av0 )gm2Veff

= 8kTγ · (1 + Av0 )2 · Veff

V 2

FS

· p1 · D. (45)

The power consumption can thereby be calculated as

PF = VFS · ID = 8kTγ · (1+Av0 )2 · Veff

ηvVFS

·p1 ·D. (46)

This result corresponds well to our previous results.

With a higher filter bandwidth, more noise will be inte-

grated and more power needs to be consumed to main-
tain the dynamic range. For example, for a γ = 1, a

gain of Av0 = 2, a Veff = 0.5 V, a supply voltage of

Vdd = VFS = 1 V, a bandwidth of 1 MHz, and a 60-dB

dynamic range, we get the power consumption to be
PF ≈ 25 nW.

Another, more power efficient solution is to use a

PMOS transistor as gain stage in the second stage. Es-

sentially, it boils down to the intuitive solution using

a common-source stage with an active resistive load as
shown in Figure 14. We can now save some power by

re-using the current and we have the same set of deriva-

tions bringing us to eq. (44), where gm2 is our PMOS

transconductance. The difference now though is that
the current is given by

ID = gm1Veff = Av0gm2Veff

= 8kTγ · (1 + Av0 ) · Av0 · Veff

V 2

FS

· p1 · D (47)

and the power consumption becomes

PF = VFS ·ID = 8kTγ·(1+Av0 )·Av0 ·
Veff

ηvVFS

·p1·D. (48)

At a first glance, it does not seem to differ much be-

tween eq. (46) and (48), however assume we have a

unity voltage gain, Av0 = 1, we will in eq. (46) have a
factor 4 from (1 + Av0 )2, and from eq. (48), we get the

factor 2 from (1 + Av0 ) · Av0 . The power consumption

is only half compared to the two-stage version. With

increased voltage gain, the amount of saved power is

less. Analog filters can be characterized by a figure of

merit, FOM F [4]:

FOM F =
PF

N · B · D, (49)

where N is the number of poles in the filter, B is its

largest bandwidth and D is the dynamic range. Using

our eq. (48) above, with N = 1, ηv = 1, Av0 = 1 and

B = p1/2π we can calculate a lower bound to the figure
of merit as

FOM F = 32πkTγ
Veff

VFS

. (50)

Inserting Veff = VFS (for large dynamic range) and

γ = 1 gives a FOM F = 4.2 · 10−19 J. This can be com-

pared to the value estimated by Vittoz [4], 3 · 10−20 J,

very close to our value. Experimental results are consid-

erably larger, in a compilation in [14] we see values from
0.22 fJ to 1.52 pJ. Part of this is caused by low voltage

efficiency as ηv = 1 is not realistic when Veff = VFS .

Another reason could be that most filter designs utilize

large margins for easier specification control.

5 Comparison Between Analog and Digital

Following [4] we will make a simple comparison between

a digital and an analog solution to the same problem.
Let us thus compare the power consumption of a sin-

gle pole analog low-pass filter and a single tap digital

FIR filter. For the analog filter we use the results from

section 4, eq. (46):

PF,An = 8kTγ · (1 + Av0 )2 · Veff

VFS

· p1 · D. (51)

For low dynamic range, we will use corresponding ex-

pression for CL = Cmin

PF,Ac = (1 + Av0 )Veff VFSCmin . (52)

A digital, single-tap FIR filter performs the func-

tion y(i) = a0x(i)+ a1x(i− 1), requiring an m-by-n bit

multiplier plus an n-bit adder, where we have an m-bit

coefficient and n-bit data (assuming a0 = 1). n-bit data

corresponds to a dynamic range of D = 3/2 · 22n [12].
In order to implement these arithmetic units, we need

m n-bit adders for the multiplier and one n-bit adder

for the adder, a total of m+1 adders. Each adder needs

n full adders and each full adder can be implemented
by 12 transistor pairs, corresponding to 12 equivalent

inverters [15]. The total switched capacitance is then

12 · (m + 1) ·n ·Cmin , where Cmin is the capacitance of
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a minimum inverter. The total power consumption of

the digital filter can thus be expressed as:

PFD =
1

2
αfc12 · (m + 1) · n · Cmin · V 2

dd , (53)

where we used the standard formula for digital power,

αfcCV 2

dd/2, where α is the activity (the probability that
a node will move in a clock cycle) and fc is the clock (or

sampling) frequency. For a bandwidth of p1/2π we need

a sampling frequency (Nyquist sampling) of fc = p1/π

Let us further assume m = 6 and α = 0.1. We can now
perform a quantitative comparison between the two fil-

ters, see Figure 15. Here we used γ = 1, Av0 = 1,

Veff /VFS = 1 and p1/2π = 20 MHz. For VFS and Vdd

we used 3 V and 1 V for the 350-nm and 90-nm process,

resp. [12]. Corresponding values for Cmin are 3 fF and
1 fF (Following [12] we use the minimum inverter capac-

itance also as minimum capacitance in the analog case).

From Figure 15 we can note that analog power con-

sumption rises steeply with the dynamic range, whereas
the digital power consumption does not. Therefore, the

digital filter uses much less power than the analog one

for high dynamic range, whereas analog is preferred for

low dynamic range. The crossing point is around 50 dB

dynamic range in a contemporary process. Also, digital
power is considerably reduced by scaling, whereas ana-

log is not, as long as it is above its power floor. We also

observe this analog power floor ( PF,Ac) due to Cmin ,

which scales similarly to the digital power consump-
tion. For the 90-nm process we estimate the crossing

point between noise-limited capacitance and minimum

capacitance at a dynamic range of about 40 dB.

6 Low Noise Amplifiers, LNAs

In the text above we have used the dynamic range as

the main design target. In many applications the noise
level is instead the main target, as for example in low

noise amplifiers (LNAs) for RF frontends or IF ampli-

fiers, or transimpedance amplifiers (TIAs) for optical

detectors. We may use an OTA with feedback as proto-

type amplifier for these applications. A wide-band LNA
is obtained by utilizing the circuit in Figure 16 with

Zi = 0 and a resistive feedback impedance, Zf = Rf .

For an RF LNA we normally need to adjust the input

impedance to the source impedance, Rs, thus from eq.
(20):

G = 1/Rs. (54)

By choosing G according to eq. (54) we arrive to

Av =
GRf − 1

2
(55)

and

Zout =
Rs + Rf

2
. (56)

The output noise voltage is found from multiplying the

noise current from eq. (19) with the output impedance

from eq. (56). Finally we can calculate the noise figure,
F as:

F = 1 +
v2

on

v2
snA2

v0

= 1 +
γα

gm1Rs
, (57)

where v2

sn = 4kTRsBn is the source noise voltage. So,

if we start with a requirement on F we can estimate

gm1 to:

gm1 =
γα

(F − 1)Rs
. (58)

As we expect both γ and α to be close to 1 (say γ, α

about 2), gm1 is directly controlled by the required noise

figure and Rs. And, from gm1 we may estimate the

power consumption as before. A further analysis shows

that we can fulfill the criteria for G and α by proper
choices of gm2 and RL1 for various values of gm1 (within

reasonable limits). A similar relation is expected for

most LNA topologies [16]. A very simple topology is

the single common-gate stage for example, with input
impedance 1/gm and a noise figure as eq. (57) without

α. We thus need to make gm = 1/Rs and we will have

a fixed noise figure of slightly larger than 2 (3 dB).

So, is it possible to save power further with a given

noise figure? On way is to perform a impedance trans-
formation in front of the LNA. With an impedance

transformation from Rs to R′

s, larger than Rs, we may

reduce gm accordingly and thus save power, see [17].

The transformation can be accomplished through a trans-
former or via an LC matching network (in the case of

a relatively narrow bandwidth). There may be various

practical limits to how large transformation which can

be accomplished, but it is outside the scope of this pa-

per to go further into this topic. Moving to the other
low noise amplifier example, the TIA, it again can be

built as an OTA with feedback and Zi = 0. A TIA is

normally used to amplify the current (or charge) from

a optical detector. In this case the source impedance
is capacitive with capacitance Cd, see Figure 17. As

above, the input impedance of the TIA is 1/G and the

gain is expressed as the transimpedance, Zt:

Zt =
vo

ii
= −Rf (1 − 1

GRf
), (59)

where GRf normally is very large making Zt = −Rf .

Normally, the pole formed by Cd and Zin dominates

this kind of design, why we have a bandwidth of:

B =
G

2πCd
. (60)
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The output impedance can be found from eq. (21) (in

Laplace domain)

Zout =
1

G
· 1 + sRfCd

1 + sCd

G

. (61)

The output noise voltage spectral density is calculated

as in eq. (25) with RL replaced by |Zout |. A reasonable

assumption is that we only consider the frequency range

between 1/2πRfCd and G/2πCd, thus using |Zout | =
2πfRfCd/G:

S2

von =
16π2kTγR2

fC2

d

gm1

f2. (62)

The full noise voltage is achieved by integrating this
expression from 0 to B, thus:

v2

on =
16π2kTγR2

fC2

dB3

3gm1

. (63)

Finally, we calculate the equivalent input noise current

by dividing eq. (63) by |Zt|2 = R2

f

i2in =
16π2kTγC2

dB3

3gm1

. (64)

This is a well known result from optical communications

[18], and show again that the noise level is controlled

by gm1 . In order to meet certain noise requirements,

we need to chose a large enough gm1 , which is turn will
set the power consumption as discussed previously. If

we want a very low noise level, we may get into trouble

with a too large input capacitance (as the gate capac-

itance of the input transistor is proportional to gm1 if
gm1 is increased via increased transistor width). We can

easily include the transistor input capacitance, Cg, by

replacing Cd in eq. (64) with Cg + Cd. By further re-

lating gm1 to Cg through gm1 = 2πfT Cg, we find that

iin2 is proportional to

iin2 ∼ (Cd + Cg)
2

fT Cg
. (65)

Changing Cg (through changing transistor width) this

expression has a minimum for Cg = Cd, again a well
known result. It is however quite expensive in power (for

a given current noise we need 4 times larger gm1 than

given by eq. (58)). If we for example instead optimize

the target function i2inP and note that P is proportional

to gm1 , there is no optimum, but the target function
becomes lower for lower Cg. We also note that large fT

is preferred for low noise (and low power), so we should

seek to maximize fT through proper choice of bias point

( Veff ) and fabrication process.
This discussion is also valid for so called charge sen-

sitive amplifiers, where Rf is replaced by a capacitor,

for example used in X-ray detectors [19].

7 Voltage Controlled Oscillators, VCOs

Voltage controlled oscillators, VCOs, are essential ele-

ments in most electronic systems. The most important

target requirement on a VCO is its phase noise spectral
density, L(ω). Let us therefore look for a relation be-

tween L(ω) and power consumption for a VCO. We use

a simple oscillator model where signal and noise is gen-

erated by a transistor noise current, see Figure 18. See

also [20]. For simplicity we use a single-ended version
here with the expectation that a differential version will

have the same power consumption as discussed above

(the “ −1” block is not needed in a differential version

as both signal and its inverted value are available is
such circuits). The output voltage spectral density can

be expressed as:

S2

v =

∣

∣

∣

∣

ZL

1 − gmZL

∣

∣

∣

∣

2

S2

i =
R2

Lω2

0

4Q2∆ω2
· S2

i , (66)

where ZL is the impedance of the L- RL- C circuit, gm is

the transistor transconductance and S2

i its drain noise

current spectral density. The latter transformation as-
sumes that the oscillator barely oscillates ( gmRL = 1)

and is only valid for ∆ω > 0, where ∆ω = ω − ω0,

and ω is the angular frequency and ω0 is the oscillating

angular frequency (resonance angular frequency of the

load). Q is the Q-value of the L- RL- C circuit. Defining
the transistor noise current spectral density as before

(eq. (8))

S2

i = 4kTγgm (67)

and the output power as (RL includes the load to the

oscillator and we define the power as the total power

into RL)

PO =
V 2

FS

8RL
. (68)

We can then calculate the relative noise spectral density

from eqs. (66), through (68)

S(ω) =
S2

v

RLPO
=

γkTω2

0

Q2PO∆ω2
, (69)

where we used gm = 1/RL. It can be shown that half

of this noise is amplitude noise and half is phase noise.

We therefore arrive to a phase noise spectral density of

L(ω) =
γkTω2

0

2Q2PO∆ω2
, (70)

which is the well known Leeson formula [21]. This for-
mula is intuitively very reasonable; the relative phase

noise is proportional to the thermal energy ( kT ) di-

vided by the energy stored in the resonator ( Q2Po).
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Table 1 Examples on reported FOM compared to our bound.

Q FOM osc , our bound FOM osc , experimental

0.35 -159 dBm/Hz (-162 dBm/Hz) -159 dBm/Hz [23]

8 -185 dBm/Hz (-188 dBm/Hz) -185.5 dBm/Hz [22]

The power consumption, PDC , is now given by PDC =

IDC Vdd , where IDC = gmVeff . Here gm = 1/RL (see

above) and Veff = VFS as before. Finally we set Vdd =

VFS/ηv. Inserting these and eq.(68) into eq. (70) gives
the oscillator power consumption

PDC =
4γkT

ηvQ2L(ω)
(

∆ω
ω0

)2
. (71)

We note that the VCO power consumption is mainly

controlled by ηv and Q for a fixed requirement on

L(ω)(∆ω/ω0)
2. Lowest power consumption occurs for

the largest ηv as usual, that is it is preferable to max-

imize VFS . Furthermore, high Q resonators are prefer-

able. However, this is not always easily obtained. In-

tegrated inductors normally lead to Q-values of up to

about 10 and if we want to avoid the use of inductors,
which are very expensive in silicon area, we are left with

Q-values below 1 (in RC or ring oscillators).

Let us compare to some experimental results. Fol-

lowing [22] we define an oscillator figure of merit, FOM osc

as:

FOM osc = L

(

∆ω

ω0

)

PDC =
4γkT

ηvQ2
, (72)

where we inserted our theoretical expression. So our

lower bound to FOM osc for two Q values are given in

Table 1, together with two experimental results. Here

we used γ = 1 and ηv = 1. The two experimental results
represents among the best FOM osc reported. In both

cases current reuse is utilized, so we should reduce our

theoretical FOM-values by half (-3 dB, in parenthesis).

We note that the best experimental results are very

close to our predicted values, indicating the usefulness
of our prediction.

8 Discussion

The concepts for understanding power consumption in
analog systems presented here are based on earlier work

by Enz and Vittoz [6] and Bult [9], but also on the

more quantitative work on analog-to-digital converters

in [12]. The objective is to deepen the understanding of
power consumption in analog systems and to introduce

lower bounds to the power consumption which can be

used as design targets when designing analog systems.

We thus hope to offer the analog designer similar pow-

erful tools as earlier available for the digital designer.

We also believe that this paper will inspire its readers

to further investigate the fundamental limits on perfor-

mance as a design guidance rather than an obstacle.
As a tutorial, we have concentrated on understand-

ing and only made very few comparisons to experi-

mental results. As the concepts presented here are the

same as used in [12], the quite comprehensive compar-
isons to experiments in [12] are a strong support to

our concepts. Also, we have limited our effort to very

simple, basic circuits. In practice the task of design-

ing good analog circuitry is much more challenging, in-

cluding system architecture, choice of circuit topology,
choice of transistor bias points, etc. Still, we believe

that by applying the concepts presented here, it is pos-

sible to adapt established analog design techniques to

a power-centric methodology, particularly by utilizing
lower power bounds as targets.

Certainly, many important issues are missing in this

treatment. One such issue is matching between com-

ponents (for minimizing offset, gain deviations, etc.).

Here we judge that offset compensation is quite easy to
implement, limiting the importance of matching. Re-

garding gain deviations it was found in [12] that its

importance in fact is reduced by scaling. Also, various

methods of digital error correction are often used, for
example in ADCs, to counteract the effect of gain de-

viations. Of course, there are other impacts on perfor-

mance due to mismatch such as worse supply rejection.

We believe however that this can be catered for by ad-

justing design specification and tuning of topology.
Another important issue is linearity. There are many

different requirements on linearity, depending on the

various applications of the analog system. We found

it too far reaching to treat this issue here. However,
there is a close relation between linearity and the choice

of effective transistor overdrive voltage, Veff , and full-

scale signal swing, VFS , so we believe that our proposed

concepts can be extended to include linearity effects.

Also regarding radio frequency circuits our treatment
is shallow. But again, we believe that our concepts can

be extended to RF circuits by adding a comprehensive

treatment of frequency matching networks.

9 Conclusions

We have introduced some basic concepts for under-

standing power consumption in analog circuits. These

concepts are based on basic requirements, the most im-
portant being dynamic range (or noise level) and band-

width (or sampling speed). We demonstrated how the

dynamic range requirement sets a lower bound to the
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capacitance in the signal path, independent on technol-

ogy. For lower dynamic range requirements, the mini-

mum capacitance implementable in the actual technol-

ogy replaces this bound, thus making technology con-

trol the capacitance instead of dynamic range. Then
next requirement, bandwidth or speed, will introduce a

lower bound on the active device transconductance, gm.

To attain this gm, we need to supply the active device

with a bias current, IDC , depending on the required gm

and the gate bias point, expressed as Veff . Finally the

lower power consumption bound is given by the supply

voltage multiplied by this IDC .

As a part of this scheme we also discussed several

additional constraints, as the choice of bias ( Veff ), sig-
nal swing ( VFS ) and supply voltage. These choices are

partly controlled by other constraints as required volt-

age gain, linearity, etc., and will therefore also influence

the lower power bound.

We demonstrated how this scheme or very similar

ones can be used to find a lower bound to the power

consumption of many types of circuits, as samplers, am-

plifiers, filters, oscillators or analog-to-digital convert-
ers. In some cases our bounds are close to experimental

results, in other cases they are not. This indicates large

opportunities to further reduce power consumption of

several classes of analog circuits.

Finally, we performed a comparison between a dig-
ital and an analog solution to the same problem and

demonstrated that digital uses less power when high

dynamic range is required and analog uses less power

for low dynamic range. The crossover point moves to-
wards lower dynamic ranges with process scaling.

Appendix: A Note on Flicker Noise

The flicker noise voltage spectral density on the tran-

sistor gate is often expressed as [13]:

S2

vgf =
Kf

Cgf
, (73)

where Kf is the noise coefficient, Cg is the gate capac-
itance and f is the frequency. By integrating eq. (73)

from a lower frequency limit, f1, to the upper frequency

limit (bandwidth), Bn, we arrive to:

v2

gf =
Kf

Cg
ln

Bn

f1

. (74)

This gate noise is then amplified by the transistor to an

output noise voltage of Av0 · vgf . Following the above

procedure, we can then calculate the output dynamic

range, D, and from that calculate the Cg required for

achieving this dynamic range:

Cg =
8KfA2

v0

V 2

FS

· ln Bn

f1

· D. (75)

From this we can calculate gmf through gmf = 2πfT Cg,

and then estimate the power consumption as in sec-

tion 2. In the same time we must make sure that we
meet the speed requirement of the circuit, that is gmL

must fulfill eq. (14), gmL = 2πCLBAv0, where CL should

meet the thermal noise and Cmin requirement, and also

accommodate the transistor drain capacitance, Cd, which

increases with Cg, if a large Cg is achieved through a
large transistor width. These two requirements are met

through

gm = max(gmf , gmL). (76)

A possible scheme to manage all these variables could

be as follows. Starting with the scheme sketched in sec-

tion 2, we arrive to gmL (taking into account that Cd re-

lated to Cg must be accommodated in CL). In order not

to increase gm further, we try to keep gm = gmL. The
requirement of Cg is then achieved by reducing fT until

Cg is large enough. fT can be reduced without chang-

ing gm by increasing transistor width and length simul-

taneously (gm ∼ W/L and Cg ∼ WL, where W and
L are transistor width and length respectively). After

finding the appropriate gm we can estimate the power

consumption as in section 2. A possible problem with

this scheme is that we decrease fT of the input tran-

sistor when increasing the transistor length, which may
give us problems with bandwidth. Also, we increase the

input capacitance of the transistor stage, which may af-

fect the power consumption of the previous stage.
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Fig. 1 Simple sampler.

Fig. 2 Power vs dynamic range.

Fig. 3 Simple transistor stage.
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Fig. 4 Veff vs gate voltage for NMOS transistors in two different processes.
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Fig. 5 fT vs gate voltage for NMOS transistors in two different processes.

Fig. 6 Comparison of a single-ended and a differential stage.

Fig. 7 An inverter (a) and a cascode amplifier (b).

Fig. 8 A two-stage amplifier.
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Fig. 9 A feedback operational transconductance amplifier (OTA).

Fig. 10 Transconductance element.

Fig. 11 A single-ended first-order filter

Fig. 12 First-order implementation of the transconductor

Fig. 13 Transistor implementation of the first-order filter.
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Fig. 14 Current re-use implementation of the single-pole stage
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Fig. 15 Power consumption versus dynamic range for an analog (solid) and a digital (dashed) filter. The two horizontal solid lines
represent power floors for analog 350 nm and analog 90 nm, respectively.

Fig. 16 LNA in resistive feedback configuration, similar to Figure 9, but with Zi = 0, Rf = Zf and source resistance, Rs included.

Fig. 17 Transimpedance amplifier (TIA) as low noise optical detector.
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Fig. 18 A voltage-controlled oscillator (VCO).
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