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Abstract

In system identification, the Akaike Information Criterion (AIC) is a well known
method to balance the model fit against model complexity. Regularization here
acts as a price on model complexity. In statistics and machine learning, regular-
ization has gained popularity due to modeling methods such as Support Vector
Machines (SVM), ridge regression and lasso. But also when using a Bayesian ap-
proach to modeling, regularization often implicitly shows up and can be associ-
ated with the prior knowledge. Regularization has also had a great impact on
many applications, and very much so in clinical imaging. In e.g., breast cancer
imaging, the number of sensors is physically restricted which leads to long scan
times. Regularization and sparsity can be used to reduce that. In Magnetic Reso-
nance Imaging (MRI), the number of scans is physically limited and to obtain high
resolution images, regularization plays an important role.

Regularization shows-up in a variety of different situations and is a well known
technique to handle ill-posed problems and to control for overfit. We focus on
the use of regularization to obtain sparseness and smoothness and discuss novel
developments relevant to system identification and signal processing.

In regularization for sparsity a quantity is forced to contain elements equal to
zero, or to be sparse. The quantity could e.g., be the regression parameter vector
of a linear regression model and regularization would then result in a tool for
variable selection. Sparsity has had a huge impact on neighboring disciplines,
such as machine learning and signal processing, but rather limited effect on sys-
tem identification. One of the major contributions of this thesis is therefore the
new developments in system identification using sparsity. In particular, a novel
method for the estimation of segmented ARX models using regularization for
sparsity is presented. A technique for piecewise-affine system identification is
also elaborated on as well as several novel applications in signal processing. An-
other property that regularization can be used to impose is smoothness. To re-
quire the relation between regressors and predictions to be a smooth function
is a way to control for overfit. We are here particularly interested in regression
problems with regressors constrained to limited regions in the regressor-space
e.g., a manifold. For this type of systems we develop a new regression technique,
Weight Determination by Manifold Regularization (WDMR). WDMR is inspired by
applications in biology and developments in manifold learning and uses regular-
ization for smoothness to obtain smooth estimates. The use of regularization for
smoothness in linear system identification is also discussed.

The thesis also presents a real-time functional Magnetic Resonance Imaging (fMRI)
bio-feedback setup. The setup has served as proof of concept and been the foun-
dation for several real-time fMRI studies.
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Populärvetenskaplig sammanfattning

Modeller används inom de flesta områden för att efterlikna verkligheten. Anled-
ningarna kan vara allt ifrån att det är fysikaliskt omöjligt till att det är kostsamt
att utföra experimenten och därför utförs dessa på en modell istället. En modell
kan också användas till att generalisera och förutse beteenden för nya situatio-
ner. Vi använder exempelvis en mental modell för cykling för att från tidigare
erfarenheter kunna hantera nya situationer.

I denna avhandling studeras matematiska modeller. Framför allt diskuteras en
teknik för att framkalla egenskaper så som gleshet och glatthet hos modellpara-
metrar och skattningar. Denna teknik betecknas regularisering. Varför är man då
intresserad av att framkalla dessa egenskaper? Gleshet kan vara av nytta för att
välja ut mätstorheter som man bör fortsätta att mäta om man vill bibehålla go-
da skattningsresultat. Om det är kostsamt att mäta kan denna användning vara
värdefull. Gleshet har också visats användbart vid medicinsk bildbehandling för
till exempel minskning av röntgentider. I denna avhandling används regularise-
ring för gleshet på problem inom områdena systemidentifiering och signalbehand-
ling. Bland annat diskuteras hur regularisering för gleshet kan användas för att
upptäcka plötsliga förändringar. Glatthet är i många fall motiverat av fysikaliska
skäl. Många signaler som är intressanta att modellera och förutse beter sig på ett
mjukt och kontinuerligt sätt. Det finns därför skäl till att modellen som används
även har dessa egenskaper. Ett av resultaten i denna avhandling är en ny mo-
delleringsmetod, Weight Determination by Manifold Regularization (WDMR). Ett
specifikt användningsområde som diskuteras är skattning av vattentemperatur
från mätningar av den kemiska sammansättningen i musselskal. Antagandet att
det finns ett glatt samband mellan den kemiska koncentrationen i musselskalet
och temperaturen är här viktigt för bra skattningar.

Ett annat område som berörs i avhandlingen är mätning av hjärnaktivitet. Mer
specifikt presenteras en praktisk uppställning för att mäta och tolka hjärnaktivi-
tet i realtid.
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MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
OE Output Error

PCA Principal Component Analysis
PEM Prediction Error Method
PLS Partial Least Squares

PRBS Pseudo-Random Binary Sequence
PWA Piece-Wise Affine

PWARX Piece-Wise Auto-Regressive with eXogenous variables
PWASON Piece-Wise Affine system identification using Sum-Of-

Norms regularization
RKHS Reproducing Kernel Hilbert Space
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
s.t. subject to

STATESON STATE estimation by Sum-Of-Norms regularization
SVM Support Vector Machines
SVR Support Vector Regression
UAV Unmanned Aerial Vehicle
UTM Universal Transverse Mercator

WDMR Weight Determination by Manifold Regularization
w.p. with probability
w.r.t. with respect to
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Introduction

1.1 Models and Modeling

Models are used in most scientific disciplines as substitutes for reality. It can be
that it is practically impossible to conduct experiments on the physical system
and a model thereof is therefore used to replace it. Or it could be that the model
is used to generalize to new situations not previously seen.

We humans use models every day, mental models. These models are built-up from
past experiences and make it possible for us to, e.g., ride our bikes. When we
bike, we use our mental model for biking to not fall over. In particular, we need
to use previous biking experience to generalize to new situations.

In this thesis, methods for computing models are discussed. Like for a human,
most of the models will be based on gathered past observations. We do not sum-
marize these in a mental model, but seek instead a mathematical model that can
explain these observations. A mathematical model describes a system’s behav-
ior using mathematical language. Mathematical language could be a set of dif-
ferential or difference equations, or it could be a rule for how to combine past
observations.

Mental models are of particular use for us and our brain. Mathematical models
are not useful for our brain (at least not in the same way as mental models) but
of particular interest and use for engineering and science. The two next exam-
ples motivate the use of mathematical models. We will return to both of these
examples at later phases of this thesis.

3
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Example 1.1: Climate Reconstruction
There exist a number of climate recorders in nature from which the past temper-
ature can be extracted. However, only a few natural archives are able to record cli-
mate fluctuations with high enough resolution so that the seasonal variations can
be reconstructed. One such archive is a bivalve shell, see Figure 1.1. The chemical

Figure 1.1: Bivalve shell.

composition of a shell of a bivalve depends on a number of chemical
and physical parameters of the water in which the shell was
composed. Of these parameters, the water temperature is
probably the most important one. It should therefore be
possible to estimate the water temperature for the time the
shell was built, from measurements of the shell’s chemical
composition. This would e.g., give climatologists the
ability to estimate past water temperatures by analyzing
ancient shells. To do this, a model for how the chemical
composition relates to water temperature would be
needed.

Example 1.2: Model-Based Reference Generation
Flight planning is essential for safety when flying. It makes sure that, on the

flight route, the airplane does not get to close to other airplanes, takes into ac-
count weather forecasts, fuel consumption and time constraints, and makes sure
that the airplane reaches its final destination. A route, in its simplest form, is a
set of ordered coordinates, waypoints. In an autopilot of a commercial airplane
or in the computer of an Unmanned Aerial Vehicle (UAV), waypoints are used to
generate reference trajectories which the controllers then use to navigate between
the waypoints. The most primitive reference generator does not take into account
limitations and the dynamics of the airplane. It gives a reference which is simply
a sequence of line segments connecting the waypoints. The airplane will not be
able to follow this reference very well and it is obvious that fuel could have been
saved and the comfort of the passengers could have been improved if instead a
smooth trajectory would have been generated. However, any smooth trajectory
does not suffice. The airplane may e.g., be too large to follow the turns which may
cause a not so smooth behavior after all. Therefore, a better approach would be
to include a model of the airplane in the reference generator and do a model-based
reference generation.

Model-based reference generation is a particular type of trajectory generation and
of interest for e.g., industrial robotics and planning for unmanned vehicles. Tra-
jectory generation is further discussed in Paper D in Part II.

Since mathematical models are used and of importance in so many different
fields, there are of course a huge variety of different types of models and mod-
eling techniques. There are also several fields studying the act of modeling, each
with its own nomenclature. In system identification e.g., the act of modeling is
referred to as identification and in the closely related field of machine learning, the
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term learning or inference is used. Since this is a thesis in system identification,
we will most of the time stick to the nomenclature used there.

Mathematical modeling can be divided into two categories. Modeling either be-
longs to regression or classification. In this thesis we are only concerned with re-
gression. There is further a focus on different types of regularizations. This is
also reflected in the name of the thesis.

1.2 Regularization

Regularization is a methodology for making an ill-posed problem well-posed (Pog-
gio et al., 1985; Neumaier, 1998). A problem is ill-posed (Hadamard (1902), see
also Tikhonov and Arsenin (1977, p. 7)) if its solution

• does not exist,

• is not unique or

• does not depend continuously on the input data.

If a problem is not ill-posed, it is well-posed. An example of an ill-posed problem
could be the task of finding the x ∈ Rnx , given y ∈ Rny and A ∈ Rny×nx , that
solves

min
x
‖y − Ax‖22. (1.1)

If rank(A) < nx the minimizing x is not unique and the problem hence ill-posed.
A well-posed regularized version of the problem is given by the regularized least
squares problem

min
x
‖y − Ax‖22 + λ‖x‖22, λ ∈ R+. (1.2)

The added term λ‖x‖22 conveys the desire that ‖x‖22 should be small. It also makes
the solution unique and the problem well-posed. Regularization can also be used
to communicate other prior thoughts concerning a parameter, signal or model.
Common properties imposed by regularization are smoothness or sparseness, as
we will see later. We will return to the regularized least squares problem in later
chapters and leave the details for then.

Regularization is also a way to control for overfitting. Overfitting is a problem
that can occur in the estimation process of a model and in particular when a
stochastic noise process is modeled as a deterministic signal. The most common
way to avoid overfitting is to limit the model’s ability to pick up rapid variations
in the data, often associated with the noise. One technique for doing this is regu-
larization. By controlling for overfitting a bias is usually introduced. The variance
is however decreased. Regularization is therefore also a way to deal with the bias-
variance trade-off for a model.

In statistics and machine learning, regularization has gained popularity due to
modeling methods such as Support Vector Machines (SVM, Vapnik (1979, 1995)),
ridge regression (Hoerl and Kennard (1970), see also Hastie et al. (2001), p. 59)
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and lasso (least absolute shrinkage and selection operator, Tibsharani (1996), see
also Hastie et al. (2001), p. 64). When the Bayesian approach to modeling is used,
regularization often shows up and can be associated with the prior knowledge.

In system identification, the Akaike Information Criterion (AIC, Akaike (1973)) is
a well known way to balance the model fit against the model complexity. Regu-
larization here acts as a price on model complexity.

Regularization has also had a great impact on many applications, and very much
so in clinical imaging. In e.g., breast cancer imaging, the number of sensors is
physically restricted which leads to long scan times. Regularization and spar-
sity can be used to reduce that, as shown in Guo et al. (2010) and Brady et al.
(2009). In Magnetic Resonance Imaging (MRI), the number of scans is physically
limited and to obtain high resolution images, regularization plays a key role, see
e.g., Brady et al. (2009).

Example 1.3: Compressed Sensing
The Nyquist-Shannon sampling criterion states that for a bandlimited (no energy

above a certain frequency) signal, the sampling frequency should be twice that
of the bandlimit to guarantee the possibility to perfectly reconstruct the time-
continuous signal (see e.g., Oppenheim et al. (1996, p. 519)). That means that
to obtain a (good) audio recording a sampling frequency of at least 40 kHz is
needed, since our ears are sensitive to frequencies up to 20 kHz. However, MP3
files are often around 3 megabytes, not 30 megabytes (a three minute stereo
recording gives 3 · 60 · 2 · 40 · 103 = 14.4 · 106 samples. A precision of 16 bits gives
28.8 megabytes). Data compression is of course the reason for this storage sav-
ing. A sound is hence sampled, stored and then compressed. In the compression,
about 90% of the storage area is returned.

It may seem meaningless to measure a lot of information if 90% will be thrown
away before someone even listened to the song. Since this thesis is about regu-
larization, you may guess that regularization can help to sample more efficiently.
And yes, a regularization technique called Compressed Sensing (CS, Donoho (2006);
Candès et al. (2006)) is what is needed.

We continue and reveal the details behind compressed sensing in Chapter 4.
An interesting and well written paper on compressed sensing which inspired to
above example is given by Hayes (2009).

1.3 State Estimation

Dynamic systems are characterized by that their output depends on current and
past inputs. The effect that these inputs have had on the system is gathered in the
state. The state contains valuable information for e.g., controllers and for decision
making. The state is however often not directly measurable. It is therefore of
interest to be able to estimate the state using the available measurements. The
theory for doing this is called state estimation.
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The focus of this thesis is not state estimation. A brief description necessary to
understand the paper on state estimation in Part II is therefore only provided. In
particular we discuss state estimation under process noise which is often zero but
occasionally non-zero, leading to so called load disturbances.

1.4 Notation

It is strategic, before readers detach and jump to chapters of their choice, to ex-
plain some notational choices made throughout the thesis. Lower-case letters
will be used for scalars and column vectors, while upper-case letters are used to
denote matrices. “( · )” will be used to pick out elements of vectors or matrices.
x(t) hence denotes the tth element of the vector x. “:” will be used, as in Matlab,
to pick-out a sequence of elements of a matrix or vector. A(1 : 2, :) hence denotes
the two top rows of the matrix A. Calligraphic letters will be used for sets. Mod-
els will be denoted by f (ϕ, θ), ϕ being a regressor and θ the model-parameters.
f0(ϕ) will be used to denote the true system that we try to imitate using a model.

“ˆ” denotes an estimate of some quantity. x̂ therefore denotes an estimate of x. A
subscript will be used to index time or as sample index. xt hence denotes the
variable x at time or index t. In some papers of Part II, “( · )” is used instead of
subscript. Some exceptions to these notational choices exist.

See also listed mathematical symbols and abbreviations on pages xvii and xviii.

1.5 Publications

Published work of relevance to this thesis is listed below in chronological order.
Publications marked with a “∗” are included in Part II of this thesis.

H. Ohlsson, J. Roll, T. Glad, and L. Ljung. Using manifold learn-
ing for nonlinear system identification. In Proceedings of the 7th
IFAC Symposium on Nonlinear Control Systems (NOLCOS), Pretoria,
South Africa, August 2007.

H. Ohlsson. Regression on manifolds with implications for system
identification. Licentiate thesis no. 1382, Department of Electrical En-
gineering, Linköping University, SE-581 83 Linköping, Sweden, De-
cember 2008.

H. Ohlsson, J. Roll, A. Brun, H. Knutsson, M. Andersson, and L. Ljung.
Direct weight optimization applied to discontinuous functions. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008a.

H. Ohlsson, J. Roll, and L. Ljung. Manifold-constrained regressors in
system identification. In Proceedings of the 47th IEEE Conference on
Decision and Control, Cancun, Mexico, December 2008b.
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∗ H. Ohlsson, J. Rydell, A. Brun, J. Roll, M. Andersson, A. Ynnerman,
and H. Knutsson. Enabling bio-feedback using real-time fMRI. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008c.

A. Eklund, H. Ohlsson, M. Andersson, J. Rydell, A. Ynnerman, and
H. Knutsson. Using real-time fMRI to control a dynamical system. In
Proceedings of the 17th Meeting of the International Society for Mag-
netic Resonance in Medicine (ISMRM), Honolulu, USA, April 2009a.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, J. Schoukens, and
F. Dehairs. Three ways to do temperature reconstruction based on
bivalve-proxy information. In Proceedings of the 28th Benelux Meet-
ing on Systems and Control, Spa, Belgium, March 2009b.

H. Ohlsson and L. Ljung. Gray-box identification for high-
dimensional manifold constrained regression. In Proceedings of the
15th IFAC Symposium on System Identification, SYSID 2009, Saint-
Malo France, July 2009.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. On climate reconstruction using bivalve shells: Three
methods to interpret the chemical signature of a shell. In Proceedings
of the 7th IFAC Symposium on Modelling and Control in Biomedical
Systems, Aalborg, Denmark, August 2009a.

A. Eklund, H. Ohlsson, M. Andersson, J. Rydell, A. Ynnerman, and
H. Knutsson. Using real-time fMRI to control a dynamical system
by brain activity classification. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted In-
tervention (MICCAI’09), London, UK, September 2009b.

H. Ohlsson, M. Bauwens, and L. Ljung. On manifolds, climate recon-
struction and bivalve shells. In Proceedings of the 48th IEEE Confer-
ence on Decision and Control, Shanghai, China, December 2009.

F. Lindsten, J. Callmer, H. Ohlsson, D. Törnqvist, T. B. Schön, and
F. Gustafsson. Geo-referencing for UAV navigation using environmen-
tal classification. In Proceedings of the 2010 IEEE International Con-
ference on Robotics and Automation (ICRA), Anchorage, Alaska, May
2010.

K. Nguyen, A. Eklund, H. Ohlsson, F. Hernell, P. Ljung, C. Forsell,
M. Andersson, H. Knutsson, and A. Ynnerman. Concurrent volume
visualization of real-time fMRI. In Proceedings of the IEEE Interna-
tional Symposium on Volume Graphics 2010, Norrköping, Sweden,
May 2010.
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∗ H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARX-models
using sum-of-norms regularization. Automatica, 46(6):1107–1111,
2010d.

A. Eklund, M. Andersson, H. Ohlsson, A. Ynnerman, and H. Knutsson.
A brain computer interface for communication using real-time fMRI.
In Proceedings of the International Conference on Pattern Recogni-
tion 2010, Istanbul, Turkey, August 2010.

H. Ohlsson and L. Ljung. Semi-supervised regression and system
identification. In X. Hu, U. Jonsson, B. Wahlberg, and B. Ghosh, ed-
itors, Three Decades of Progress in Control Sciences. Springer Verlag,
December 2010a. To appear.

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State smoothing by
sum-of-norms regularization. In Proceedings of the 49th IEEE Con-
ference on Decision and Control, Atlanta, USA, December 2010a. To
appear.

∗ H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. Trajectory genera-
tion using sum-of-norms regularization. In Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, USA, December
2010b. To appear.

T. Chen, T. B. Schön, H. Ohlsson, and L. Ljung. Decentralization of
particle filters using arbitrary state partitioning. In Proceedings of
the 49th IEEE Conference on Decision and Control, Atlanta, USA, De-
cember 2010a. To appear.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. On climate reconstruction using bivalves: Three meth-
ods to interpret the chemical signature of a shell. Computer Methods
and Programs in Biomedicine, 2010a. Accepted for publication.

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, F. Dehairs, and
J. Schoukens. A nonlinear multi-proxy model based on manifold
learning to reconstruct water temperature from high resolution trace
element profiles in biogenic carbonates. Geoscientific Model Devel-
opment, 2010b. Accepted for publication.

T. Chen, T. B. Schön, H. Ohlsson, and L. Ljung. Decentralized particle
filter with arbitrary state partitioning. IEEE Transactions on Signal
Processing, 2010b. Accepted for publication.

∗ H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State estimation un-
der abrupt changes using sum-of-norms regularization. Automatica,
2010c. Submitted, under revision.
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∗ H. Ohlsson and L. Ljung. Weight determination by manifold regular-
ization. In Distributed Decision-Making and Control, Lecture Notes
in Control and Information Sciences. Springer Verlag, 2010b. Submit-
ted.

∗ H. Ohlsson and L. Ljung. Piecewise affine system identification using
sum-of-norms regularization. In Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011. Submitted.

∗ T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer func-
tions, regularizations and Gaussian processes – Revisited. In Proceed-
ings of the 18th IFAC World Congress, Milano, Italy, 2011. Submitted.

T. Falck, H. Ohlsson, L. Ljung, J. A.K. Suykens, and B. De Moor. Seg-
mentation of times series from nonlinear dynamical systems. In Pro-
ceedings of the 18th IFAC World Congress, Milano, Italy, 2011. Sub-
mitted.

M. P. Deisenroth and H. Ohlsson. General perspective to Gaussian
filtering and smoothing: Explaining current and deriving new algo-
rithms. In Proceedings of the American Control Conference (ACC),
2011, San Francisco, USA, 2011. Submitted.

1.6 Contributions

Sparseness has had a huge impact on neighboring scientific disciplines, such as
machine learning and signal processing, but has had very little effect on system
identification. One of the major contributions of this thesis is therefore the new
developments in system identification using sparsity. Relevant readings are Pa-
pers A and B in Part II of this thesis. See also related contributions in signal
processing, Papers C and D.

Manifold learning, unsupervised learning and semi-supervised learning are well
establish areas in machine learning. In system identification, these subjects have
hardly been given any consideration at all. A contribution of this thesis is there-
fore the increased understanding for these subjects and how they can be of use in
system identification. Relevant reading is Paper E in Part II of this thesis.

The author of this thesis has also carried out research in functional Magnetic Reso-
nance Imaging (fMRI). This contribution is described in Paper G in Part II of this
thesis.

1.7 Thesis Outline

The thesis is divided into two parts. The first part contains motivations and back-
ground theory and the second part a collection of papers.
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1.7.1 Outline of Part I

Chapter 2 serves as an introduction to mathematical modeling and regression
and introduces the fundamental knowledge and the necessary notation for the
subsequent chapters. Readers familiar with the subject can skip this chapter.
Chapter 3 gives a brief introduction to state estimation. Chapter 4 discusses reg-
ularization for sparseness and Chapter 5 discusses regularization for smoothness.
The last chapter of Part I gives a conclusion and discusses interesting future re-
search directions.

1.7.2 Outline of Part II

Part II presents a collection of papers that is relevant for the thesis.

The four first papers further develop the theory presented in Chapters 3 and 4.
Paper A,

H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of ARX-models us-
ing sum-of-norms regularization. Automatica, 46(6):1107–1111, 2010d.

discusses what sparseness and segmented ARX models have in common. A new
approach using regularization to estimate segmented ARX models is presented.
The author of this thesis was the major contributor in writing this paper and in
the research prior the paper. The author of this thesis also came up with the
idea of using regularization for sparseness in the estimation of segmented ARX
models. This paper inspired to several other applications of regularization for
sparseness, see e.g., Ohlsson et al. (2010a,b,c); Ohlsson and Ljung (2011); Falck
et al. (2011). This work also initialized collaboration with Professor Stephen Boyd
at Stanford University.

Paper B,

H. Ohlsson and L. Ljung. Piecewise affine system identification using
sum-of-norms regularization. In Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011. Submitted.

extends the theory presented in Paper A to piecewise affine systems. A regulariza-
tion approach is again taken. The author of this thesis was the major contributor
in writing the paper and in the research prior the paper. The author of this thesis
also came up with the idea of using regularization for sparseness in piecewise
affine system identification.

Paper C,

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. State estimation un-
der abrupt changes using sum-of-norms regularization. Automatica,
2010c. Submitted, under revision.

discusses how sparseness can help in state estimation when abrupt changes are
present, e.g., load disturbances. The author of this thesis was the major contrib-
utor in writing the paper and in the research prior the paper. It was Professor
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Lennart Ljung’s idea to use regularization for sparseness together with state es-
timation. Parts of the theory presented in this paper have also been presented
in Ohlsson et al. (2010a).

Paper D,

H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd. Trajectory genera-
tion using sum-of-norms regularization. In Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, USA, December
2010b. To appear.

presents a model-based trajectory generation scheme. Sparsity and regulariza-
tion are here used to give a compact representation for the trajectory, something
that is desired when communication and storage are limited. The author of this
thesis was the major contributor in writing the paper and in the research prior
the paper. It was Professor Fredrik Gustafsson’s idea to use regularization for
sparseness for trajectory generation.

The fifth paper, Paper E,

H. Ohlsson and L. Ljung. Weight determination by manifold regular-
ization. In Distributed Decision-Making and Control, Lecture Notes
in Control and Information Sciences. Springer Verlag, 2010b. Submit-
ted.

discusses a novel regression method Weight Determination by Manifold Regulariza-
tion (WDMR). The regression method has strong bounds with manifold learning
and has inherited properties thereof. Unlike most methods in system identifica-
tion, WDMR is a semi-supervised regression method. WDMR uses regularization
to control for smoothness and is therefore related to theory developed in Chap-
ter 5. The author of this thesis was the major contributor in writing the paper
and in the research prior the paper. A pre-study was presented in Ohlsson et al.
(2007). WDMR, in its present formulation, was first presented in Ohlsson et al.
(2008b). A number of interesting applications and extensions of WDMR have
also been presented, e.g., Ohlsson (2008); Ohlsson and Ljung (2009). The appli-
cation to temperature reconstruction from bivalves is probably the most exciting,
see e.g., Ohlsson et al. (2009); Bauwens et al. (2009a, 2010a,b). The work behind
WDMR has led an extensive collaboration with researchers at Vrije Universiteit
Brussel. The author of this thesis came up with the idea behind WDMR.

Paper F,

T. Chen, H. Ohlsson, and L. Ljung. On the estimation of transfer func-
tions, regularizations and Gaussian processes – Revisited. In Proceed-
ings of the 18th IFAC World Congress, Milano, Italy, 2011. Submitted.

continues the discussion of regularization for smoothness and examines how reg-
ularization can be used in linear system identification. The theory presented in
Paper F is also related to theory developed in Chapter 5. The author of this thesis
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was an active contributor in the work prior writing the paper and in writing the
paper.

Paper G,

H. Ohlsson, J. Rydell, A. Brun, J. Roll, M. Andersson, A. Ynnerman,
and H. Knutsson. Enabling bio-feedback using real-time fMRI. In
Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, December 2008c.

presents a real-time fMRI bio-feedback setup. fMRI is a method for measuring
brain activity. The conventional use of fMRI is in “batch-mode”. The subject is
first scanned for 30 minutes. Then the data is analyzed and brain activity de-
tected and located using smoothing on the batch of fMRI measurements. The
setup presented here hence presents a real-time fMRI setup i.e., fMRI measure-
ments are analyzed as they are acquired. The setup presented led the way for sev-
eral interesting real-time fMRI studies e.g., Eklund et al. (2009a,b, 2010); Nguyen
et al. (2010) and shows some more applied research conducted by the author of
this thesis. The author of this thesis was the main contributor to the presented
setup.





2
Mathematical Modeling and

Regression

Models summarize available knowledge about the system. Available knowledge
can be physical first principles describing the behavior of the system or it can be
measurements of system specific quantities.

2.1 Types of Models and Modeling

When only physical first principles are used, modeling, or the act of finding a
model, is referred to as white-box modeling. When modeling is solely based on
measurements it is referred to as black-box modeling and when physical principles
are combined with measurements, gray-box modeling.

A model (and also a system) is either dynamic or static. The output of a dynamic
model depends on previous and current system inputs, while a static model only
depends on the system input at the moment. One may say that a static model is
memoryless, while a dynamic model contains a memory in which past inputs are
stored. The words “dynamical” and “dynamic” are used interchangeably in the
literature.

A model is made up of a model structure and a set of model parameters. Model
parameters are quantities that are chosen to make the model imitate the specific
system under consideration. For example, a mass-spring system can readily be
modeled by a second order differential equation

d2xt
dt2

+ a
dxt
dt

+ bxt = c (2.1)

in the position x of the mass. To make the model imitate a specific mass-spring
system, the model parameters a, b and c have to be set. This could e.g., be done

15
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by comparing predicted mass positions of the model with observed positions. A
second order differential equation is the model structure in this case and the co-
efficients a, b and c, the model parameters. For the second order differential
equation model, the number of parameters is fixed and equal to three. That the
number of model parameters is fixed characterizes a parametric model. The num-
ber of parameters of a non-parametric model typically grows with the number of
observations available for estimating the model. It may seem a bit counter intu-
itive that a non-parametric model has parameters and often considerably more
parameters than a parametric model, but that is the convention.

The quantity of interest can either belong to a set of a finite number of elements,
and is then said to be qualitative. When the quantities are qualitative they are
often denoted labels and the act of modeling, classification. Or, if on the other
hand, the quantity of interest can take any value in e.g., an interval, the act of
modeling is referred to as regression. The considered quantities are then said to
be quantitative. This thesis only treats quantitative quantities and the regression
problem.

It is also common to separate a Bayesian approach to modeling from a non-
Bayesian approach, sometimes called a frequentist’s or a classical approach. Sec-
tions 2.4 and 2.5 take a non-Bayesian approach and Section 2.9 discusses a
Bayesian approach to modeling.

2.2 The Regression Problem

Many problems in estimation and identification can be formulated as regression
problems. In a regression problem we are seeking to determine the relationship
between a regression vector ϕ (input, independent variable) and a quantity of inter-
est, a quantitative variable y (output, dependent variable), here called the output.
Basically this means that we would like to find the function f0 that describes the
relationship

y = f0(ϕ). (2.2)

With ϕ ∈ Rnϕ and y ∈ R, f0 is a mapping from Rnϕ → R. For simplicity, y ∈ R
will be assumed throughout the rest of this chapter.

Measuring always introduces some uncertainty, which motives the introduction
of a discrepancy or noise term e,

y = f0(ϕ) + e. (2.3)

This implies that there is no longer a unique y corresponding to a ϕ. We will
assume that the noise sequence {e} obtained as f0 is measured multiple times is
constructed from independent and identically distributed (i.i.d.) zero mean stochas-
tic variables. Let further pe be the probability distribution associated with the
random variable e.

In practice our estimate of f0(ϕ) has to be computed from a limited number of
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observations of (2.3). The problem is hence to observe a number of connected
pairs {ϕ, y}, and then based on this information be able to provide a guess or
estimate for f0 that is related to any given, new, value of ϕ.

The estimate of f0, or the model, that we choose to work with can either be lin-
ear or nonlinear. For a linear model, the model output is a linear function of
the regressors while for a nonlinear model, the model output is allowed to be a
nonlinear function of the regressors.

2.3 Estimation, Validation and Test Data

Given a set of observations, {(ϕt , yt)}t∈No
, No ⊂ Z, it is often a good idea to sepa-

rate the observation data set into three sets:

• The estimation data set is used to compute the model, e.g., to compute the
model parameters in a parametric model. The estimation data set will be
denoted by {(ϕt , yt)}t∈Ne

, Ne ⊆ No. Let also Ne , card(Ne).

• The validation data set is used to examine an estimated model’s ability to
predict the output of a new set of regressor data. Having a number of
prospective models of different structures, the validation data can be uti-
lized to choose the best performing model structure. For example the num-
ber of delayed system inputs and outputs used in the regressors in a para-
metric model could be chosen using the validation data. The validation
data set will be denoted by {(ϕt , yt)}t∈Nv

, Nv ⊆ No, Nv
⋂
Ne = ∅. Let also

Nv , card(Nv). How the validation data is used is discussed in Section 2.5.

• The test data set is used to test the ability of the chosen model (with the
parameter choice from the estimation step and the structure choice from
the validation step) to predict new outputs. The test data set can be used to
gain confidence for the chosen model. The test data set will be denoted by
{(ϕt , yt)}t∈Nt

, Nt ⊆ No, Nt
⋂
Ne = ∅, Nt

⋂
Nv = ∅. Let also Nt , card(Nt).

2.4 Fitting a Model

Having divided the observations into an estimation, validation and test data set,
we are ready to estimate a model. The conventional approach within system
identification is to make use of a parametric model f (ϕt , θ), which is hopefully
flexible enough to imitate the transformation f0 in (2.3). Here θ is used to denote
the model parameters. Examples of structures that will be used in this thesis are:

• The Auto-Regressive with eXogenous variables (ARX) model structure. This
structure leads to a linear model. If we consider a single-input single-
output dynamic system with the input ut and the output yt , the ARX model
takes the form
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f (ϕt , θ) = ϕTt θ, ϕt =
[
−yt−1 . . . −yt−na ut−1 . . . ut−nb

]T
. (2.4)

The quantities na and nb are parameters of the model structure.

• The Finite Impulse Response (FIR) model structure. This structure also leads
to a linear model. If we again let ut be an input of a single-input single-
output dynamic system, the FIR model takes the form

f (ϕt , θ) = ϕTt θ, ϕt =
[
ut−1 . . . ut−nb

]T
. (2.5)

nb is the order of the FIR model.

For more on the model structures briefly introduced above, and several other
model structures used in system identification, see e.g., Ljung (1999, Chap. 4).

f (ϕt , θ) is adjusted to the regressor-output pairs of the estimation data set
{(ϕt , yt)}t∈Ne

by choosing θ as

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
, (2.6)

where l : R → R is a function of the prediction error yt − f (ϕt , θ) and typically
chosen as a norm. In system identification, the use of (2.6) to estimate a model
parameter is a special case of the Prediction Error Method (PEM, see e.g., Ljung
(1999, 2002)). Also, if we set l as the negative logarithm of the measurement
noise distribution, i.e., l( · ) = − log pe( · ), then θ̂ of (2.6) equals the Maximum
Likelihood Estimate (MLE) of θ (see e.g., Ljung (2002)).

With measurement noise present, obtaining a perfect fit i.e.,∑
t∈Ne

l
(
yt − f (ϕt , θ̂)

)
= 0, (2.7)

is not desirable and an extreme case of overfitting. Overfitting is a problem that
can occur when fitting a model and means that the model has been adjusted to
the particular measurement noise realization. Overfitting is primarily a problem
for flexible models and to chose a model structure just flexible enough to imitate
f0 (and not flexible enough to be able to imitate the noise) would be ideal.

There are a number of approaches to find what is “just flexible enough”. Most
approaches can be seen belonging to either cross validation or regularization.

2.5 Cross Validation

In Cross Validation (CV) the validation data set {(ϕt , yt)}t∈Nv
is utilized to find

what is “just flexible enough”. Since the measurement noise e of the validation
data set is impossible to predict, the best possible would be to perfectly predict
the outcome of the deterministic part of (2.3) i.e., f0(ϕ). Therefore, for a number
of candidate models fi(ϕ, θ̂i), i = 1, . . . , m (θ̂ found using (2.6)), a model is chosen
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by

arg min
fi (ϕ,θ̂i ),i=1,...,m

∑
t∈Nv

l
(
yt − fi(ϕt , θ̂i)

)
. (2.8)

This type of cross-validation is the most common in system identification. There
are however several other types of cross validation, see e.g., (Hastie et al., 2001,
pp. 214-217).

To evaluate (2.8) we need to evaluate f (ϕ, θ) at the regressors of the validation
data set. To compute predictions for f0 at regressors not included in the esti-
mation data set is called generalization (Bishop, 2006, p. 2). For most practical
purposes it is not enough to find a model f (ϕ, θ̂) that well imitates f0 at the es-
timation data set, generalization is therefore an important property of a model.
This is sometimes referred to as the model’s ability to generalize to unseen data.

2.6 Regularization

Regularization is in general a methodology for making an ill-posed problem well-
posed, but regularization can also be used to control for overfit. We care for both
these applications in this thesis. We however choose to focus on the type of regu-
larization (referred to as a standard regularization method in Poggio et al. (1985))
obtained by adding a penalty term J to the criterion of fit. The penalty J should
be regarded as a means to introduce a priori knowledge.

In particular, given a number of candidate models fi(ϕ, θ̂i), i = 1, . . . , m (θ̂ found
using (2.6)), we can use regularization to select a model “just flexible enough” by
considering a criterion

arg min
fi (ϕ,θ̂i ),i=1,...,m

∑
t∈Ne

l
(
yt − fi(ϕt , θ̂i)

)
+ J(fi). (2.9)

J should then be a flexibility penalty conveying the message that we wish an as
“simple” model as possible that fits the estimation data. Notice that to choose a
model using (2.9) only requires the estimation data set while cross-validation re-
quires both an estimation and a validation data set. Regularization may therefore
be a good choice when the number of observation data is limited.

The Akaike Information Criterion (AIC, Akaike (1973)),

arg min
fi (ϕ,θ̂i ),i=1,...,m

−2
∑
t∈Ne

log pe
(
yt − fi(ϕt , θ̂i)

)
+ 2dim(θ̂i), (2.10)

with θ̂i found using l( · ) = − log pe( · ) in (2.6) (MLE of θ), is an example of this
type of usage of regularization.
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Example 2.1: ARX and Model Selection
Consider a single-input single-output dynamic system with an input ut and an

output yt . Let the candidate models be ARX models with different nb’s (see (2.4)
for ARX and nb). Let e.g.,

f1(ϕt , θ1) =ϕTt θ1, na = 1, nb = 1, (2.11a)

f2(ϕt , θ2) =ϕTt θ2, na = 1, nb = 2, (2.11b)

...

fm(ϕt , θm) =ϕTt θm, na = 1, nb = m, (2.11c)

and compute θ1, θ2, . . . , θm using (2.6). The flexibility of an ARX model grows
with nb, a suitable choice of penalty J in (2.9) could therefore be

J(fi) = nb for fi (2.12)

if an as “simple” model as possible but with a reasonable good fit is sought.

Regularization can also be used to control the regressor parameter value of a
single model. f (ϕt , θ) is then adjusted to the observations by choosing θ as

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
+ λJ(θ, ϕt), (2.13)

rather than using (2.6). J(θ, ϕt) again serves as a cost on flexibility and is often
used to penalize non-smooth estimates (this is discussed in Chapter 5). However,
J(θ, ϕt) could also be used to express the prior knowledge of a sparse parameter
vector θ (this is discussed in Chapter 4). λ ∈ R+ is seen as a design parameter and
regulates the trade-off between fit to the estimation data and flexibility. Choosing
the “just flexible enough” model structure is now a matter of choosing the right
λ-value. λ is denoted the regularization parameter or regularization constant and θ̂
as a function of regularization parameter, the regularization path.

An expression of the form (2.13) is of great importance for this thesis and will be
a key ingredient in the theory developed in Chapters 4 and 5 and in several of the
papers of Part II. (2.13) is a type of shrinkage method as it is often used to shrink
regression parameters toward zero (Hastie et al., 2001, p. 59).

Example 2.2: ARX and `2-Regularization
Consider again a single-input single-output dynamic system with an input ut

and an output yt . Let us use an ARX model (2.4) and fix na and nb.

Let l( · ) = ( · )2 in (2.6). For this particular choice, (2.6) is referred to as the Least
Squares (LS) problem. Let {(ϕt , yt)}

Ne
t=1 be a given estimation data set. If we now

define

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
, (2.14)
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(2.6) can be written as

θ̂ = arg min
θ

‖y − Φθ‖22 = arg min
θ

(y − Φθ)T (y − Φθ). (2.15)

We can characterize the solution of (2.15) by determining if

y = Φθ (2.16)

is overdetermined, underdetermined or has a unique solution. It is useful to sepa-
rate between the three cases:

(2.16) is overdetermined. In this case there are more observations than model
parameters. This is the most studied case in system identification. If Φ has
full column rank i.e.,

rank(Φ) = dim(θ), (2.17)

then θ̂ in (2.15) can be computed explicitly to

θ̂ = (ΦTΦ)−1ΦT y. (2.18)

(ΦTΦ)−1ΦT is known as the Moore-Penrose pseudoinverse and generally de-
noted by Φ†. Geometrically, Φθ is a linear combination of the columns of Φ.
f (ϕ, θ) is hence restricted to the plane spanned by the columns of Φ. (2.15)
can then be interpreted as the problem of finding the vector in the plane
spanned by the columns of Φ that is the closest, in an Euclidean sense, to
the vector y. The orthogonal projection of y onto the plane spanned by the
columns of Φ,

Φ(ΦTΦ)−1ΦT y, (2.19)

is well known to minimize this distance. (2.18) should therefore be seen as
a projection onto the plane spanned by the columns of Φ. When Φ has full
rank, (2.15) has a unique solution. If Φ does not have full rank, there exits
a lower number columns (< dim(θ)) that span the plane. θ̂ is therefore no
longer unique.

The ARX model f (ϕt , θ̂) does not, in general, perfectly predict the outputs
in the estimation data set, but since measurement noise is present, this is
preferred over an overfit.

(2.16) has a unique solution. Assume Φ is quadratic and has full rank, RNe is
then spanned by the columns of Φ which also make up a basis for RNe . The
task is now to express y in this basis. We hence want to solve the equation
system

y = Φθ. (2.20)

(2.20) is solved by

θ̂ = Φ−1y. (2.21)

The inverse exists since Φ is quadratic and has full rank. For θ̂ = Φ−1y a
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perfect fit is obtained, i.e.,

‖y − Φθ̂‖22 = 0. (2.22)

It is worth notice that the Moore-Penrose pseudoinverse in this case reduces
to the ordinary inverse since

Φ† = (ΦTΦ)−1ΦT = Φ−1Φ−TΦT = Φ−1. (2.23)

(2.18) hence still holds.

(2.16) is underdetermined. In this case, the columns of Φ construct an over com-
plete basis for RNe . There is hence an infinite number of θs that obtain a
perfect fit i.e.,

‖y − Φθ‖22 = 0. (2.24)

(2.15) is hence ill-posed. Regularization can here be used to express which
one of these infinite solutions that is desired.

The Moore-Penrose pseudoinverse is for this case not well defined, since
ΦTΦ is singular.

Remark 2.1. If (2.16) is either overdetermined or has a unique solution, (2.15) is a strictly
convex optimization problem and has therefore a unique solution (see e.g., Bertsekas et al.
(2003, Prop. 2.1.2)). If (2.16) is underdetermined, (2.15) is convex and any minimizing θ̂
is therefore a global minimum (see e.g., Boyd and Vandenberghe (2004, p. 138)). θ̂ may
however not be unique in this case.

Let us assume that we have insight that tells us that θ should be “small”. We
could then use regularization to reduce the flexibility of f (ϕ, θ) = ϕT θ and to
only allow models with a small θ. That would e.g., help us find a unique model if
(2.16) is underdetermined. However, it could also be used to reduce the flexibility
of a model to control for overfit and find a “just flexible enough” model ((2.16)
does not need to be underdetermined to use regularization for this purpose). Let
us say that we would be satisfied if ‖θ‖22 is kept small. Using regularization we
can express this prior knowledge/insight as

θ̂ = arg min
θ

‖y − Φθ‖22 + λ‖θ‖22, λ ∈ R+. (2.25)

(2.25) is an `2-regularized least squares problem, often referred to as ridge regression
or Tikhonov regularization (Hoerl and Kennard (1970), see also Hastie et al. (2001),
p. 59). Since the objective function is quadratic in θ, an explicit expression for
θ̂ can be computed. The gradient with respect to θ of the objective function of
(2.25) becomes

∇θ
(
‖y − Φθ‖22 + λ‖θ‖22

)
= −2ΦT (y − Φθ) + 2λθ. (2.26)

Setting the gradient equal to zero and solve gives

θ̂ = (ΦTΦ + λI)−1ΦT y. (2.27)

(2.27) and (2.18) take a very similar form. And in fact, adding a small diagonal
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matrix λI to ΦTΦ to make the Moore-Penrose pseudoinverse well defined was
the main motivation for ridge regression when it was introduced by Hoerl and
Kennard (1970).

2.7 Bias-Variance Tradeoff

Let us assume that an estimate of f0 at the regressor ϕ∗ is desired. To find what
is “just flexible enough” can then be shown to be a matter of finding a suitable
tradeoff between variance

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

(2.28)

and bias

f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]. (2.29)

This can be understood as follows. Given an estimation data set, we estimate θ.
Since the y-measurements in the estimation data set are noisy, they are inherently
stochastic and so will also θ̂ be. It therefore makes sense to study the quantity

Eθ̂

[(
f0(ϕ∗) − f (ϕ∗, θ̂)

)2
]

(2.30)

as a measure of performance (for estimating f0 at ϕ∗). The expectation is here
taken with respect to θ̂. This quantity is called the Mean Squared Error (MSE). To
minimize the MSE would be ideal and was earlier referred to as finding a model
“just flexible enough”. To see how the bias and variance relate to MSE, add and
subtract Eθ̂[f (ϕ∗, θ̂)] in (2.30). We get

Eθ̂

[(
f0(ϕ∗) − f (ϕ∗, θ̂)

)2
]

= Eθ̂

[(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)] + Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

= Eθ̂

[(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
+

(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2

+2
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)]
=
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
+Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]
.

The first term (
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
(2.31)

is the squared bias and the second term

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

(2.32)

is the variance. The bias is due to limitations in our model structure and the
variance term is due to the stochastic nature of our estimation data set (the mea-
surement noise). However, both the bias and the variance also depend on the cost
function used to find θ̂.
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Flexible models generally give high variance, but low bias, whereas non-flexible
models give low variance, but high bias.

Example 2.3: Regularization and the Bias-Variance Tradeoff
Consider the single-input single-output system (δ( · ) the Dirac delta function)

yt =
n∑
k=1

g0
k ut−k + et , E[et] = 0, E[etes] = δ(t − s)σ2, ∀t, s ∈ N . (2.33)

The sequence {g0
k }
n
k=1 is the impulse response of the system i.e., the response to an

impulse (ut = δ(t) in (2.33) gives yt = g0
t + et , t = 1, . . . , n, yt = et , t = n + 1, n +

2, . . . ). Let us estimate the impulse response. Assume that we use an nth order
FIR model (see (2.5))

f (ϕt , θ) = ϕTt θ, ϕt =
[
u(t − 1) . . . u(t − n)

]T
, θ ∈ Rn. (2.34)

Let {(ϕt , yt)}
Ne
t=1 be the estimation data set and define

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
,

Λ ,
[
e1 . . . eNe

]T
, θ0 ,

[
g0

1 . . . g0
n

]T
.

(2.35)

Consider now the `2-regularized least squares criterion

θ̂ = arg min
θ

‖y − Φθ‖22 + θTDθ, D ∈ Rn×n, D � 0, (2.36)

with a solution (see (2.27))

θ̂ = (ΦTΦ + D)−1ΦT y. (2.37)

The bias for an estimate at ϕ∗ is then readily computed to

ϕT∗ θ0 − Eθ̂[ϕT∗ θ̂] =ϕT∗ θ0 − Ey[ϕT∗ (ΦTΦ + D)−1ΦT y] (2.38a)

=ϕT∗ θ0 − ϕT∗ (ΦTΦ + D)−1ΦT EΛ[Φθ0 + Λ] (2.38b)

=ϕT∗ θ0 − ϕT∗ (ΦTΦ + D)−1ΦTΦθ0 (2.38c)

and the variance to

Eθ̂

[(
Eθ̂[ϕT∗ θ̂] − ϕT∗ θ̂

)2
]

= Ey
[(
ϕT∗ (ΦTΦ + D)−1ΦTΦθ0 − ϕT∗ (ΦTΦ + D)−1ΦT y

)2
]

= EΛ
[(
ϕT∗ (ΦTΦ + D)−1ΦT

(
Φθ0 − (Φθ0 + Λ)

))2]
= EΛ

[(
ϕT∗ (ΦTΦ + D)−1ΦTΛ

)2
]

=ϕT∗ (ΦTΦ + D)−1ΦT EΛ[ΛΛT ]Φ(ΦTΦ + D)−1ϕ∗

=σ2ϕT∗ (ΦTΦ + D)−1ΦTΦ(ΦTΦ + D)−1ϕ∗. (2.39)

Let now D = λIn, λ ≥ 0. Then, if the estimation data input ut is chosen as zero
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mean white noise with variance µ and for a large Ne, it holds that

ΦTΦ ≈ NeµIn. (2.40)

If ΦTΦ = NeµIn is used in (2.38) and (2.39) the bias becomes

ϕT∗ θ0 − Eθ̂[ϕT∗ θ̂] =
(

λ
Neµ + λ

)
ϕT∗ θ0 (2.41)

and the variance

Eθ̂

[(
Eθ̂[ϕT∗ θ̂] − ϕT∗ θ̂

)2
]

= σ2 Neµ

(Neµ + λ)2ϕ
T
∗ ϕ∗. (2.42)

Notice that when λ = 0 we obtain the unbiased least squares estimate. The vari-
ance for the least squares estimate is however larger than the variance of an esti-
mate obtained for a small positive λ. A small positive λ causes a biased estimate
though. Figure 2.1 gives a sketch of how the typical variance and bias depend on
λ.
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Figure 2.1: Bias-variance visualization for regularization. The squared

bias
(
f0(ϕ∗) − Eθ̂[f (ϕ∗, θ̂)]

)2
is showed using the gray line, the variance

Eθ̂

[(
Eθ̂[f (ϕ∗, θ̂)] − f (ϕ∗, θ̂)

)2
]

using the dashed line and the MSE using the

black line.

We will return to impulse response identification in Paper F and explore more
sophisticated choices of D-matrix. In fact, some of the most recent contributions
in impulse response identification use `2-regularization, see e.g., Pillonetto and
De Nicolao (2010).
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2.8 Performance Measures

To evaluate the prediction performance of different models a performance mea-
sure is needed. For a given test data set {(ϕt , yt)}t∈Nt

and a model f (ϕ, θ̂), we
choose to use 1 −

√√√√ ∑
t∈Nt

∣∣∣yt − f (ϕt , θ̂)
∣∣∣2∑

t∈Nt

∣∣∣yt − 1
Nt

∑
s∈Nt ys

∣∣∣2
 × 100 (2.43)

as a performance measure. We will call the computed quantity fit and express us
by saying that a prediction has a certain percentage fit to a set of data.

At some point in the thesis the Mean Absolute Error (MAE)

1
Nt

∑
t∈Nt

∣∣∣yt − f (ϕt , θ̂)
∣∣∣ (2.44)

will also be used.

2.9 Bayesian Modeling

In Bayesian modeling, or Bayesian inference, probability distributions are used to
represent stochasticity and uncertainty. For a parametric model, this implies that
a distribution over parameter-values is computed rather than a single regressor
parameter estimate θ̂. Also the predictions will be distributions over possible
estimates rather than a single function-value for a given ϕ.

A Bayesian practitioner argues that there are two sources of information. The
prior knowledge about the system and the observations. The prior knowledge
or prior believes have to be formulated as a probability distribution, denoted a
prior. The prior believes then get updated using observations to form a posterior,
an updated probability distribution. How to weight together the prior and the
observations is given by Bayes’ theorem (Bayes, 1763):

Theorem 2.1 (Bayes’ Theorem). Let p(θ) be a prior, p
(
{yt}t∈Ne

∣∣∣θ, {ϕt}t∈Ne

)
the

likelihood of observing the outputs {yt}t∈Ne
given {ϕt}t∈Ne

and θ, and
p({yt}t∈Ne

|{ϕt}t∈Ne
) the probability of observing the data {yt}t∈Ne

given {ϕt}t∈Ne
.

The posterior distribution for θ given the observations is then given by

p
(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
=
p
(
{yt}t∈Ne

∣∣∣θ, {ϕt}t∈Ne

)
p(θ)

p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne

) . (2.45)

The model f (ϕ, θ) is in a Bayesian framework represented by the predictive distri-
bution. Let y∗ be an observation of f0(ϕ∗), p

(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
the posterior dis-

tribution for θ given the observations (computed using Theorem 2.1) and let
p(y∗|ϕ∗, θ) be the likelihood of observing the output y∗ given ϕ∗ and θ. The pre-
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dictive distribution for y∗ is then given by

p
(
y∗
∣∣∣{(ϕt , yt)}t∈Ne

, ϕ∗
)

=
∫
p
(
y∗
∣∣∣ϕ∗, θ)p(θ∣∣∣{(ϕt , yt)}t∈Ne

)
dθ. (2.46)

The predictive distribution tells us how certain we are that the measured system
response to ϕ∗ takes a certain value.

It is common to let the prior p(θ) depend on a number of hyperparameters, let us
call these θh. The prior hence takes the form p(θ|θh). The hyperparameters are
usually determined from data by maximizing the log marginal likelihood,

log p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne
, θh

)
= log

∫
p
(
{yt}t∈Ne

∣∣∣{ϕt}t∈Ne
, θ

)
p(θ|θh)dθ. (2.47)

This approach to estimating θh is referred to as empirical Bayes (see e.g., Bishop
(2006, p. 165)).

Example 2.4: ARX Cont’d
Consider the ARX-type of system

yt = ϕTt θ + et , et ∼ N (0, σ2), (2.48)

with ϕt containing old system inputs and outputs. Assume that we are given the
observations {(ϕt , yt)}

Ne
t=1, know the (i.i.d.) measurement noise variance σ2 and

that we have reason to believe that θ is small. Taking a Bayesian approach, we
then compute the posterior distribution p

(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
as (see Theorem 2.1)

p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
=
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)p(θ)

p
(
{yt}

Ne
t=1

∣∣∣{ϕt}Ne
t=1

) . (2.49)

p(θ) is here the prior and N (yt ;ϕ
T
t θ, σ

2) is used to denote that yt ∼ N (ϕTt θ, σ
2).

To convey our belief of a small θ, and to get a closed-form expression for the
posterior, we choose to use a Gaussian prior, say N (0, I). If we first introduce

y ,
[
y1 . . . yNe

]T
, Φ ,

[
ϕ1 . . . ϕNe

]T
, (2.50)

the posterior can be computed using standard Gaussian identities, see e.g., Ras-
mussen and Williams (2005, p. 200), to

p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
=
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, I)∫
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, I)dθ
(2.51a)

=N (θ; (ΦTΦ + σ2I)−1ΦT y, (σ−2ΦTΦ + I)−1). (2.51b)

The predictive distribution is now readily computed to

p
(
y∗
∣∣∣ϕ∗, {(ϕt , yt)}Ne

t=1

)
=
∫
N (y∗;ϕ

T
∗ θ, σ

2)p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
dθ (2.52)

=N
(
ϕT∗ (ΦTΦ + σ2I)−1ΦT y, σ2 + ϕT∗ (σ−2ΦTΦ + I)−1ϕ∗

)
,
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with p
(
θ
∣∣∣{(ϕt , yt)}Ne

t=1

)
from (2.51).

Let us now explore what happens if we let the variance of the prior free and
instead uses N (0, θhI), θh ∈ R+, as a prior. We then see θh as a hyperparameter
and compute it by maximizing the log marginal likelihood. Using basic Gaussian
identities (see e.g., Rasmussen and Williams (2005, p. 200)), (2.47) can in this
particular setting be expressed as

log p
(
{yt}

Ne
t=1

∣∣∣{ϕt}Ne
t=1, θh

)
= log

∫
Π
Ne
t=1N (yt ;ϕ

T
t θ, σ

2)N (θ; 0, θhI)dθ (2.53a)

= logZ−1
∫
N

(
θ; σ−2A−1ΦT y, A−1

)
dθ (2.53b)

= logZ−1 (2.53c)

with A and the normalizing constant Z defined as

Z−1 ,
1

θ
dim(θ)/2
h

1
(2πσ2)Ne/2

|A|−1/2e
− 1

2σ2 ‖y−σ
−2ΦA−1ΦT y‖22−

1
2θhσ

4 ‖A
−1ΦT y‖22 (2.54)

A ,θ−1
h I + σ−2ΦTΦ. (2.55)

θh is then chosen according to

θ̂h = arg max
θh

logZ−1. (2.56)

For more details see e.g., Bishop (2006, pp. 152-158 and pp. 165-169).

Remark 2.2. Maximizing the posterior p
(
θ
∣∣∣{(ϕt , yt)}t∈Ne

)
with respect to θ gives the Max-

imum A Posteriori (MAP) estimate for θ. When the posterior is a Gaussian, the MAP is
given by the mean of the Gaussian. In Example 2.4, using N (0, I) as a prior, the MAP
estimate for θ became

(ΦT Φ + σ2I)−1ΦT y. (2.57)

This is the same expression as for ridge regression with λ = σ2, see (2.27). In fact, most
standard regularization methods can be given an interpretation as a MAP estimate.

2.10 High Dimensional Regression and Manifolds

We finish this chapter on mathematical modeling and regression by discussing
high dimensional regression, manifolds and manifold learning. We will return to
these subjects in Paper E.

High-dimensional regressors can lead to ill-posed regression problems. Espe-
cially if the dimension of the regressors exceeds the number of observations, spe-
cial care is needed, as we saw in Example 2.2. There are a number of strategies
for handling high-dimensional regression problems:

• The first strategy is feature selection. Feature selection is used to reduce
the dimension of the high-dimensional regressors by eliminating elements
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having e.g., little correlation with the output. The “new” low-dimensional
regressors are used instead of the original regressors in the regression al-
gorithm. An example is backward stepwise regression (see e.g., Daniel and
Wood (1980, pp. 84-85)). Also many regression methods using regulariza-
tion contain some type of feature selection. Popular regression methods
here include lasso (see e.g., Example 4.1) and ridge regression.

• The second strategy is feature extraction. Feature extraction is also used to
reduce the dimension of the high-dimensional regressors. However, rather
than eliminating elements, elements are combined. Partial Least Squares
(PLS, Wold (1966)) and Principle Component Analysis (PCA, Pearson (1901))
are popular methods used for feature extraction. Also manifold learning dis-
cussed in the next section can be used for feature extraction. The regression
method discussed in Paper E can also be seen using feature extraction.

Both feature selection and extraction are special cases of dimensionality reduction
methods.

Another issue which high-dimensional regression algorithms have to deal with
is the lack of data, commonly termed the curse of dimensionality (Bellman, 1961).
For instance, imagine N samples uniformly distributed in a d-dimensional unit
hypercube [0, 1]d . The N samples could for example be the regressors in the set
of observed data. To include 10% of the samples, we need on average to pick
out a cube with the side 0.1 for d = 1 and a cube with the side 0.8 for d = 10,
Figure 2.2 illustrates this. The data hence easily become sparse with increasing
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Figure 2.2: An illustration of the curse of dimensionality. Assume that the N
regressors are uniformly distributed in a d-dimensional unit cube. On aver-
age we then need to use a cube with a side of 0.1 to include 0.1N regressors
for d = 1, while for d = 10 we will need a cube with a side of 0.8.
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dimensionality. Consequently, given a regressor, the likelihood of finding one
of the estimation regressors close-by, gets smaller and smaller with increasing
dimension. This means that for high-dimensional regression problems, consid-
erably more samples are needed than for low-dimensional regression problems
to make accurate predictions. This also implies that regression methods using
pairwise distances between regressors, such as nearest neighbor (see e.g., Hastie
et al. (2001, p. 14)) and support vector regression (see Section 5.1), suffer. This
follows since, as dimensionality grows the distances between regressors increase,
become more similar and hence less expressive (see Figure 2.3 for an illustration
and Chapelle et al. (2006) and Bengio et al. (2006) for further readings).
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Figure 2.3: As the dimension of the regressor space increases (keeping the
number of regressors fixed) so does the distance from any regressor to all
other regressors. The distance to the closest estimation regressor, d1, of a
regressor is hence increasing with dimension. The distance to the second
closest estimation regressor, d2, is also increasing. A prediction has then
to be made based on more and more distant observations. In addition, the
relative distance, (d2 − d1)/d1, decreases, making the estimation data less
expressive. Rephrased in a somewhat sloppy way, a given point in a high-
dimensional space has many “nearest neighbors”, but all far away.

Very common, however, is that the regressors ϕ ∈ Rnϕ for various reasons are
constrained to lie in a subset Ω ⊂ Rnϕ . A specific example could be a set of
images of human faces. An image of a human face is a p × p matrix, each entry
of the matrix giving the gray tone in a pixel. If we vectorize the image, the image
becomes a point in Rp2

. However, since features, such as eyes, mouth and nose,
will be found in all images, the images will not be uniformly distributed in Rp2

.
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It is of special interest if Ω is a manifold.
Definition 2.1 (Manifold). A space M ⊆ Rnϕ is said to be a nz-dimensional
manifold if there for every point ϕ ∈ M exists an open set O ⊆ M satisfying:

• ϕ ∈ O.

• O is homeomorphic to Rnz , meaning that there exists a one-to-one relation
between O and a set in Rnz .

For details see e.g., Lee (2000, p. 33).

For the set of p × p pixel images of human faces e.g., the constraints implied by
the different features characterizing a human face, make the images reside on
a manifold enclosed in Rp2

, see e.g., Zhang et al. (2004). For fMRI (functional
Magnetic Resonance Imaging) the situation is similar. For further discussions
on fMRI data and manifolds, see Shen and Meyer (2005); Thirion and Faugeras
(2004); Hu et al. (2006). Basically all sets of data for which data points can be
parameterized using a set of parameters (fewer than the number of dimensions of
the data) reside on a manifold. Any algebraic relation between regressor elements
will therefore lead to regressors constrained to a manifold.

It is convenient to introduce the term intrinsic description for a nz-dimensional
parameterization of a manifold M. We will not associate any properties to this
description more than that it is nz-dimensional. An intrinsic description of a one-
dimensional manifold could for example be the distance from a specific point.

Remark 2.3. To express regressors in an intrinsic description is a way of doing feature
extraction. Using an intrinsic description of the regressors instead of the original regres-
sors in the regression algorithm may therefore be a way of making the regression problem
well-posed, see e.g., Ohlsson et al. (2007).

We illustrate the concepts of a manifold and intrinsic description with an
example.

Example 2.5: Manifold and Intrinsic Description
Lines and circles are examples of one-dimensional manifolds. A two-dimensional
manifold could for example be the surface of the earth. An intrinsic description
associated with a manifold is a parametrization of the manifold, for example lati-
tude and longitude for the earth surface manifold. Since the Universal Transverse
Mercator (UTM) coordinate system is another two-dimensional parametrization
of the surface of the earth and an intrinsic description, an intrinsic description is
not unique.

A common assumption in regression is to assume smoothness. We will refer to
the following assumption as the smoothness assumption:

Assumption A1 (The Smoothness Assumption). If two regressors ϕ1, ϕ2 are
close, then so should their corresponding outputs f0(ϕ1), f0(ϕ2) be.



32 2 Mathematical Modeling and Regression

If regressors are constrained to a manifold there is an alternative to the smooth-
ness assumption, commonly referred to as semi-supervised smoothness assump-
tion. The semi-supervised smoothness assumption reads (Chapelle et al., 2006):

Assumption A2 (The Semi-Supervised Smoothness Assumption). Two out-
puts f0(ϕ1), f0(ϕ2) are assumed close if their corresponding regressors ϕ1, ϕ2
are close on the manifold.

“Close on the manifold” here means that there is a short path included in the
manifold between the two regressors. The concept of geodesic distance is here
useful. The geodesic distance between two points on a manifoldM is the length of
the shortest path included in M between the two points. The geodesic distance
is assumed to be measured in the metric of the space in which the manifold is
embedded. “Close on the manifold” can therefore be replaced by “close in terms
of geodesic distance”.

It should be noticed that the semi-supervised smoothness assumption is less
conservative than the smoothness assumption. Hence, a function satisfying the
semi-supervised smoothness assumption does not necessarily need to satisfy the
smoothness assumption. Assumption A2 is illustrated in Example 2.6.

Example 2.6: The Semi-Supervised Smoothness Assumption
Assume that we are given a set of output-regressor pairs as shown in Figure 2.4.

The regressors contain the position data (latitude, longitude) of an airplane
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e

Figure 2.4: Longitude, latitude and altitude measurement (black dots) of an
airplane shortly after takeoff. Gray dots show the black dots projection onto
the regressor space.
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shortly after takeoff. The output is chosen as the altitude of the airplane. The
regressors thus being in R2 and the regressor/output space is R3. After takeoff
the plane makes a turn during climbing and more or less returns along the same
path in latitude and longitude as it just flown. The flight path becomes a one-
dimensional curve, a manifold, in R3. However, the regressors for this path also
belong to a curve, a manifold, in R2. This is therefore a case where the regres-
sors are constrained to a manifold. The distance between two regressors in the
regressor space can now be measured in two ways: the Euclidean R2 distance be-
tween points, and the geodesic distance measured along the curve, the manifold
path. It is clear that the output, the altitude, is not a smooth function of regres-
sors in the Euclidean space, since the altitudes vary substantially as the airplane
comes back close to the earlier positions during climbing. However, if we use
the geodesic distance in the regressor space, the altitude varies smoothly with
regressor distance.

To see what the consequences are for predicting altitudes, suppose that for some
reason, altitude measurements were lost for 8 consecutive time samples shortly
after takeoff. To find a prediction for the missing measurements, the average
of the three closest (in the regressor space, measured with Euclidean distance)
altitude measurements were computed. The altitude prediction for one of the
regressors is shown in Figure 2.5. The airplane turned and flew back on almost
the same path as it just had flown, the three closest estimation regressors will
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e

Figure 2.5: The prediction of a missing altitude measurement (big filled cir-
cle). The encircled dot shows the position for which the prediction was com-
puted. The three lines show the path to the three closest estimation regres-
sors.
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therefore sometimes come from both before and after the turn. Since the alti-
tude is considerably larger after the turn, the predictions will for some positions
become heavily biased. In this case, it would have been better to use the three
closest measurements along the flown path of the airplane. The example also mo-
tivates the semi-supervised smoothness assumption in regression.

Under the semi-supervised smoothness assumption, regression algorithms can
be aided by incorporating the knowledge of a manifold. High-dimensional re-
gression methods therefore have been modified to make use of the manifold and
to estimate it (Belkin et al., 2006; Yang et al., 2006; Ohlsson et al., 2007). Since
the regressors themselves contain information concerning the manifold, some re-
gression methods use both regression-output pairs and regressors. This type of
method is called semi-supervised regression or semi-supervised modeling methods.
In contrast, in supervised modeling a relation between regressors and outputs is
sought using a number of examples thereof i.e., regression-output pairs. Most re-
gression methods in system identification are supervised modeling methods. In
unsupervised modeling the situation is rather different. Only one quantity is con-
sidered there and the task is rather to find patterns in the set of observations of
this quantity. Semi-supervised modeling can be seen as a combination of super-
vised and unsupervised modeling.

2.11 Manifold Learning

Manifold learning is a fairly new research area aimed at finding, as the name sug-
gests, descriptions of data on manifolds or intrinsic descriptions. The area has
its roots in machine learning, and is a special form of nonlinear dimensionality re-
duction or nonlinear feature extraction. Some of the best known manifold learning
algorithms are isomap (Tenenbaum et al., 2000), Locally Linear Embedding (LLE,
Roweis and Saul (2000), discussed in the following section), Laplacian eigenmaps
(Belkin and Niyogi, 2003) and Hessian eigenmaps (HLLE, Donoho and Grimes
(2003)).

All manifold learning algorithms take as input a set of points sampled from some
unknown manifold. The points are then expressed in a parameterization of the
manifold, an intrinsic description (a set of points of the same dimension as the
manifold), by searching for a set of new points preserving certain properties
of the data. For example, Laplacian eigenmaps tries to preserve the Euclidean
distance between neighboring points. Isomap tries to preserve the geodesic dis-
tances i.e., the distance along the manifold, between points and locally linear
embedding and Hessian eigenmaps make assumptions about local linearity and
point neighborhoods which are aimed to be preserved. Manifold learning algo-
rithms are unsupervised algorithms and most will not give an explicit expression
for the map between high-dimensional points and their associated parameteriza-
tion values.
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2.11.1 Locally Linear Embedding

For finding intrinsic descriptions of data on a manifold, the manifold learning
technique Locally Linear Embedding (LLE) can be used. LLE is a manifold learning
technique which aims at preserving neighbors. In other words, given a set of
points {ϕt}Nt=1 residing on some nz-dimensional manifold in Rnϕ , LLE aims to
find a new set of coordinates {z1, . . . , zN }, zi ∈ Rnz , satisfying the same neighbor-
relations as the original points. The LLE algorithm can be divided into two steps:

Step 1: Define the wijs

Given data consisting of N real-valued vectors ϕi of dimension nϕ , the first step
minimizes the cost function

ε(w) =
N∑
i=1

∥∥∥∥∥∥∥∥ϕi −
N∑
j=1

wijϕj

∥∥∥∥∥∥∥∥
2

2

(2.58a)

with respect to w under the constraints{ ∑N
j=1 wij = 1,

wij = 0 if ‖ϕi − ϕj‖2 > Ci(K) or if i = j.
(2.58b)

Here, Ci(K) is chosen so that only K weights wij become nonzero for every i. In
the basic formulation of LLE, the number K and the choice of lower dimension
nz ≤ nϕ are the only design parameters, but it is also common to add a regular-
ization

Fr (w) ,
r
K

N∑
i=1

[wi1, . . . , wiN ]


wi1
...

wiN


N∑

j:wij,0

‖ϕj − ϕi‖22 (2.59)

to (2.58a), see de Ridder and Duin (2002); Roweis and Saul (2000).

Step 2: Define the zijs

In the second step, w is now fixed. Let zi be of dimension nz and minimize

Φ(z) =
N∑
i=1

∥∥∥∥∥∥∥∥2zi −
N∑
j=1

wijzj

∥∥∥∥∥∥∥∥
2

(2.60a)

with respect to z = [z1, . . . , zN ], and subject to

1
N

N∑
i=1

ziz
T
i = I (2.60b)

using the weights wij computed in the first step. The solution z to this optimiza-
tion problem is the desired set of nz-dimensional coordinates which will work as
an intrinsic description of the manifold. By expanding the squares we can rewrite
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Φ(z) as

Φ(z) =
N∑
i,j

(δij − wij − wji +
N∑
l

wliwlj )z
T
i zj (2.61a)

,
N∑
i,j

Mijz
T
i zj =

nz∑
k

N∑
i,j

Mijzkizkj = T r(zMzT ) (2.61b)

with M a symmetric N × N matrix with the ijth element

Mij = δij − wij − wji +
N∑
l

wliwlj . (2.62)

The solution to (2.60) is obtained by using Rayleigh-Ritz theorem, see e.g., Horn
and Johnson (1990, p. 176).

Theorem 2.2. With Φ given by (2.61), M by (2.62) and with νi the unit length
eigenvector of M associated with the ith smallest eigenvalue,[

ν1, . . . , νnz
]T

= arg min
z

Φ(z) s.t. zzT = NI. (2.63)

Remark 2.4. Notice that no explicit mapping is given, but more so an algorithm for com-
puting an intrinsic description. If new points are introduced, the algorithm has to be rerun
causing the intrinsic description for the old points to change.

The following example demonstrates how manifold learning or nonlinear feature
extraction can be used in regression.

Example 2.7: Climate Reconstruction Cont’d
Let us now return to the climate reconstruction example in the introductory

chapter, Example 1.1. Let us consider 10 shells grown in Belgium (see Ohlsson
et al. (2009) for details). Since the temperature in the water had been moni-
tored for these shells, this data set provides excellent means to test the ability to
predict water temperature from chemical composition measurements. For these
shells, the chemical composition measurements had been taken along the growth
axis of the shells and paired up with temperature measurements. Between 30
and 52 chronologically ordered measurement were provided from each shell, cor-
responding to a time period of a couple of months.

Measurements from five of these shells are shown in Figure 2.6. The figure shows
measurements of the relative concentrations of Sr/Ca, Mg/Ca and Ba/Ca (Pb/Ca
is also measured, but not shown in the figure). The line shown between mea-
surements connects the measurements coming from a shell and gives the chrono-
logical order of the measurements (two in time following measurements are con-
nected by a line). As seen in the figure, measurements are highly restricted to
a small region in the measurement space. Also, the water temperature (gray
level coded in Figure 2.6) varies smoothly in the high-density regions. This to-
gether with that it is a biological process generating data, motivates the semi-
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Figure 2.6: A plot of the Sr/Ca, Mg/Ca and Ba/Ca concentration ratio mea-
surements from five shells. Lines connects measurements (ordered chrono-
logically) coming from the same shell. The temperatures associated with the
measurements were color coded and are shown as different gray scales on
the measurement points.

supervised smoothness assumption when trying to estimate water temperature
(outputs) from chemical composition measurements (4-dimensional regressors).
Let us assume that the regressors are constrained to a one-dimensional manifold.
LLE can then be applied to the regressors of the 10 shells to give a parameteri-
zation of the assumed one-dimensional manifold, an intrinsic description. This
intrinsic description plotted against the measured water temperature is shown in
Figure 2.7.
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Figure 2.7: The regressors (expressed using an intrinsic description) plot-
ted against the measured water temperature. The intrinsic description was
computed by using LLE.
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As seen in Figure 2.7, a linear estimate in the LLE parameterization would achieve
a reasonably good estimate of the temperature.

2.12 Conclusion

This chapter served as an introduction to mathematical modeling and regression
and introduced the fundamental knowledge and the necessary notation for the
subsequent chapters. Several of the topics discussed are further discussed in
papers of Part II. For example, impulse response identification discussed in Ex-
ample 2.3 is the topic of Paper F and high dimensional regression, manifolds and
manifold learning are discussed in Paper E.



3
State Estimation

Dynamic systems are characterized by that their output depends on current and
past inputs. The effect that these inputs have had on the system is gathered in the
state, which contains valuable information for e.g., controllers and for decision
making. It is a common situation that only parts of the state can be measured.
Methods for recovering the full state of a dynamic system from these measure-
ments are referred to as state estimation techniques. State estimation techniques
use models to interpret the measured information.

3.1 The Standard Linear State-Space Model

The discrete-time standard linear state-space model with stochastic disturbances
(see e.g., Kailath et al. (2000, p. 161)) is given by

xt+1 = Atxt + Btut + Gtvt ,

yt = Ctxt + et ,
(3.1a)

where x is the state, u a known input, v process noise, y the output and e the
measurement noise. t index time. The process noise v and measurement noise e
are here assumed to be zero mean white noises (see e.g., Kailath et al. (2000, p. 4)):
sequences of independent random vectors

E[vt] = 0, E[et] = 0 ∀t
E[vtv

T
s ] = 0, E[ete

T
s ] = 0 if t , s

E[vtv
T
t ] = Qt , E[ete

T
t ] = Rt .

(3.1b)

The independence of the noise sequences is required in order to make xt a Markov
process.

39
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The model (3.1) with the process noise v being Gaussian is a standard model
for control applications. v then represents the combined effect of all those non-
measurable inputs that in addition to u affect the states. However, an equally
common situation is that v corresponds to an unknown input. It could be

• a load disturbance e.g., a step change in moment load of an electric motor,
a (up or down) hill for a vehicle, etc. (Sometimes, the term load disturbance
is used only for the case Bt = Gt .)

• an event that causes the state to jump, a change, see e.g., Gustafsson (2001).

Such unknown inputs are not naturally modeled as Gaussian noise. Instead it is
convenient to capture their unpredictable nature by (cf. eq (2.10)-(2.11) in Ljung
(1999))

vt = δtηt , (3.2)

where (not to be confused with the Dirac delta function denoted by δ( · ))

δt ,

0 with probability 1 − µ,
1 with probability µ,

ηt ∼ N (0, Q). (3.3)

This makes Qt = µQ in (3.1b). The matrices At and Gt in (3.1a) may further
model the waveform of the disturbance as a response to the pulse in v. Notice
that if δt is known, vt is Gaussian while an unknown δt leads to a non-Gaussian
distributed vt .

Example 3.1: DC Motor with Unknown Torque Load
Consider the discrete time model of a DC motor (see e.g., Ljung (1999, pp. 95-97),
Ts = 0.1 s, τ = 0.286, β = 40)

xt+1 =
[

0.7047 0
0.08437 1

]
xt +

[
11.81

0.6250

]
(ut + vt),

yt =
[
0 1

]
xt + et .

(3.4)

Here, x contains the angle and angular velocity of the motor shaft, y is noisy
measurements of the motor shaft angle and u the applied voltage. The process
noise v models a torque disturbance or an unknown torque load. Assuming that
v is Gaussian is probably a bad assumption and in most applications a more
sound assumption for v would probably be to model the process noise as in (3.2).
The process noise v could also be set to pass through an integrator to model step
changes.

We will get back to this example in Paper C and estimate the state x from the
observed output y.
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Example 3.2: Target Tracking
In target tracking, the goal is to estimate the state of a object given a number of
sensor measurement. The object could be an airplane and the measurements,
radar measurements, or it could be magnetometers placed in a crossing to track
cars passing.

It is common to assume a dynamic motion model to model the kinematics of the
object. The continuous-time constant acceleration model (see Chapter 13 in Gustafs-
son (2010)),

ẋt =

0 In 0
0 0 In
0 0 0

 xt +

 0
0
In

 vt ,
yt =

[
In 0 0

]
xt + et ,

(3.5)

is a common choice. The state x contains the position, velocity and acceleration in
n dimensions. The output y contains position measurements. The process noise
v, the jerk (the derivative of the acceleration), is unknown and models the com-
bined effect of all inputs that affect the state. e is the measurement noise of the
sensor. The measurement noise e may very well be modeled by a Gaussian ran-
dom variable. The lumped unknown inputs of the object gathered in v, however,
is probably better modeled by e.g., a piecewise constant signal. A piecewise con-
stant signal is obtained by integrating a sequence of Dirac delta functions, this is
illustrated in Figure 3.1.

∫ ∑
k v̄kδ(t− tk)dt

tktk−1 tk+1 tk+2

v̄k
v̄k+1

t

Figure 3.1: Illustration of how a piecewise constant signal is obtained by
integrating a sequence of Dirac delta functions. In this particular example
there are impulses at tk and tk+1 of sizes v̄k and v̄k+1. These cause shifts of v̄k
and v̄k+1 at tk and tk+1.
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We can formulate this as

ẋt =


0 In 0 0
0 0 In 0
0 0 0 In
0 0 0 0

 xt +


0
0
0
In


∑
k

v̄kδ(t − tk),

yt =
[
In 0 0 0

]
xt + et .

(3.6)

Discretizing (3.6) with a sampling time Ts = 0.1 and under the assumption that
tk = rkTs, rk ∈ Z, give the discrete-time model (use e.g., sysd=c2d(sysc,Ts,
’imp’) in Matlab)

xkTs+Ts =


In 0.1In 0.005In 0.0002In
0 In 0.1In 0.005I2
0 0 In 0.1In
0 0 0 In

 xkTs +


0.0002In
0.005In

0.1In
In

 v̄k ,
ykTs =

[
In 0 0 0

]
xkTs .

(3.7)

To model v̄k using the distribution given in (3.2) is now a good choice.

The relation between the ARX model (see (2.4)) and the state space model should
be made clear. If we identify

xt ↔ θt , Ct ↔ ϕTt , At ↔ I, Bt ↔ 0, Gt ↔ I, (3.8)

the state space equation (3.1a) takes the form

θt+1 = θt + vt ,

yt = ϕTt θt + et ,
(3.9)

which is an ARX model with time varying parameters. This link between linear
regression and state-space models is very well known, and described e.g., in the
classical survey by Åström and Eykhoff (1971). Possible knowledge of the param-
eter variations can be captured in more refined choices of At and Gt . θ is in (3.9)
a random walk. If v is Gaussian, a (slowly) drifting model is described. For Gaus-
sian noise v, the model (3.9) has been used to devise good tracking algorithms,
e.g., Section 11.6 in Ljung (1999). A piece-wise constant θ corresponds to a v as
in (3.2) and that will be further discussed in Paper A.

3.2 State Estimation

Let us consider the estimation of xt based on a set Y of the observations {yt}Nt=1.
Write the estimate as

x̂t = F(Y ). (3.10)

There are two conceptually different cases:

• x̂t is restricted to be a function of measurement up to and including time
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t i.e., Y = {yt , yt−1, yt−2, . . . }. The estimation process is then referred to as
filtering.

• x̂t is based on measurements taken up to, including and later than time t
i.e., Y = {y1, . . . , yt+1, yt , yt−1, . . . , yN }. The process of estimating xt is then
referred to as smoothing.

It is also common to distinguish between linear and nonlinear filters and smoothers.
In linear filtering and smoothing F is a linear function of the elements in Y (and
the initial state estimate). For a nonlinear filtering and smoothing algorithm, F is
nonlinear in the elements of Y .

Two useful quantities when discussing filtering and smoothing are bias and vari-
ance of the estimate. A state estimate is said to be conditionally unbiased if

Ext [x̂t − xt |Y ] = 0 (3.11)

and otherwise conditionally biased. Note that this is equivalent to Ext [xt |Y ] = x̂t .
The conditional covariance of the estimate is given by

Ext

[(
x̂t − xt

)(
x̂t − xt

)T ∣∣∣Y ]
. (3.12)

Alternatively, Y could be considered unknown and the expectations carried out
over this quantity also. The state estimate is then said to be (unconditionally)
unbiased if

Ext ,Y [x̂t − xt] = 0. (3.13)

The (unconditioned) covariance of the estimate is

Ext ,Y
[(
x̂t − xt

)(
x̂t − xt

)T ]
. (3.14)

For the discrete-time standard linear state-space model with stochastic distur-
bances (3.1), the Best Linear Unbiased Estimator (BLUE) is given by the Kalman
Filter (KF, Kalman (1960)) or smoother (e.g., Kailath et al. (2000, p. 387)). We next
give an introduction to the Kalman smoother and explain what “best” in “best
linear unbiased estimator” refers to. We will only handle the smoothing case and
not discuss filtering.

3.3 Kalman Smoother

In this thesis it is of interest to view the Kalman smoother as an explicit minimiza-
tion problem. To arrive at the optimization formulation of the Kalman smoother,
let first {yt}Nt=1 be a given set of observations satisfying (3.1) and let the initial
state x0 be a random variable independent of the noises e and v. Then, from
(3.1b) it follows that the joint probability distribution can be written as

p
(
{et}Nt=1, {vt}

N
t=1, x0

)
= p(x0)ΠNt=1pe(et)pv(vt). (3.15)



44 3 State Estimation

Assume now that x0 ∼ N (0, Γ ) and that et , vt , t = 1, . . . , N are Gaussian dis-
tributed. Then (3.15) can be rewritten as

p
(
{et}Nt=1, {vt}

N
t=1, x0

)
∝ e−

1
2 ‖Γ
−1/2x0‖22e−

1
2
∑N
t=1 ‖Q

−1/2
t et‖22e−

1
2
∑N
t=1 ‖R

−1/2
t vt‖22 . (3.16)

Since, for t = 1, . . . , N ,

vt = xt+1 − Atxt − Btut , et = yt − Ctxt , (3.17)

(3.16) can be rewritten in terms of {xt}Nt=0 and {yt}Nt=1 as

log p
(
{yt}Nt=1

∣∣∣{xt}Nt=0

)
∝ −

∥∥∥Γ −1/2x0

∥∥∥2
2
−

N∑
t=1

∥∥∥R−1/2
t (yt − Ctxt)

∥∥∥2
2

−
∥∥∥Q−1/2

t−1 (xt − Axt−1 − But−1)
∥∥∥2

2
. (3.18)

Maximizing this quantity with respect to {xt}Nt=0 leads to the maximum likelihood
estimate (MLE) for {xt}Nt=0. The MLE for {xt}Nt=0 can equivalently be written as

arg min
xt ,t=0,...,N

‖Γ −1/2x0‖22 +
N∑
t=1

∥∥∥R−1/2
t (yt − Ctxt)

∥∥∥2
2

+
∥∥∥Q−1/2

t−1 (xt − At−1xt−1 − Bt−1ut−1)
∥∥∥2

2

(3.19)
which is recognized as the classical Kalman smoothing estimate, e.g., Kailath et al.
(2000, p. 387). Note that (3.19) is a (`2-regularized) least squares problem. The
solution can therefore be shown to be linear in {y}Nt=1 (and x0). The solution is
usually given in various recursive filter forms, see e.g., Ljung and Kailath (1976).

When all densities are Gaussian (et , vt , x0 Gaussian), (3.19) gives the best unbi-
ased estimate (among both linear and nonlinear estimators) since no other un-
biased estimator can obtain a smaller variance. That is, let x̂t be the Kalman
estimate and let x̄t be any other unbiased state estimate. Then, with expectation
over both xt and Y ,

Ext ,Y
[
(x̄t − xt)(x̄t − xt)T

]
− Ext ,Y

[
(x̂t − xt)(x̂t − xt)T

]
� 0. (3.20)

This also implies that no other unbiased estimator can obtain a lower MSE i.e.,

tr Ext ,Y
[
(x̂t − xt)(x̂t − xt)T

]
= Ext ,Y

[
(x̂t − xt)T (x̂t − xt)

]
. (3.21)

(3.20) and (3.21) also hold if the expectations is taken w.r.t xt and conditional on
Y . It further holds that xt given {yt}Nt=1 is Gaussian (the mean given by x̂t , i.e.,
x̂t = E[xt |y1, . . . , yN ]).

If et , vt or x0 is not Gaussian, the Kalman smoother is still the best unbiased
linear estimator. That means that we can not do better than using a Kalman
smoother if v is distributed as (3.2), the sequence δt is unknown and the smoother
is restricted to be linear. If we knew the δt-sequence (and the measurement noise
was Gaussian), the Kalman smoother would be the best estimator among both
linear and nonlinear estimators, since all noises would be Gaussian (with time
varying noise covariance).
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See Anderson and Moore (1979, Chap. 7) for more on the Kalman smoother and
its properties.

3.4 Kalman Filter (Smoother) Banks

Based on the process noise model (3.2), a number of nonlinear methods have been
developed. If δt is unknown, we could hypothesize in each time step that it is
either 0 or 1. This leads to a large bank (2N ) of Kalman smoothers as the optimal
solution. The posterior probability of each smoother can be estimated from this
bank, which consists of a weighted sum of the state estimates from each smoother.
See Chapter 10 in Gustafsson (2010) for more on smoother banks.

In practice, the number of smoothers in the bank must be limited due to computa-
tional limitations, and there are two main options (see Chapter 10 in Gustafsson
(2010)):

• Merging trajectories of different δt sequences. This includes the well known
Interacting Multiple Model filter (IMM filter, Blom and Bar-Shalom (1988)).

• Pruning, where unlikely sequences are deleted from the filter bank.

3.5 Conclusion

This chapter gave a brief introduction to filtering and smoothing. We continue
the discussion on smoothing and impulsive process noise in Paper C. In particu-
lar we explore the fact that the sequence generated by (3.2), arranged as a vector,
contains elements identical to zero, it will be a sparse vector. This leads us to the
concept of sparseness and regularization for sparseness. Sparseness and regular-
ization for sparseness are discussed in the next chapter, Chapter 4.





4
Regularization for Sparseness

Sparseness is all about zeros. A matrix or vector is said to be sparse if it contains
a relatively large number of zeros. If a quantity is given to be sparse, it is often
a computational remedy e.g., when solving equation systems or in optimization.
However, sparsity has also shown great importance for other reasons, in e.g., sta-
tistical learning and signal processing. The hype around sparsity in statistical
learning is mostly due to the success of lasso (least absolute shrinkage and selec-
tion operator, Tibsharani (1996); Chen et al. (1998), see also Hastie et al. (2001,
p. 64)) and in signal processing sparsity has got attention due to the sampling
protocol Compressed Sensing (CS, Donoho (2006); Candès et al. (2006)).

Formally, sparse is defined as (see e.g., Zibulevsky and Elad (2010)):
Definition 4.1 (Sparse). A vector z ∈ Rn is said to be sparse if

‖z‖0 � n. (4.1)

‖ · ‖0 here denotes the zero (quasi-)norm. The zero norm is the number of nonzero
elements of a vector (see Appendix A).

4.1 When is Sparsity a Desirable Property?

Sparsity is wanted in various situations. Sparsity can e.g., be used for variable se-
lection, as in lasso, for image denoising and filter design as in Starck et al. (2002);
Bioucas-Dias (2006) or as a sample protocol, as in compressed sensing. What the
above applications have in common is that the underlying problem has a combi-
natorial nature. The problem could e.g., be to select a subset of variables, basis

47
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functions, times instances etc. that solves some problem in an optimal manner.

The following three examples give a flavor for when, where and how sparseness
can be used. We will revisit these examples at later points of the chapter as well.

Example 4.1: Lasso
Consider the task of estimating a linear regression model

f (ϕ, θ) = ϕT θ. (4.2)

Assume that an estimation data set {(ϕt , yt)}
Ne
t=1, yt ∈ R, ϕt ∈ R

nϕ is given for this
purpose. Also assume that nϕ > Ne. Minimizing the sum of squared residuals

Ne∑
t=1

(yt − ϕTt θ)2 (4.3)

to determine θ leads to an ill-posed problem (see Example 2.2). In particular,
the solution will not be unique. We saw previously how `2-regularization (see
Example 2.2) can be used to transform (4.3) into a well-posed problem

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖22, λ ∈ R+. (4.4)

The `2-regularization added in (4.4) favors small ‖θ‖22. However, typically all θ-
elements turn out non-zero and it may therefore be difficult to understand which
regressor elements that are meaningful. Besides, one also needs to continue to
acquire the whole regressor vector ϕ to use the model. If each element in ϕt
requires a measurement to be done, acquiring the whole regressor vector may be
impractical if nϕ is large.

The idea of lasso is to find a regression parameter θ so that the model (4.2) gives
a good fit to the estimation data i.e., makes

Ne∑
t=1

(yt − ϕTt θ)2 (4.5)

small and at the same time obtain a θ which is sparse. The sparsity constraint
will cause a large number of θ-elements to be zero. Lasso therefore gives the
possibility to interpret and say what regression elements that are meaningful for
a good prediction result. Zeros in θ mean that the associated regressor elements
are not needed, time and money can therefore be saved by only measuring the
ϕ-elements associated with non-zero θ-elements. The idea of lasso leads to a
criterion

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖0, λ ∈ R+. (4.6)

We will come back to lasso and the mathematical details in Example 4.4.
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Example 4.2: Compressed Sensing Cont’d
Let us return to the discussion of audio compression and sampling given in the

introductory part of the thesis, Example 1.3. We there argued that it was rather
meaningless to measure a lot of information if 90% will be thrown away before
someone even listened to the song, or as Donoho (2006) wrote,

“Why go to so much effort to acquire all the data when most of what
we get will be thrown away? Can we not just directly measure the part
that will not end up being thrown away?”

In an MP3 encoder, the audio stream is divided into several frequency bands.
The audio of a frequency band is then discarded if it is weaker than some certain
threshold (Brandenburg, 1999; Hayes, 2009). The problem is that even though
an audio recording can well be represented using the audio in a small number
of frequency bands, we do not know what bands that are going to be discarded
before we start sample. We therefore need to sample all frequency bands and
then compress and throw away a major part of our sampled data. This was what
many thought before compressed sensing was introduced in 2006.

Let x ∈ Rnx be a quantity that we are interested in. In compressed sensing (also
known as compressive sensing, compressive sampling, compressed sampling) it is as-
sumed that the signal x is composed of a very limited number of atoms from a
dictionary containing a large number of typical signal shapes or basis functions.
Let these signal shapes be columns in the matrix A ∈ Rnx×nz , typically nz � nx.
The signal x is hence assumed to have the property

x = Az, z ∈ Rnz sparse. (4.7)

A dictionary, or A, that has these properties is in compressed sensing assumed
known. It could e.g., be suitable to chose a dictionary containing sampled sine
and cosine signals of difference frequencies if x contains a sequence of audio
samples.

Remark 4.1. All signals that people find meaningful can be decomposed as in (4.7) (Hayes,
2009). A sequence of independent random numbers is an example of a signal that can not
be decomposed using a sparse z.

Let M ∈ Rny×nx , nx � ny and define y ∈ Rny by

y , Mx = MAz. (4.8)

What is important is that y has considerably lower dimmension than x. Hence, y
can be seen as a compressed version of x. The idea of compressed sensing is now
to measure y rather than x. That is, to measure a few linear combinations of the
elements in x rather than x directly. This means that we should construct a num-
ber (ny) of microphones that each give a sample which e.g., is a weighted average
of sounds during the last second. The microphones should not be identical, they
all need to form different weighted averages. Assume also that the weights used
to form these averages are known, that is, we know M.

We now have y, which we have acquired using less sampling and can store using
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less memory space than x would have needed. How do we recover x so to be able
to listen to the second of audio?

Since M, A and y are all known and z was assumed sparse, it is natural to seek
for an estimate ẑ using

ẑ = arg min
z

‖z‖0 s.t. y = MAz. (4.9)

We can then obtain x̂ as x̂ = Aẑ. What is remarkable is that under certain rather
mild assumptions on the matrices A and M and if z satisfies (4.7) and is suffi-
ciently sparse, x̂ = x (see e.g., Bruckstein et al. (2009)). The audio can hence be
perfectly recovered even though nx � ny !

We will return to compressed sensing in Example 4.5 and there present the math-
ematical details.

Remark 4.2 (Nyquist-Shannon Sampling Criterion and Compressed Sensing). The Nyquist-
Shannon sampling criterion states that for a bandlimited signal (no energy above some cer-
tain frequency) the sampling frequency should be twice that of the bandlimit to guarantee
the possibility to perfectly reconstruct the time-continuous signal (see e.g., Oppenheim
et al. (1996, p. 519)). With no further information, to use a sample frequency twice that of
the bandlimit is actually the best thing to do (Tropp et al., 2010). However, if the signal is
known to be e.g., a combination of a few basis functions, a perfect reconstruction can be
obtained at a lot lower sampling frequencies.

Example 4.3: The Huber Loss Function
Consider the following setup

yt = ϕTt θ0 + et + τt , yt ∈ R, et ∼ N (0, σ2), (4.10)

where θ0 ∈ Rnθ is an unknown vector and et the measurement noise. The scalar
variable τt models an outlier and will therefore be zero for most t but occasionally
non zero. Let {(ϕt , yt)}

Ne
t=1 be a given estimation data set.

Desiring an estimate of θ0, we can use the least squares estimate,

θ̂ls = arg min
θ

Ne∑
t=1

(yt − ϕTt θ)2 (4.11a)

= arg min
θ

Ne∑
t=1

(ϕTt θ0 + et + τt − ϕTt θ)2. (4.11b)

If τt , 0 for some t = 1, . . . , Ne, it is likely that the estimate of θ0 is adjusted to fit
these fluctuations in τt . We can try to get around this by estimating τt and then
subtract the estimate from our measurements yt .

As outliers, by definition, appear seldom, a realization of the time series {τt}
Ne
t=1
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arranged as a vector, will be a sparse vector. We are therefore led to consider

min
θ,η1,η2,...,ηNe

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥[η1 η2 . . . ηNe

]T
∥∥∥

0
, (4.12)

for some λ ∈ R+. Here, {ηt}
Ne
t=1 serves as an estimate of the realization of {τt}

Ne
t=1 as-

sociated with estimation data {(ϕt , yt)}
Ne
t=1. We return to this example in

Example 4.6.

Bruckstein et al. (2009); Zibulevsky and Elad (2010) further exemplify and moti-
vate sparsity in signal processing and modeling.

4.2 Methods for Obtaining Sparsity

The `0-norm causes optimization problems to be non-convex and combinatorial.
Solving the optimization problem (4.9)

min
z
‖z‖0, s.t. y = MAz, (4.13)

e.g., boils down to an exhaustive combinatorial search: Fix all element in z except
the first to zero and check if there is a z satisfying y = MAz. If not, continue by
fixing all except the second element to zero and check if there is a z satisfying
y = MAz. Go through the whole vector z if necessary, letting one element free
and fixing all other to zero, one by one. If no z satisfying y = MAz is found,
go through different combinations of two nonzero elements in a search for a z
satisfying y = MAz. And so on. See e.g., Bruckstein et al. (2009). Not very
surprising, (4.13) can actually be shown to be NP-hard (Natarajan, 1995).

The optimization problems (4.6) and (4.12) are of the form

min
θ
‖y − Φθ‖22 + λ‖θ‖0, λ ∈ R+, (4.14)

and are also in general NP-hard (Huo and Ni, 2007). If the measurements (4.8)
in compressed sensing are noisy, an optimization problem of the form (4.14) re-
places (4.9), see Candès et al. (2006). Note that many model selection criteria e.g.,
AIC (see (2.10) for AIC) has also the form (4.14) for a linear regression model, see
e.g., Huo and Ni (2007).

The combinatorial optimization problem that (4.13) and (4.14) lead to is often
impractical to solve and several approximation techniques have therefore been
proposed.

Greedy algorithms (see e.g., Tropp (2004); Bruckstein et al. (2009)) start with a z
identical to zero (or θ identical to zero if (4.14) is considered). Greedy algorithms
then let the element in z which e.g., increases the fit the most free and estimate
z. The greedy algorithm then continues by, one by one, letting the z element
that leads to the best fit free and re-estimating z. The algorithm terminates when
a good enough fit has been obtained. Under the assumption that the z solving
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Figure 4.1: For a one-dimensional variable, the (squared) `2-norm, ( · )2, with
solid black thick line, the `1-norm, | · |, showed with dashed black line, | · |1/2
with gray line and | · |1/10 with solid thin black line.

(4.13) is sufficiently sparse and MA sufficiently incoherent (see e.g., Candès et al.
(2010)) i.e.,

max
j<k

|(MA)(:, j)T (MA)(:, k)|
‖(MA)(:, j)‖2‖(MA)(:, k)‖2

� 1, (4.15)

some greedy algorithms give the same solution as that of (4.13), see e.g., Bruck-
stein et al. (2009). For the problem (4.14) the correct support can be guaranteed if
the solution of (4.14) is sufficiently sparse, the signal to noise ratio is sufficiently
good and Φ sufficiently incoherent, see e.g., Bruckstein et al. (2009). Many vari-
ants of greedy algorithms exist. Forward stepwise regression (see e.g., Daniel and
Wood (1980, pp. 84-85), known as matching pursuit in signal processing, see e.g.,
Mallat and Zhang (1993)) may be the one most known to the system identifica-
tion community. However, also e.g., Least Angle Regression (LARS, Efron et al.
(2004)) is a variant of greedy algorithm.

The FOCUSS (FOCal Underdetermined System Solver, see e.g., Bruckstein et al.
(2009)) method is another approximation method. In FOCUSS an approximation
to (4.13) is sought by searching for a local minimum of the `p, 0 < p < 1, regular-
ized problem

min
z
‖z‖p, s.t. y = MAz. (4.16)

This is an non-convex problems.

The “closest” convex problem to (4.13) and (4.14) is obtained by replacing the `0-
norm with the `1-norm, see Figure 4.1. This is a convex relaxation of the problem.
If (4.13) is relaxed by replacing the zero-norm with the `1-norm,

min
z
‖z‖1, s.t. y = MAz, (4.17)
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we obtain what is referred to as the basis pursuit (Chen et al., 1998). This problem
can be solved using linear programming (see e.g., Donoho (2006)).

If (4.14) is relaxed by replacing the zero-norm with the `1-norm,

min
θ
‖y − Φθ‖22 + λ‖θ‖1, λ ∈ R+, (4.18)

we obtain what is referred to as the basis pursuit denoise (Chen et al. (1998)) in the
signal processing community and lasso in the statistical community. The prob-
lem given in (4.18) is a `1-regularized least squares problems. The next section
discusses the usage of `1 regularization for obtaining sparsity.

4.3 `1-Regularization

`1-regularization is by no means a new concept (see Appendix I of Tropp (2006)
for a historical review). In fact, it has been a regularization technique and a
known way to obtain sparsity since the 1970s. It has gained a lot of popularity
and publicity lately though.

A `1-regularized problem has the form

min
θ
V (θ) + λ‖θ‖1, λ ∈ R+, (4.19)

where V is the criterion of fit, ‖ · ‖1 the `1-norm and λ is the regularization param-
eter. The criterion of fit V (θ) is often the least squares criterion ‖y − Φθ‖22, as in
(4.18), but there are many other interesting choices, e.g., Riezler and Vasserman
(2004); Chen et al. (2009).

For the `1-regularized least squares procedure (V (θ) = ‖y − Φθ‖22 in (4.19))

min
θ
‖y − Φθ‖22 + λ‖θ‖1, (4.20)

it has been shown that the solution (for a proper value for λ) has the same zero
elements (but possibly more) as the solution of

min
θ
‖y − Φθ‖22 + λ‖θ‖0, (4.21)

if Φ is sufficiently incoherent (see (4.15)) and the measurement noise weakly cor-
related with Φ (Tropp, 2006). The solution may however not be unique, since
(4.20) is not necessarily strictly convex, see e.g., Bertsekas et al. (2003, Prop. 2.1.2)).

Example 4.4: Lasso Cont’d
Let us return to Example 4.1 and lasso. The idea in lasso is to find a θ so that

the a linear model (4.2) gives a good fit to the estimation outputs and at the same
time obtains a θ which is sparse. We formulated this as

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖0, (4.22)
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for some λ ∈ R+. This problem is combinatorial and a convex relaxation is there-
fore used to obtain the `1-regularized least squares, or the lasso, criterion

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖1. (4.23)

The `1-regularization in lasso penalizes elements of θ different than zero and
therefore causes elements of θ that do not provide a significant decrease of the
fit term to be zero. The property of the `1-regularization that causes elements
to become identical to zero, and not only small as in the `2-regularization, is
discussed in Section 4.3.1.

The θ resulting from solving (4.23), let us say θ̂, will be biased since terms that
do provide a better fit also are being penalized and dragged towards zero. The
bias is often adjusted for by re-estimating the regression parameters according to

min
θ

Ne∑
t=1

(yt − ϕTt θ)2 s.t. θ(i) = 0 if θ̂(i) = 0, i = 1, . . . , dim(θ̂), (4.24)

with θ̂ from (4.23). This makes the regression parameter unbiased if lasso cor-
rectly identified the zero elements in θ.

Example 4.5: Compressed Sensing Cont’d
We now return to Example 4.2 to carry out the mathematical details. We argued
that to reconstruct x it was natural to seek for an estimate ẑ using

ẑ = arg min
z

‖z‖0 s.t. y = MAz, (4.25)

and then obtain x̂ as x̂ = Aẑ. Due to the combinatorial complexity of (4.25) we
are led to consider e.g., a convex relaxation, such as replacing the `0-norm with
the `1-norm. If the measurements y are noisy, the equality constraint in (4.25) is
removed and ‖y −MAz‖22 added to the objective function. We are led to consider
the `1-regularized least-squares problem

ẑ = arg min
z

‖y −MAz‖22 + λ‖z‖1, λ ∈ R+. (4.26)

What is remarkable is that with considerably fewer samples than what the Nyquist-
Shannon sampling criterion would have told you to use and with the relaxed `0-
norm, a close to perfect reconstruction of x can be obtained, see e.g., Candès and
Wakin (2008). In fact, it has been shown that compressed sensing is nearly as
effective as if having an oracle telling us what elements of z that are nonzero and
we would have measured only those (Candès and Wakin, 2008).
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Example 4.6: The Huber Loss Function Cont’d
Let use finally return to Example 4.3. We there assumed that we got measure-

ments {(ϕt , yt)}
Ne
t=1 from

yt = ϕTt θ0 + vt + τt , vt ∼ N (0, σ2), (4.27)

where τt modeled outliers and was assumed to be an in time sparse variable. The
model parameter θ0 is an unknown vector. Desiring an estimate of θ0, we can
use the least squares estimate,

θls = arg min
θ

Ne∑
t=1

(yt − ϕTt θ)2 (4.28a)

= arg min
θ

Ne∑
t=1

(ϕTt θ0 + et + τt − ϕTt θ)2. (4.28b)

If τt , 0 for some t = 1, . . . , Ne, it is likely that the estimate of θ0 is adjusted to fit
these fluctuations in τt . We can try to get around this by estimating τt and then
subtract the estimate from our measurements yt . As we have assumed that τt is
sparse, it is motivated to minimize

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
0
, λ ∈ R+, (4.29)

with respect to the outlier estimate η and θ. Here, λ is seen as a design parameter
that controls the sparsity of η. Using a convex relaxation, we arrive at the less
computationally intensive `1-regularized least squares problem

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
1
. (4.30)

As shown in Appendix B, (4.30) is equivalent to

Ne∑
t=1

ψ
(
yt − ϕTt θ

)
(4.31)

with

ψ(x) ,
{
|x|2, if |x| < λ/2,
λ|x| − λ2/4 otherwise.

(4.32)

The function ψ( · ) is called the Huber loss function or the Huber norm (Huber,
1973). The Huber loss function has been applied frequently within regression
and classification since its introduction in the 1970s by Huber. Its popularity is
due to its ability to reduce the affect of an outlier and thereby gain robustness to
the algorithm. The Huber loss function, ψ( · ), shown in Figure 4.2, is a hybrid
between the `1 and the `2-norm. That the assumption of a sparse outlier τ here
leads to the Huber loss function is rather intuitive but still illustrative.
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Figure 4.2: The Huber loss function ψ(x) plotted with thick solid black line
for a one-dimensional x. The `1 and squared `2-norm are also shown, dashed
and solid gray line, respectively.

It is interesting to notice that minimizing

Ne∑
t=1

(yt − ϕTt θ)2 + λ‖θ‖1, (4.33)

λ ∈ R+, can be interpreted as a MAP estimate of a posterior distribution propor-
tional to

e−
∑Ne
t=1(yt−ϕTt θ)2/2σ2

e−λ‖θ‖1/2σ
2
. (4.34)

Using Bayes’ theorem, see Theorem 2.1 on page 26, the first term in (4.34) can be
interpreted as the likelihood

p
(
{yt}

Ne
t=1

∣∣∣θ, {ϕt}Ne
t=1

)
=

1

σ
√

2π
e−

∑Ne
t=1(yt−ϕTt θ)2/2σ2

(4.35)

associated with

yt = ϕTt θ0 + et , et ∼ N (0, σ2). (4.36)

The second term in (4.34) can be interpreted as a prior p(θ) = 1
4σ2 e

−λ‖θ‖1/2σ2
. The

prior associated with the `1-regularization is hence p(θ) = 1
4σ2 e

−λ‖θ‖1/2σ2
. In the

literature this is referred to as a Laplace or an independent double exponential prior
(see e.g., Hastie et al. (2001, p. 72)).
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4.3.1 What Property of the `1-Regularization Causes
Sparseness?

Let us investigate why `1-regularization causes sparseness. Consider

min
θ
‖y − Φθ‖22 s.t. ‖θ‖1 ≤ η. (4.37)

This problem is identical to that of (4.20) in the sense that, for any λ ∈ R+, there
exists a η (= ‖θ∗‖1, where θ∗ minimizes (4.20)) so that the minimizing θ is the
same for (4.20) and (4.37). The Karush-Kuhn-Tucker (KKT, see e.g., Boyd and
Vandenberghe (2004, p. 244)) conditions can be used to show this.

Consider now the left of Figure 4.3. The gray square at the origin shows the

Figure 4.3: Left figure: An illustration of ‖θ‖1 ≤ η (gray area) and the level-
curves of ‖y −Φθ‖22. Right figure: An illustration of ‖θ‖22 ≤ η (gray area) and
the level-curves of ‖y −Φθ‖22. In both the right and the left figure, ‖y −Φθ‖22
is assumed to have a unique minimum. If ‖y − Φθ‖22 does not have a unique
minimum, there will be a continuum of points, on a line, minimizing ‖y −
Φθ‖22 and the level curves would be parallel to that line.

neighborhood ‖θ‖1 ≤ η for a two dimensional regressor (i.e., dim(θ) = 2). The
level-curves of ‖y − Φθ‖22 are also shown. These are depicted as circles (generally
these level curves are ellipses) centered at arg minθ ‖y − Φθ‖

2
2. From the illustra-

tion it is seen that the θ minimizing (4.37) must be the θ-value at the intersection
between the square and one of the level-curves. Note now that when this inter-
section happens on one of the axis, the optimal θ get one zero element. Try to
move around the level-curves of ‖y − Φθ‖22. Most choices gives an intersection at
an axis. For a higher dimensional case (dim(θ) large), the gray square turns into a
hyper-cube. When intersection happens on e.g., one of the vertexes, the optimal
θ has elements equal to zero and therefore turns out as sparse.

Consider now the right part of Figure 4.3. The right part illustrates what happens
if the regularization is chosen as ‖ · ‖22 (ridge regression, see Example 2.2) instead
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of ‖ · ‖1 as in the `1-regularization. Consider

min
θ
‖y − Φθ‖22 s.t. ‖θ‖22 ≤ η, (4.38)

which for a particular choice of η gives the same solution as

min
θ
‖y − Φθ‖22 + λ‖θ‖22. (4.39)

The gray circle now illustrates ‖θ‖22 ≤ η which is a disc centered at the origin.
The level-curves of ‖y −Φθ‖22 are also shown, just as in the left of Figure 4.3. The
solution to (4.38) can now be seen given by the intersection between the disc and
a level-curve. Try to move the level-curves around, the intersection is this time
very seldom on an axis. The minimizing θ will therefore generally not be sparse.

An Explicit Solution

For illustration, let us consider a special case which has an explicit solution. Con-
sider

min
θ
‖y − Φθ‖22 + λ‖θ‖1, (4.40)

where λ ∈ R+, θ ∈ Rnθ , and assume that Φ is orthonormal, i.e., ΦTΦ = ΦΦT = I .
Equation (4.40) can then be rewritten as

min
θ

∥∥∥Φ(ΦT y − θ)
∥∥∥2

2
+ λ‖θ‖1, (4.41)

and since Φ can be seen as a rotation, which does not change the Euclidean length,

of the vector (ΦT y − θ),
∥∥∥Φ(ΦT y − θ)

∥∥∥2
2

=
∥∥∥ΦT y − θ∥∥∥2

2
. We can further rewrite

‖ΦT y − θ‖22 using that ΦTΦ = I so that ‖ΦT y − θ‖22 =
∥∥∥(ΦTΦ)−1ΦT y − θ

∥∥∥2
2
. If we

notice that (ΦTΦ)−1ΦT y is the least squares solution i.e.,

θls = arg min
θ

‖y − Φθ‖22 = (ΦTΦ)−1ΦT y, (4.42)

the solution of (4.40) can be written as

min
θ
‖θls − θ‖22 + λ‖θ‖1 = min

θ

nθ∑
i=1

(
θls(i) − θ(i)

)2
+ λ|θ(i)|. (4.43)

We can now consider the estimate of each of the elements of θ separately. Let us
consider θ(i). Taking the derivative w.r.t. θ(i) of(

θls(i) − θ(i)
)2

+ λ|θ(i)| (4.44)

gives

− 2
(
θls(i) − θ(i)

)
+ λ sign

(
θ(i)

)
, θ(i) , 0. (4.45)
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We have to handle θ(i) = 0 separately. Setting the derivative equal to zero and
solving gives

θ(i) =

θls(i) − λ/2 if θls(i) − λ/2 > 0
θls(i) + λ/2 if θls(i) + λ/2 < 0

(4.46)

or

θ(i) = sign
(
θls(i)

)(
|θls(i)| − λ/2

)
. (4.47)

For |θls(i)| < λ/2, θ(i) = 0. The θ(i) minimizing (4.44) is hence

θ(i) = sign
(
θls(i)

)
min

(
0, |θls(i)| − λ/2

)
. (4.48)

Note that (4.48) holds for i = 1, . . . , nθ . The relation, for this special case, be-
tween the least squares estimate θls and the estimate from lasso is visualized in
Figure 4.4. We see that lasso shrinks the least squares estimate and if the least
squares parameter estimate is close enough to zero, lasso gives a parameter esti-
mate identical to zero.
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Figure 4.4: The relation between the least squares estimate θls and the esti-
mate from lasso θlasso in the case where ΦTΦ = I .

4.3.2 Critical Parameter Value

Let us consider the `1-regularized least squares problem (4.20). A basic result
from convex analysis tells us that there is a value λmax for which the solution of
the problem is equal to zero, if and only if λ ≥ λmax. In other words, λmax gives
the threshold above which θ ≡ 0. The critical parameter value λmax is very useful
in practice, since it gives a very good starting point in finding a suitable value of
λ.
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Proposition 4.1 (Critical Parameter Value λmax). Let Φ ∈ RNe×n and y ∈ RNe

be given. Let λmax be such that θ minimizing

‖y − Φθ‖22 + λ‖θ‖1 (4.49)

is zero if and only if λ ≥ λmax. It holds that

λmax =
∥∥∥2ΦT y

∥∥∥∞. (4.50)

The infinity-norm ‖ · ‖∞ is defined in Appendix A.

Proof: Define ēi as the n-dimensional row-vector with the ith element as one and
the rest equal to zero. The subdifferential at θ = 0 is readily computed to

∂θ(i)

(
‖y − Φθ‖22 + λ‖θ‖1

)∣∣∣∣
θ=0

=
[
− 2ēiΦ

T y − λ,−2ēiΦ
T y + λ

]
. (4.51)

For θ = 0 to be an optima, it is necessary and sufficient (see e.g., (Bertsekas et al.,
2003, Prop. 4.7.2)) that

0 ∈
[
− 2ēiΦ

T y − λ,−2ēiΦ
T y + λ

]
, ∀i = 1, . . . , n, (4.52)

which is equivalent to

λ ≥
∥∥∥2ΦT y

∥∥∥∞. (4.53)

(4.50) follows since λmax is the smallest λ-value that makes θ = 0 an optima.

4.3.3 Sum-of-Norms Regularization

A `1-related regularization is the sum-of-norms regularization. A sum-of-norms
regularized problem takes the form

min
θ
V (θ) + λ

s∑
i=1

‖Γ (i, :)θ‖p, (4.54)

with s ∈ N , Γ an s × dim(ϕ) (0, 1)-matrix and λ ∈ R+. The matrix Γ picks out
groups of θ-elements. With V (θ) = ‖y − Φθ‖22 and p = 2 in (4.54),

min
θ
‖y − Φθ‖22 + λ

s∑
i=1

‖Γ (i, :)θ‖2, (4.55)

the formulation is often referred to as group-lasso (Yuan and Lin, 2006) in statis-
tics. Note that the sum-of-norms regularization reduces to a `1-regularization if
Γ = I and p = 1 in (4.54).

We should comment on the difference between using an `1-regularization and
some other type of sum-of-norms regularization, such as sum-of-Euclidean norms
with Γ , I . When we use sum-of-norms regularization, the vector Γ θ will be
sparse and when an element of the vector Γ θ is non-zero, say element i, then in
general most of the θ-elements picked out by Γ (i, :) are non-zero. The sum-of
norms regularization hence makes sure that θ is sparse on a group-level, rather
than an individual level.
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Remark 4.3. Notice that (4.54) can be rewritten as

min
θ
V (θ) + λ‖θ̄‖1, θ̄(i) , ‖Γ (i, :)θ‖p, i = 1, . . . , s. (4.56)

This clarifies the relation to the `1-regularization and provides an intuition for why groups
of θ-elements (Γ (i, :)θ, i = 1, . . . , s) come out as zero or non-zero.

We continue the discussion on sum-of-norms regularization in Paper A, B, C
and D.

4.3.4 Solution Methods

Many standard methods of convex optimization can be used to solve the prob-
lems (4.20) and (4.55). Software packages such as CVX (Grant and Boyd, 2010,
2008) or YALMIP (Löfberg, 2004) can readily handle the sum-of-norms regular-
ization, by converting the problem to a cone problem and calling a standard
interior-point cone solver. For the special case when the `1 norm is used as the
regularization norm, more efficient special purpose algorithms and software can
be used, such as l1_ls (Kim et al., 2007).

Recently many authors have developed fast first order methods for solving `1-
regularized problems, and these methods can be extended to handle the sum-of-
norms regularization, see e.g., Roll (2008§2.2). Both interior-point and first-order
methods have a complexity that scales linearly with N (= dim(y) in (4.20)).

It has also been shown how solving `1-regularized problems can considerably
be speeded up by pre-computing certain quantities (Mattingley and Boyd, 2010).
It was shown how real-time performance can be met in many scenarios where
`1-regularization previously was considered to be computationally too heavy.

CVX, YALMIP and l1_ls

CVX and YALMIP are very useful tools for solving `1 and sum-of-norms regular-
ized (convex) problems. Both CVX and YALMIP are integrated with Matlab. If
we let

y =
[
y1 y2 . . . yNe

]T
, Φ =

[
ϕ1 ϕ2 . . . ϕNe

]T
, Φ ∈ RNe×n, λ ∈ R+,

(4.57)
the `1-regularized least squares problem

min
θ
‖y − Φθ‖22 + λ‖θ‖1 (4.58)

can be solved using the CVX code given in Listing 4.1 and the YALMIP code given
in Listing 4.2, assuming that the CVX respectively the YALMIP code package has
been downloaded and installed. “y”, “Phi”, “n” and “lambda” also need to be
available in the Matlab workspace according to (4.57).



62 4 Regularization for Sparseness

Listing 4.1: CVX code for solving (4.58)

cvx_begin
variable theta(n)
minimize((y-Phi*theta)’*(y-Phi*theta) ...
+lambda*norm(theta,1))

cvx_end

Listing 4.2: YALMIP code for solving (4.58)

theta=sdpvar(n,1);
ops=sdpsettings(’verbose’,0);
solvesdp([],(y-Phi*theta)’*(y-Phi*theta) ...

+lambda*norm(theta,1),ops)

A Matlab package dedicated to `1-regularized least squares problems is l1_ls.
With “y”, “Phi” and “lambda” available in the Matlab workspace according to
(4.57) and the l1_ls package downloaded and installed, (4.58) can be solved as
shown in Listings 4.3.

Listing 4.3: l1_ls code for solving (4.58)

rel_tol = 0.01; % relative target duality gap
theta=l1_ls(Phi,y,lambda,rel_tol)

4.4 Conclusion

This chapter has demonstrated how regularization can be used to obtain sparsity.
There are a number of problems in system identification and signal processing
that well fit into the framework developed. We therefore return to sparsity and
regularization in Paper A, B, C and D.



5
Regularization for Smoothness

Regularization can be used to obtain meaningful results from ill-posed problems
and to control for overfit. We care for both these applications in this thesis. How-
ever, we chose to focus on the type of regularization (referred to as a standard
regularization method in Poggio et al. (1985)) obtained by adding a penalty term J
to the criterion of fit,

θ̂ = arg min
θ

∑
t∈Ne

l
(
yt − f (ϕt , θ)

)
+ λJ(ϕt , θ), λ ∈ R+. (5.1)

The penalty J should be regarded as a means to introduce a priori knowledge
and can be used to impose signal and model properties such as sparsity (dis-
cussed in Chapter 4) and smoothness. We discuss regularization for smoothness
in this chapter. Geometrically, regularization for smoothness means that we seek
the least rough function that gives a certain degree of fit to the observed data.
Smoothness is in the regularization-literature used interchangeably with curva-
ture, non-rough, simplest and least complex. The regularization parameter λ is
used to control the trade-off between fit and smoothness.

Examples of regression methods that can be interpreted as regression methods
that use regularization for smoothness are support vector regression and Gaussian
processes. We give an introduction to these two methods in the following two
sections.

5.1 Support Vector Regression

Let {(ϕt , yt)}
Ne
t=1, yt ∈ R, ϕt ∈ R

nϕ , be a given estimation data set and let {hk( · ) :
Rnϕ → R, k = 1, . . . , n} be a set of basis functions. It could e.g., be the n first basis

63
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functions of a Fourier series expansion. Consider now the task of estimating the
basis function coefficients θk ∈ R, k = 1, . . . , n, in the basis function expansion
model

f (ϕ, θ) =
n∑
k=1

hk(ϕ)θk . (5.2)

Assume that n > Ne. Seeking the model parameters that minimize the sum of
squared residuals

Ne∑
t=1

(
yt −

n∑
k=1

hk(ϕt)θk
)2

(5.3)

leads to an ill-posed problem since n > Ne (see Example 2.2). In particular, the
solution will generally not be unique. We saw previously, see Example 2.2, how
`2-regularization can be used to transform (5.3) into a well-posed problem. If we
introduce

y ,
[
y1 . . . yNe

]T
, θ ,

[
θ1 . . . θn

]T
, h(ϕt) ,

[
h1(ϕt) . . . hn(ϕt)

]T
(5.4)

and the matrix H ∈ RNe×n

H ,
[
h(ϕ1) . . . h(ϕNe

)
]T
, (5.5)

the `2-regularized least-squares criterion can be written as

min
θ
‖y − Hθ‖2 + λ‖θ‖2, λ ∈ R+. (5.6)

The minimizing θ is then readily computed as (see e.g., (2.27))

θ̂ = (HTH + λIn)−1HT y. (5.7)

Let now ϕ∗ be a given new regressor. The basis function model (5.2) evaluated at
ϕ∗ takes the form

f (ϕ∗, θ̂) = h(ϕ∗)
T θ̂ = h(ϕ∗)

T
(
HTH + λIn

)−1
HT y (5.8)

or equivalently

f (ϕ∗, θ̂) = h(ϕ∗)
THT

(
HHT + λINe

)−1
y. (5.9)

We could be satisfied and stop here. The sought basis function coefficients are
provided by (5.7) and (5.9) gives a formula for the basis function expansion eval-
uated at a new regressor ϕ∗. Let us continue and consider what happens when n
gets very large. It can then become computationally impossible to evaluate (5.8)
and (5.9). To be able to handle large n, define k(ϕi , ϕj ) : Rnϕ×nϕ → R as

k(ϕi , ϕj ) , h(ϕi)
T h(ϕj ). (5.10)

(5.9) can then be rewritten as

f (ϕ∗, θ̂) = k(ϕ∗,Φ)
(
k(Φ,Φ) + λINe

)−1
y (5.11)
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where

Φ =
[
ϕ1 . . . ϕNe

]T
, (5.12)

k(ϕ∗,Φ) =
[
k(ϕ∗, ϕ1) . . . k(ϕ∗, ϕNe

)
]
, (5.13)

k(Φ,Φ) =


k(ϕ1, ϕ1) k(ϕ1, ϕ2) . . . k(ϕ1, ϕNe

)
k(ϕ2, ϕ1) k(ϕ2, ϕ2) k(ϕ2, ϕNe

)
...

. . .
...

k(ϕNe
, ϕ1) k(ϕNe

, ϕ2) . . . k(ϕNe
, ϕNe

)

 . (5.14)

In this way, we have avoided the basis functions hk , k = 1, . . . , n, but anyway
found a way to evaluate the model (5.2). Also when n is infinite the solution
is given by (5.11), as shown by the representer theorem (see e.g., Kimeldorf and
Wahba (1971)). This is useful! This means that we can replace the computa-
tion of an infinite number of basis function coefficients with N2

e + Ne evalua-
tions of k( · , · ). One may wonder when it is possible to rewrite the dot-product
h(ϕi)T h(ϕj ) as in (5.10). And also, when is it possible to rewrite a function
k(ϕi , ϕj ) as a dot-product between basis functions? In fact, in practice the func-
tion k(ϕi , ϕj ) is chosen and the particular form of the basis functions often not
derived or thought of. To guarantee that k(ϕi , ϕj ) can be written as a dot-product
between basis functions, k(ϕi , ϕj ) should be chosen as a symmetric, positive semi-
definite kernel (see Mercer’s theorem e.g., Evgeniou et al. (2000) or Schölkopf and
Smola (2001, p. 37), see also Appendix A). The squared exponential kernel has
these properties (see Appendix A for definition and examples of more kernels).

The kernel can here be seen as a way to redefine the dot-product in the regressor
space. This trick of redefining the dot-product can be used in regression methods
where regressors only enter as products. These types of methods are surprisingly
many and the usage of this trick results in the kernelized, or simply kernel, version
of the method. (5.11) is a special case of Least Squares Support Vector Machines
regression (LS-SVM regression or LS-SVR, see e.g., Saunders et al. (1998); Suykens
and Vandewalle (1999)).

By kernelizing a regression method, the regressor space is transformed by h to
a possibly infinite dimensional new space in which the regression takes place.
The transformation of the regression problem to a new high-dimensional space
is commonly referred to as the kernel trick (Boser et al., 1992).

Example 5.1: Illustration of the Kernel Trick
Let ϕ1 =

[
ϕ1(1) ϕ1(2)

]T
, ϕ2 =

[
ϕ2(1) ϕ2(2)

]T
and ϕ∗ =

[
ϕ∗(1) ϕ∗(2)

]T
be

three regressors in R2. Observe that if we use

k(ϕ1, ϕ2) = ϕT1 ϕ2 = ϕ1(1)ϕ2(1) + ϕ1(2)ϕ2(2) (5.15)

in (5.11) we get exactly the same expression as in (2.27) i.e., ridge regression. Let
us now use the kernel (polynomial (inhomogeneous) kernel, see Appendix A)

k̃(ϕ1, ϕ2) = (1 + ϕT1 ϕ2)2. (5.16)
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This could also be thought of as changing the definition of the dot-product be-
tween two regression vectors. We see that the regressors now affect the regression
algorithm through

k̃(ϕ1, ϕ2) =(1 + ϕT1 ϕ2)2 (5.17a)

=1 + 2ϕ1(1)ϕ2(1) + 2ϕ1(2)ϕ2(2) + ϕ1(1)2ϕ2(1)2

+ϕ1(2)2ϕ2(2)2 + 2ϕ1(1)ϕ1(2)ϕ2(1)ϕ2(2). (5.17b)

We can rewrite this as the dot-product between the vector valued function h( · )
evaluated at ϕ1 and ϕ2

k̃(ϕ1, ϕ2) = h(ϕ1)T h(ϕ2) (5.18)

with

h(ϕ1) =
[
1
√

2ϕ1(1)
√

2ϕ1(2) ϕ1(1)2 ϕ1(2)2
√

2ϕ1(1)ϕ1(2)
]T

(5.19)

and h(ϕ2) accordingly. The polynomial (inhomogeneous) kernel hence transform
the regressor space into a 6-dimensional space. If we now assume that an esti-
mation data set {(ϕt , yt)}

Ne
t=1 is given. Then in the particular case of LS-SVR, a

linear model in R6 would be estimated to fit the transformed estimation data
{(h(ϕt), yt)}

Ne
t=1 using ridge regression. Reformulated in terms of the original re-

gressors, the model evaluated at ϕ∗ becomes

f (ϕ∗, θ) =θ1 +
√

2θ2ϕ∗(1) +
√

2θ3ϕ∗(2) + θ4ϕ∗(1)2 + θ5ϕ∗(2)2

+
√

2θ6ϕ∗(1)ϕ∗(2). (5.20)

We see that by using this modified definition of the dot-product in LS-SVR we
obtain a, in the regressors, polynomial predictor. We can hence compute nonlin-
ear predictors by simply redefining the dot-product used in the regression algo-
rithms.

We return to LS-SVR in Example 5.2.

5.2 Gaussian Process Regression

Consider the setup

yt = f0(ϕt) + et , et ∼ N (0, σ2), ϕt ∈ Rnϕ , yt ∈ R. (5.21)

Let {(ϕt , yt)}
Ne
t=1 be a given estimation data set and consider the task of finding an

estimate for f0 at a regressor ϕ∗. In Gaussian Process Regression (GPR, see e.g., Ras-
mussen and Williams (2005), also called Kriging, see e.g., Matheron (1973)) the
output f0(ϕ) is assumed to be a stochastic process, a Gaussian Process (GP). Any
samples taken from a (zero-mean) Gaussian process are by definition related by
a (zero-mean) Gaussian probability distribution. In particular, f0(ϕi) and f0(ϕj )
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will be related by [
f0(ϕi)
f0(ϕj )

]
∼ N

(
02×1,

[
k(ϕi , ϕi) k(ϕi , ϕj )
k(ϕj , ϕi) k(ϕj , ϕj )

])
(5.22)

for some kernel k. Let now Φ ∈ RNe×nϕ contain the estimation regressors

Φ ,
[
ϕ1 . . . ϕNe

]T
, (5.23)

ϕ∗ be a new regressor and let k(ϕ∗,Φ) and k(Φ,Φ) be as in (5.13) and (5.14). Then,
using (5.22) we have that[
f0(ϕ1) f0(ϕ2) . . . f0(ϕNe

) f0(ϕ∗)
]T
∼ N

(
0Ne+1×1,

[
k(Φ,Φ) k(ϕ∗,Φ)T

k(ϕ∗,Φ) k(ϕ∗, ϕ∗)

])
.

If we let y denote the estimation outputs, y ,
[
y1 . . . yNe

]T
, then y and f0(ϕ∗)

are related by[
yT f0(ϕ∗)

]T
∼ N

(
0Ne+1×1,

[
k(Φ,Φ) + σ2INe

k(ϕ∗,Φ)T

k(ϕ∗,Φ) k(ϕ∗, ϕ∗)

])
. (5.24)

The predictive (or conditional) distribution for the stochastic variable f0(ϕ∗) given
the estimation data can then be expressed as

p
(
f0(ϕ∗)

∣∣∣{(ϕt , yt)}Ne
t=1

)
= N

(
k(ϕ∗,Φ)(k(Φ,Φ) + σ2INe

)−1y,

k(ϕ∗, ϕ∗) − k(ϕ∗,Φ)(k(Φ,Φ) + σ2INe
)−1k(ϕ∗,Φ)T

)
(5.25)

using identities for Gaussian distributions, see e.g., (Rasmussen and Williams,
2005, p. 200). Notice that the (5.25) gives the distribution for the value of f0(ϕ∗)
and not a measurement of f0 at ϕ∗. To get the distribution for a measurement of
f0 at ϕ∗, σ2 should be added to the covariance in (5.25). The kernel k defines the
correlation between f0(ϕi) and f0(ϕj ). This correlation is most often unknown
and seen as a design choice in GPR. A popular choice is the squared exponential
kernel, see Appendix A.

The predictive mean (mean of the distribution in (5.25)) takes exactly the same
form as the prediction in least squares support vector regression, see (5.11). Gaus-
sian process regression can hence also be given an interpretation as a regulariza-
tion method.

Example 5.2: Gaussian Processes Regression (and LS-SVR)
Let {(ϕt , yt)}

Ne
t=1, Ne = 10, be generated by

yt = 5 sinϕt + et , et ∼ N (0, 1), ϕt ∼ U (0, 5). (5.26)

The estimation data are shown with ’+’-marks in Figure 5.1. If Gaussian process
regression with k as a scaled squared exponential kernel

k(ϕi , ϕj ) = γ2e−‖ϕi−ϕj‖
2
2/2`

2
, (5.27)
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with a length scale ` = 1, γ = 5 and noise standard deviations σ = 0.1, 1, 5 and 20
are used, the predictive distributions (for noisy measurements of f0) visualized
in Figure 5.1 are obtained.

The predictive mean (mean of the distribution in (5.25)) takes exactly the same
form as the prediction in least squares support vector regression, see (5.11).
Hence, the solid line in Figure 5.1 could equally well have been the result from
LS-SVR with the kernel (5.27) and λ = σ2. As seen in Figure 5.1, σ2, or the regu-
larization parameter, controls the smoothness of the predictive mean. If we let σ2

go to infinity, the function-estimate will approach zero and a very smooth func-
tion. If we instead let σ2 go to zero, the function estimate will become more and
more non-smooth. This behavior is rather intuitive since σ2 has an interpretation
as the measurement noise covariance.
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Figure 5.1: Posterior (or predictive) distributions for a Gaussian process with
` = 1, γ = 5 and σ = 0.1 (left top plot), 1 (right top plot), 5 (left bottom
plot) and 20 (right bottom plot). The estimation data are shown with ’+’-
marks, the dashed line shows 5 sin( · ) and the solid line shows the mean of
the predictive distribution or the LS-SVR estimate. The gray area shows the
two standard deviations confidence interval for noisy measurements of f0.
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Smoothness of the mean of the predictive distribution (5.25) is highly dependent
on σ2 (the regularization parameter). Parameters, such as σ and possible parame-
ters of the kernel, that have to be set, are denoted hyperparameters (see Section 2.9
for hyperparmeters). The hyperparameters could be chosen using cross valida-
tion, but if few observations are available, maximizing the marginal likelihood is
a good alternative (see Section 2.9).

Example 5.3: Gaussian Processes Regression Cont’d
Let us return to Example 5.2 and find the hyperparameters ` and γ of the scaled
squared exponential kernel

k(ϕi , ϕj ) = γ2e−‖ϕi−ϕj‖
2
2/2`

2
(5.28)

and the measurement noise variance σ2 by maximizing the marginal likelihood.
The parameters were estimated to

` = 1.4, γ = 4.2, σ = 1.6, (5.29)

using GPML (Rasmussen and Nickisch, 2010). GPML is a Matlab toolbox for GPR.
The code for estimating the hyperparameters using GPML are given in Listing 5.1.

Listing 5.1: Estimation of hyperparameters `, γ and σ using GPML.

covfunc={’covSum’,{’covSEard’,’covNoise’}};
loghyper=minimize([-1;-1;-1],’gpr’,-100,covfunc,Phi,y);
[l gamma sigma]=exp(loghyper);

The resulting predictive distribution for noisy measurements of f0 is visualized
in Figure 5.2.
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Figure 5.2: The predictive distribution for noisy measurements of f0. Mean
given as a solid line and the gray area shows the two standard deviations
confidence interval. The ’+’-marks show the estimation data and the dashed
line 5 sin( · ).
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5.3 Conclusion

Regularization for smoothness is essential in the estimation of many nonpara-
metric models to obtain smooth estimates and control for overfitting. We have
seen how both least squares support vector machines and Gaussian processes
regression use regularization and how the regularization controlled the smooth-
ness of the estimated model. We will continue the discussion on regularization
and smoothness in Paper E and derive a novel regularization method, Weight De-
termination by Manifold Regularization (WDMR). Also Paper F discusses regular-
ization for smoothness and in particular how it can be used to estimate impulse
responses.



6
Concluding Remarks

6.1 Conclusion

The introductory part of this thesis was aimed to motivate and give a background
to the papers of Part II. The focus was regularization and in particular, regular-
ization for sparseness and smoothness. A number of examples of previous usages
of regularization for sparseness and smoothness was given along with illustrative
applications.

Part II of this thesis consists of a collection of papers. The first four papers uti-
lize regularization for sparseness. First out is a novel optimization formulation
for the identification of segmented ARX models, Paper A. Regularization for spar-
sity is there applied to control for overfitting. Paper B provides a novel system
identification approach to piecewise affine systems. Regularization for sparsity
is utilized to control for overfitting. Paper C discusses state estimation and pro-
vides a novel nonlinear smoother. The smoother works under the assumption
that the process noise is impulsive, that is, often zero but occasionally nonzero.
Regularization for sparsity again plays an important role to control for overfit-
ting. The theory presented in this paper could be suitable in e.g., target tracking
applications. Paper D presents a novel model-based approach to trajectory gen-
eration. Regularization for sparsity is here used to find trajectories with compact
representations. Paper E discusses regularization for smoothness. A novel reg-
ularization method Weight Determination by Manifold Regularization (WDMR) is
presented. WDMR is inspired by manifold learning and applications in biology
and has inherited properties thereof. WDMR uses regularization for smoothness
to obtain smooth estimates. Paper F applies regularization for smoothness to lin-
ear system identification. In particular, high order FIR models are studied. Last,
Paper G presents a real-time fMRI bio-feedback setup. The setup has served as a
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proof of concept and shows that useful information can be read out, in real-time,
from the brain activity measurements.

6.2 Future Research

It would be interesting to look at some more theoretical questions concerning
the regularization methods and techniques developed in this thesis. A rather
extensive theory has been developed around compressed sensing. This theory
is not directly applicable to the methods presented in the papers of Part II on
regularization for sparsity. It however provides tools for developing a deeper
theoretical understanding. Interesting theoretical questions are:

• Under what assumptions can the correct sparsity pattern be found?

• How sensitive are the methods using regularization for sparsity for mea-
surement noise? For example, how sensitive are the segmentation algo-
rithm presented in Paper A to measurement noise?

• What happens if the number of estimation data samples goes to infinity?
What is the asymptotic behavior?

There are also several possible application areas for regularization for sparseness
which have not been explored. Multi-target tracking and event based sampling
and control may for example be interesting areas for further research using regu-
larization for sparseness.

It would also be interesting to investigate what techniques, such as, General Prin-
cipal Component Analysis (GPCA, Vidal et al. (2003a,b, 2005)) can do for system
identification and signal processing. GPCA has relations to sparsity techniques
and has e.g., been used in the identification of segmented ARX models, see e.g.,
Vidal et al. (2003b). In particular, GPCA can be used to ensure that at least one
element of a quantity is zero.

Interesting is also the development of new techniques and theories in machine
learning. Many machine learning techniques are not directly applicable to dy-
namic systems, but they give a suitable foundation for the development of algo-
rithms for dynamic systems. WDMR, presented in Paper E, is one example of
such development. WDMR has shown useful in several applications, and there
are for sure many interesting suitable applications as well as theoretical findings
to be explored.

The last paper of this thesis, Paper G, discusses a real-time fMRI biofeedback
setup. The potential of real-time fMRI is very exciting and applications of fMRI
biofeedback have recently attract quite some attention in media and literature.
It has e.g., been shown how subjects can be trained to control their own pain
using fMRI biofeedback (DeCharms et al., 2005). Our setup has been used as
a communication interface (Eklund et al., 2010) and for real-time brain activity
visualization (Nguyen et al., 2010). Many exciting applications remain to be ex-
plored, however.
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6.3 Further Readings

For readers familiar with system identification that would like to read more about
the mathematical background on underdetermined systems, sparseness and regu-
larization, a very nice reading is Bruckstein et al. (2009). The paper by Zibulevsky
and Elad (2010) also gives a nice introduction to sparsity. For a nice book that
discusses several different regularization methods, Hastie et al. (2001) is to rec-
ommend. For the reader interested in machine learning and Bayesian modeling,
Bishop (2006) is a good reference. Gaussian processes are nicely presented in
Rasmussen and Williams (2005).





A
Kernels and Norms

This appendix lists a number of kernels and norms used in this thesis. Some
properties of kernels are also discussed.

A.1 Kernels

In machine learning, a kernel k : X × X → R is a general name for a function
of two arguments mapping to R. A kernel is said to be symmetric (see e.g., Ras-
mussen and Williams (2005, p. 80)) if

k(ϕi , ϕj ) = k(ϕj , ϕi), (A.1)

for any two ϕi , ϕj ∈ X . If the kernel is going to be used in GPR as a covariance
function, it needs to be symmetric. A kernel is said to be stationary (see e.g.,
Rasmussen and Williams (2005, p. 79)) if k(ϕi , ϕj ) can be written as

k(ϕi , ϕj ) = k̄(ϕi − ϕj ), ϕi , ϕj ∈ X , (A.2)

for some function k̄ : X → R. It is non-stationary if not stationary. Last, a kernel
is said to be positive semi-definite (see e.g., Rasmussen and Williams (2005, p. 80))
if for any number of inputs ϕ1, . . . , ϕN in X , the Gram matrix K with element ij
given by k(ϕi , ϕj ) is positive semi-definite.

A symmetric positive semi-definite kernel k can be written as a dot-product

k(ϕi , ϕj ) = hT (ϕi)h(ϕj ), ϕi , ϕj ∈ X . (A.3)

This follows from Mercer’s theorem (see e.g., Schölkopf and Smola (2001, pp. 37-
38)). h( · ) is called a feature map.
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See Rasmussen and Williams (2005, Chap. 4) or Schölkopf and Smola (2001,
Chap. 2) for further discussions on kernels and their properties.

Remark A.1. The precise mathematical definition of a kernel states that a kernel is a
function k : X × X → R that is both symmetric and positive semi-definite. We use the
more liberal definition of machine learning.

A.1.1 Squared Exponential Kernel

For two vectors ϕi , ϕj ∈ Rn, define the squared exponential kernel (sometimes
called a Gaussian kernel or Gaussian radial basis kernel) as

k(ϕi , ϕj ) , e
−‖ϕi−ϕj‖22/2`

2
, (A.4)

where ` is a parameter of the kernel and denoted the length scale. The squared ex-
ponential kernel is symmetric, stationary and positive definite (Micchelli, 1986).

A.1.2 Polynomial Kernel

For two vectors ϕi , ϕj ∈ Rn, define the polynomial (inhomogeneous) kernel as

k(ϕi , ϕj ) , (ϕTi ϕj + 1)d , d ∈ N . (A.5)

The feature map, or h, associated with the polynomial (inhomogeneous) kernel
contains all monomials of order up to d (e.g., Schölkopf et al. (2001, Prop. 2.17)).
The polynomial kernel is symmetric, non-stationary and positive definite (see
e.g., Vapnik (1995, p. 460)).

A.2 Norms

A.2.1 Infinity Norm

For a vector x ∈ Rn, define the infinity-norm as

‖x‖∞ , max
i=1,...,n

|x(i)|. (A.6)

A.2.2 `0-Norm

For a vector x ∈ Rn, define the zero (quasi-)norm as

‖x‖0 , card
({
i
∣∣∣x(i) , 0

})
. (A.7)

The zero norm is the number of nonzero elements of the vector x. The zero norm
is a quasi-norm since it is not positive homogeneous. That is, the zero norm does
not satisfy

‖αx‖0 , |α|‖x‖0, α ∈ R, (A.8)

which all norms should.
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A.2.3 `p-Norm (0 < p < ∞)

For a vector x ∈ Rn, define the `p-norm, 0 < p < ∞, as

‖x‖p ,
( n∑
i=1

|x(i)|p
)1/p

. (A.9)

The `2-norm is referred to as the Euclidean norm. See Figure 4.1, p. 52, for a
visualization of some different `p-norms.





B
Huber Cost Function as a

`1-Regularized Least Squares
Problem

We use this appendix to show that the `1-regularized least squares formulation

min
θ,η1,...,ηN

Ne∑
t=1

(yt − ϕTt θ − ηt)2 + λ
∥∥∥∥ [
η1 η2 . . . ηNe

] ∥∥∥∥
1
. (B.1)

derived in Examples 4.3 and 4.6 is minimized by the same θ as

min
θ

Ne∑
t=1

ψ
(
yt − ϕTt θ

)
(B.2)

with

ψ(x) ,
{
|x|2, if |x| < λ/2,
λ|x| − λ2/4 otherwise.

(B.3)

First notice that (B.1) is equivalent to

min
θ,η1,...,ηN

Ne∑
t=1

(
(yt − ϕTt θ − ηt)2 + λ|ηt |

)
. (B.4)

We now aim to show that

min
ηt

(yt − ϕTt θ − ηt)2 + λ|ηt | = ψ(yt − ϕTt θ). (B.5)

Let us consider the left hand side of (B.5) and step-by-step derive the right hand
side. First, notice that |ηt | = sign(ηt)ηt and

d
dηt
|ηt | =

d
dηt

sign(ηt)ηt = 2δ(ηt)ηt + sign(ηt), (B.6)
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the function δ( · ) denoting the Dirac delta function. Then

d
dηt

(
(yt − ϕTt θ − ηt)2 + λ|ηt |

)
= −2(yt − ϕTt θ − ηt) + 2λδ(ηt)ηt + λ sign(ηt).

Equating the derivative to zero and solve for ηt gives

η∗t = yt − ϕTt θ − λδ(η∗t )η
∗
t − λ/2 sign(η∗t ), (B.7)

which is implicit in η∗t . For a η∗t > 0, (B.7) reduces to

η∗t = yt − ϕTt θ − λ/2 (B.8)

which implies that yt − ϕTt θ > λ/2. Equivalent, a η∗t < 0 implies that η∗t = yt −
ϕTt θ + λ/2 and yt − ϕTt θ < −λ/2. Now, if λ/2 ≥ yt − ϕTt θ ≥ 0, then ηt ≥ 0, since
otherwise it dose not counteract on the positive yt − ϕTt θ in the left hand side of
(B.5). Using this, the left hand side of (B.5) becomes

min
ηt :ηt≥0

(yt − ϕTt θ − ηt)2 + ληt = min
ηt :ηt≥0

ηt(ηt + 2(λ/2 − (yt − ϕTt θ))). (B.9)

Since λ/2− (yt −ϕTt θ) ≥ 0, η∗t = 0 minimizes (B.9). Similarly, if −λ/2 ≤ yt −ϕTt θ ≤
0, then ηt ≤ 0 which leads to

min
ηt :ηt≤0

(yt − ϕTt θ − ηt)2 − ληt = min
ηt :ηt≤0

ηt(ηt − 2(λ/2 + yt − ϕTt θ)) (B.10)

and again the same solution, η∗t = 0. All together

η∗t =


yt − ϕTt θ − λ/2, yt − ϕTt θ > λ/2,
0, |yt − ϕTt θ| < λ/2,
yt − ϕTt θ + λ/2, yt − ϕTt θ < −λ/2.

(B.11)

(B.11) inserted in (yt − ϕTt θ − ηt)2 + λ|ηt | gives

min
ηt

(yt − ϕTt θ − ηt)2 + λ|ηt | (B.12a)

=(yt − ϕTt θ − η∗t )2 + λ|η∗t | (B.12b)

=


λ2/4 + λ|yt − ϕTt θ − λ/2|, if yt − ϕTt θ > λ/2
(yt − ϕTt θ)2, |yt − ϕTt θ| < λ/2
λ2/4 + λ|yt − ϕTt θ + λ/2|, yt − ϕTt θ < −λ/2

(B.12c)

=


λ(yt − ϕTt θ) − λ2/4, if yt − ϕTt θ > λ/2
(yt − ϕTt θ)2, |yt − ϕTt θ| < λ/2
−λ(yt − ϕTt θ) − λ2/4, yt − ϕTt θ < −λ/2

(B.12d)

=ψ
(
yt − ϕTt θ

)
(B.12e)

where the last equality holds from the definition (B.3) of the Huber loss function.
Since (B.5) holds for any θ, it follows that θ minimizing (B.1) also minimizes
(B.2).
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