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Abstract – Starting from Maxwell’s equations, we
derive a sensor model for three-axis magnetometers
suitable for localization and tracking applications. The
model depends on the relative position between the sen-
sor and the target, and a physical magnetic multipole
model of the target. Both point targets (far-field) and
extended target (near-field) models are provided. The
models are validated on data taken from various road
vehicles. The suitability of magnetometers for tracking
is analyzed in terms of local observability and Cramér
Rao lower bound as a function of the sensor positions
in a two sensor scenario. Results from field test data
indicate excellent tracking of position and velocity of the
target, as well as identification of the magnetic target
model suitable for target classification.
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1 Introduction
Tracking and classification of targets are primary

concerns in automated surveillance systems. The track-
ing and classification information can be used for sta-
tistical purposes, i.e. counting number of target of a
specific type and registration of their velocities and di-
rections of arrival. If a permeable body is placed in a
region with a homogeneous magnetic field, it becomes
magnetized, which gives rise to an additive induced
magnetic field [1]. In this work, the magnetic field of
the earth induces a magnetization in a vehicle. If the
vehicle is moving, this induced magnetic field can be
measured at different positions relative to the vehicle
with a stationary magnetometer. This signal depends
on the position, velocity and the magnetic signature of
the target. This work presents nonlinear statistical sig-
nal processing methods to be used with this signal in
order to track vehicles.

The complete description of the induced magnetic
field caused by a moving magnetized target is given if
the position and the magnetic properties of each atom
in the vehicle is known. However, this (almost) infi-
nite state space can also be parameterized using the so

called multipole expansion [1, 2], which is an orthogo-
nal expansion of the magnetic field. Its coefficients are
known as the magnetic moments. The highly nonlinear
basis functions of this expansion decay more and more
rapidly with the distance from the target. Generally,
this expansion can be truncated and far away enough
(approximately the characteristic length of the target)
only the lowest order term of the expansion is of impor-
tance. This term is known as the magnetic dipole field
and its coefficient as the magnetic dipole moment.

This dipole model has been used by Birsan [3, 4] for
target tracking, where simulations of known position
and magnetic dipole moment have been used to esti-
mate these parameters. Tracking and estimation were
performed using an unscented Kalman filter [3] and an
unscented particle filter [4]. Furthermore, several stud-
ies have been done exploring the use of underwater mag-
netometers for tracking of vessels [5, 6, 7], where [7] has
used the dipole model not only for localizing the ves-
sel, but also for estimating the positions of the sensors.
In [6] a Bayesian match-field approach has been used,
which takes the attenuation of the seawater into con-
sideration.

In [4], the problem with determination of arrival di-
rection due to the nonlinearity of the sensor model has
been addressed, which has been solved with a Monte
Carlo based approach known as the particle filter. How-
ever, in this work, the vehicle is assumed to follow a
straight road and only two directions of arrival have
to been considered, which can be solved by initializing
two Extended Kalman Filters. Furthermore, the works
using the dipole model [3, 4, 7] are based on simula-
tions, whereas this work will compare the theory with
experimental data. In addition, in [4] the problem with
lack of observability for an one-sensor scenario has been
addressed. Our work will more precisely describe this
unobservable manifold. Finally, the optimal sensor de-
ployment is analyzed in terms of local observability and
Cramér Rao lower bound as a function of the sensor po-
sitions in a two-sensor scenario.



The paper outline is as follows: Section 2 describes
the sensor model and compares it with other common
sensors. A validation of this sensor model based on
experimental data is provided in Section 3. In Section
4 observability and sensor deployment is discussed and
in Section 5 results from a target tracking experiment
is provided. The paper concludes with conclusions and
appendix.

2 Theoretical Sensor Model
A permeable object in a homogeneous magnetic field

gives rise to an induced magnetic field. In order to
design a good statistical signal processing method for
tracking and classifying this target, physical insight into
how this field depends on the properties of the target
as well as the distance and direction from it has to be
achieved. If the distance from the object is large in
comparison with its characteristic length, the induced
magnetic field B(r) at position r relative to the object
can be described as a dipole field. An expression of
this field can be derived from Maxwell’s equations (see
Appendix 6) and in Cartesian coordinates it is

B(r) =
µ0

4π

3(r · m)r − r2m

r5
, (1)

where m is the magnetic dipole moment of the object
and r = |r|. In the derivation of this term, the Taylor
expansion of the potential 1/r has been truncated (see
Equation (38)). By going further with this expansion,
higher moments of the magnetic vector potential are
found. This expansion is known as the multipole expan-
sion. The lth magnetic moment mi1...il

is a symmetric
traceless tensor of lth order having 2l + 1 independent
components. The magnetic field of the lth multipole
may be expressed as (for derivation see [8])

B(l)(r) =
µ0

4π

(2l + 1)(r · M(l))r − lr2M(l)

rl+4
, (2)

where the following vector has been introduced

M
(l)
i =

3
∑

i1=1

· · ·
3
∑

il−1=1

xi1 · · ·xil−1

rl−1

1

l!
mii1...il−l

. (3)

By setting l = 1 one can easily compute the magnetic
dipole in (1). The total magnetic field is then given by

B(r) =

∞
∑

l=1

B(l)(r). (4)

The r-dependences of the field for the different multi-
poles are r−3, r−4, r−5 etc. and at sufficiently large
distances the field is dominated by the dipole term.
Generally the series (4) can be truncated to arbitrary
many multipoles. With a truncation of the pth first
multipoles, one gets

B(r) =

p
∑

l=1

B(l)(r) + O

(

1

rp+3

)

, (5)

since the lowest term not included in the expansion will
dominate the truncation error at large distances. Thus,
the multipole expansion also gives a hint how good this
truncation is which can be used for variance and bias
compensation of the measurement.

In the signal processing framework, a sensor model of
a time-invariant system is given on the standard form

yk = h(xk) + ek, (6)

where yk is the measurement, xk is the state of the
system and ek is measurement noise, all at time instant
kTs, Ts being the sample period. Let rk be the position
of the target relative to the sensor and mk its magnetic
dipole moment. By choosing p = 1 in (5), one gets the
sensor model

yk = h(rk,mk) + ek =
µ0

4π

3(rk · mk)rk − |rk|
2mk

|rk|5
+ ek,

(7)

where rk and mk are the states of the system. This
will be a good far-field model since the model error
to signal ratio decays as O(r−4)2/O(r−3)2 = O(r−2).
Furthermore, it is instructive to express (1) in spherical
coordinates (r, θ, φ) with m being the zenith direction

Br(r) =
µ0

4π

2m cos(θ)

r3

Bθ(r) =
µ0

4π

m sin(θ)

r3
(8)

Bφ(r) = 0,

where m = |m|. Note that these equations reveal the
real information in the three-axis magnetometer. Only
a two-dimensional subspace affects the sensor, which
is parameterized by the range r and the bearing θ to
the target (relative its own magnetic dipole moment).
One can compare this sensor model with other common
sensors in tracking and localization applications that
also provide range and bearing information:

• A radar measures range and bearing explicitly,
while the magnetometer model provides this in-
formation implicitly. It should therefore contain
similar information. The radar signal decays as
O(r−4), and the usual thresholding gives a bi-
nary SNR (either the target is detected or it is
not) which depends on range. The SNR for the
magnetometer decays continuously as O(r−6) and
in contrast to a radar, the emitted power of the
earth magnetic field cannot be increased to im-
prove SNR.

• Time of arrival (TOA) measures the time of flight
between two points, which is linear in range. The
signal decays approximately as O(r−2), and similar
to the radar the SNR is quantized in the signal
strength.



• Received Signal Strength (RSS) measures the sig-
nal level (in dB usually), and this level decays
logarithmically in range, so SNR is approximately
O(− log(r)).

3 Sensor Model Validation

In order to validate the far-field sensor model (7) real
experimental data has been collected with a Xsens mag-
netometer [9]. In this section, the measurement noise
of this data will be analyzed. Furthermore, the exper-
imental setup will be described as well as the method-
ology of the validation and the results.

3.1 Noise Distribution

Without any targets, the magnetometer measures
only the present homogeneous magnetic field (the mag-
netic field of the earth) together with noise. The homo-
geneous magnetic field can be regarded as a constant
bias, and thus be subtracted from the original signal.
According to [10] the noise of the magnetometer [9] is
white Gaussian, i.e. its samples are i.i.d. and normal
distributed. Such a stochastic process is uniquely de-
fined by its covariance matrix (since a bias of the sensor
already has been subtracted). This symmetric 3 × 3 -
matrix is estimated to be

R = 10−20





0.2150 0.0010 0.0252
0.0010 0.0549 0.0011
0.0252 0.0011 0.0954



 , (9)

where the unit of the measurement is Tesla.

3.2 Experimental Setup and Velocity

model

The magnetometer has been placed close to a straight
road measuring the induced magnetic field due to vehi-
cles passing by. The sensor setup is presented in Fig-
ure 1.

Vehicle vk

v
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k
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v
(y)
k
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y

Road

xmk

z

Ψ

Figure 1: Sensor setup for model validation. rk is a
vector from the sensor to the vehicle, vk is the velocity
of the vehicle and mk is the magnetic moment of the
vehicle. All vectors are three dimensional and given in
the global Cartesian coordinate system x − y − z.

Since the road is straight, a constant velocity mo-
tion model is assumed for the vehicle. This gives the

following 9-dimensional discrete state space model:

rk+1 = rk + Tvk +
T 2

2
wk

vk+1 = vk + Twk

mk+1 = mk (10)

yk =
µ0

4π

3(rk · mk)rk − |rk|2mk

|rk|5
+ ek,

where wk ∼ N (0,Q) is white Gaussian process noise
and ek ∼ N (0,R) is white Gaussian measurement
noise, given by (9).

3.3 NLS for getting a Ground Truth So-

lution

Since all vehicles in our experiment pass the sensor
with constant velocity, this prior knowledge enables a
dedicated procedure to generate the ground truth with
high accuracy. That is, assume vk+1 = vk and thus
wk = 0 in (10). Set

h̃k(x) = h(r0 + kTsv0,m) (11)

The NLS methodology then gives

x̂ = arg min
x

V (x) (12)

V (x) =

N
∑

k=1

(yk − h̃k(x))T R−1(yk − h̃k(x))

In this framework, also the covariance of the optimum
x̂ can be estimated. Since ∇V = 0 at optimum, the
covariance can be approximated as

Cov(x̂) ≈

(

N
∑

k=1

∇h̃k(x̂)T R−1
∇h̃k(x̂)

)−1

. (13)

Furthermore, according to the result in Section 4.1 this
system is not observable, which could be solved with a
second sensor. However, in this sensor model validation
an assumption has had to be made and the velocity
is assumed to be equal to 10 m/s for all vehicles. In
order to implement this assumption, the velocity v0

has been parameterized with its magnitude, yaw and
pitch angle (v0,Ψ, θ) and the assumption v0 = 10. The
NLS problem can now be solved with the Gauss-Newton
algorithm and the results are summarized in Table 1, 2
and 3 for the vehicles presented in Figure 3.

From Table 1 it can be concluded that the signal from
Vehicle 6 produces the best fit with the model and Ve-
hicle 1 the worst. This can be explained by looking at
the pictures in Figure 3. Here, it can be stated that Ve-
hicle 1 is much closer to the sensor in comparison with
the characteristic length of the object than Vehicle 6.
In Figure 2 a plot illustrates the excellent results for Ve-
hicle 6. Furthermore, from Table 2, the values of Ψ̂ and



Table 1: The cost function, and the estimated yaw Ψ̂
and pitch θ̂ angle with standard deviation in parenthe-
sis.

Nr V (x̂) N Yaw Ψ̂ [◦] Pitch θ̂ [◦]
1 7.4e+04 31 -11.8 (0.2) -20.6 (0.3)
2 2.5e+04 97 179 (0.2) 2.6 (0.1)
3 2.5e+03 43 169 (1.5) 14.0 (1.0)
4 5.5e+02 29 6.4 (0.8) 3.4 (0.5)
5 3.3e+02 27 3.5 (1.5) 2.0 (0.6)
6 1.0e+02 23 176 (2.7) -0.3 (1.6)

Table 2: The estimated the initial position r̂0 in Carte-
sian coordinates with standard deviation in parenthesis.

Nr Estimated initial position r̂0 [m]
1 -6.7, 5.7, -7.3 (0.05, 0.03, 0.04)
2 34, 15, -7.6 (0.05, 0.11, 0.10)
3 17, 6.3, 1.3 (0.15, 0.40, 0.39)
4 -12, 3.5, -0.8 (0.04, 0.16, 0.09)
5 -11, 3.7, 0.2 (0.08, 0.28, 0.09)
6 7.4, 5.1, -1.0 (0.23, 0.34, 0.3)

Table 3: The estimated magnetic dipole moment m̂

in Cartesian coordinates with standard deviation in
parenthesis.

Nr Estimated magnetic dipole moment m̂ [J/T]
1 9, -1.3, -6 (0.05, 0.08, 0.06)
2 260, -27, 140 (0.91, 1.30, 0.63)
3 7.6, 3.1, -44 (1.60, 0.40, 0.38)
4 -3, -0.2, -3.1 (0.04, 0.09, 0.04)
5 -1.4, 0.3, -1.6 (0.03, 0.07, 0.03)
6 -1.2, 0.4, -1.4 (0.09, 0.12, 0.05)

θ̂ reveal that all the velocities of the vehicles are almost
parallel to the x-axis, in accordance with the experi-
mental setup (see Figure 1). It can also be stated that
Vehicle 1, 4 and 5 move in positive x-direction, whereas,
Vehicle 2, 3 and 6 move in negative x-direction, which
can be verified in Figure 3.

From Tables 2 and 3 only the directions of the pre-
sented vector quantities are interesting, since the norms
will be scaled if another assumption for the velocity is
made.

4 Magnetometer Potential for

Localization and Tracking
In this section limitations and possibilities of the

magnetometer will be discussed in terms of observabil-
ity and Cramér Rao lower bound as a function of the
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Figure 2: The measured magnetic field y
(x)
k in the

x-direction together with the NLS-estimated value

h̃
(x)
k (x̂) for Vehicle 6 with a 90 % confidence interval.

For the non-linear transformation h̃
(x)
k (x̂) a first order

Taylor approximation has been used.

(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

(e) Vehicle 5 (f) Vehicle 6

Figure 3: The vehicles used in the sensor model valida-
tion.



placement of a second sensor.

4.1 Single Sensor Observability

To analyze observability, a local analysis can be per-
formed. Consider the covariance of the NLS estimate
(13). This is computed by inverting the information
matrix

I(x0) =

N
∑

k=1

∇h̃T
k (x0)R−1

∇h̃k(x0), (14)

where x0 are the true parameters. Any zero eigenval-
ues of this matrix makes it singular, which indicates a
lack of local observability. The unobservable subspace
is spanned by the eigenvectors corresponding to the zero
eigenvalues, also known as the kernel of the matrix.
This kernel can be computed for a specific setup.

Consider the parameters in Table 4. This will gener-

Table 4: Parameters for a local observability analysis

Parameter Value
Initial position r0[m] -3 1 0
Velocity v0[m/s2] 1 0 0
Magn. dipole moment m 1 1 1
Measurement noise R I3

Samples N 60
Sample time Ts 0.1

ate a scenario where the target is starting at [−3, 1, 0],
following the x-axis and ending at [3, 1, 0].

By parameterizing x0 = [r0, v0, m]T and computing
the eigenvalues of the information matrix (14), this will
result in one eigenvalue having significantly less magni-
tude than the other eigenvalues (see Figure 4). The cor-
responding eigenvector is [−3, 1, 0, 1, 0, 0, 3, 3, 3]T ,
which equals [r0, v0, 3m]T . This property is not
unique for the chosen x0. In fact, it can be shown that
I(x0)·[r0, v0, 3m]T = 0 for all x0 ∈ R

9. Thus, the ker-
nel is generally given by the following one-dimensional
subspace

Ker(I(x0)) = (λ[r0, v0, 3m]T | λ ∈ R). (15)

However, due to the nonlinearity, this expression of the
unobservable subspace is only valid at the point x0 and
can therefore only be regarded as the tangent of the
unobservable one-dimensional manifold at this point.
Denote this manifold X(u) = [R0(u), V0(u), M(u)]T ,
where u is a scalar parameter. For each u there will be
a λ(u) such that

d

du
X(u) =

d

du





R0(u)
V0(u)
M(u)



 = λ(u)





R0(u)
V0(u)
3M(u)



 (16)

By choosing the parameterization u = λ(u)−1, we get
the following unobservable manifold

X(u) =





ur0

uv0

u3m



 . (17)

It is instructive to substitute X(u) into (11) and con-
clude that each hk(X(u)) is independent of the param-
eter u, which means that all points on this manifold
will give the same output yk. For example, multiplying
r0 and v0 with 2, and m with 23 = 8 will result in the
same output yk.

Furthermore, from the expression (17) we can con-
clude that the magnitudes of the vectors r0, v0 and m

cannot be uniquely determined, only a nonlinear com-
bination of them. However, their directions are still
observable.

4.2 Multi Sensor Observability

The lack of observability can be solved with a second
sensor. To handle multiple sensors, the sensor model
has to be slightly expanded. Let the jth sensor be po-
sitioned at θj . The target parameter relative to the jth
sensor will then be xj = [r0−θj , v0, m]T and the total
sensor model is given by

yk,j = hk(xj) + ek,j for all j ∈ J. (18)

Furthermore, in a multi-sensor scenario, the informa-
tion matrices for all sensors are additive, so

Itot(x
0, θ1:J) =

J
∑

j=1

I(x0
j ). (19)

Now, to the unobservable sensor setup presented in Ta-
ble 4 a second sensor can be added. By computing
the total information matrix it can be concluded that
its eigenvalues are all non-zero (see Figure 4) and with
that, the system is observable.

1 2 3 4 5 6 7 8 9
10

−30

10
−20

10
−10

Different eigenvalues

V
al

ue

Eigenvalues of the information matrix

 

 

One sensor at [0,0,0]
Two sensors at [0,0,0] and [0,2,0]

Figure 4: The eigenvalues of the information matrix for
the setup presented in Table 4 being observed with 1)
one sensor at [0, 0, 0]T and 2) two sensors at [0, 0, 0]T

and [0, 2, 0]T

The concept of observability can be extended by not
only distinguishing between zero and non-zero eigen-
values, but also comparing their magnitudes. The de-
sign goal in the sensor deployment is then to get all
eigenvalues of the same order of magnitude to achieve



best possible observability. This property is measured
by the condition number of the information matrix
κ(Itot(x

0, θ1:J )), which for a positive symmetric ma-
trix can be expressed as

κ(A) =
λmax(A)

λmin(A)
, (20)

where λmax(A) and λmin(A) are maximal and minimal
eigenvalues of A respectively. A low condition number
indicates that the system has good observability prop-
erties and its optimal value is 1.

In order to examine where a second magnetometer
should be placed to get the most well-conditioned in-
formation matrix, the condition number can be com-
puted for different positions θ2 of the second sensor. A
plot illustrating this is presented in Figure 5. It can
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Figure 5: The condition number of the information ma-
trix κ(Itot(x

0,θ1:2)) as a function of the location of the
second sensor θ2 in the x-y-plane where x0 is given by
the setup presented in Table 4 and θ1 = [0, 0, 0]T .

be concluded that the optimal sensor deployment of a
two sensor system is to locate them symmetrically at
both sides of the target trajectory. If the sensors due
to practical reasons must be located at the same side
of the trajectory, they should be well separated, which
is intuitive.

4.3 Cramér Rao Lower Bound

The Cramér Rao lower bound (crlb) is related to
observability, in that it applies a local analysis and ba-
sically approximates V (x̂) with a quadratic function
V (x̂) ≈ x̂TI(x0)x̂, where I(x0) is Fisher’s information
matrix (fim), which for this problem is given by (14).
The crlb states that any unbiased estimate must have
a covariance matrix larger than or equal to the inverse
of the fim

Cov(x̂) ≥ I(x0)−1 (21)

The design goal of the sensor deployment in the context
of crlb is then to maximize I(x0) since that will min-
imize the covariance matrix Cov(x̂). This is achieved
by minimizing

||Cov(x̂)||2 ≈ ||I(x0)−1||2 =
1

λmin(I(x0))
. (22)

However, since the goal of this sensor deployment anal-
ysis is to find the optimal sensor positions relative to
each other and the target trajectory, and not to get op-
timal absolute positions of the sensors (this would be
achieved by localizing the sensors as close as possible to
the target!), the parameters must be meaningfully nor-
malized. By defining the characteristic length of the
problem r as being the the shortest euclidean distance
from the target trajectory to the nearest sensor, we can
introduce the following dimensionless parameters

r̃0 =
r0

r
, ṽ0 =

v0

r/T
, m̃ =

m

1
. (23)

Consequently, y and I(x0) will be scaled accordingly

ỹk = r3yk, I(x̃0) = r6I(x0). (24)

From this we get

||Cov(ˆ̃x)||2 ≈
1

λmin(r6I(x0))
=

r−6

λmin(I(x0))
(25)

∼
λmax(I(x0))

λmin(I(x0))
= κ(I(x0)) (26)

since I(x0) decays as the signal to noise ratio, which
decays as O(r−6).

Thus, a small condition number of the information
matrix will ensure a small covariance (after normaliza-
tion). Therefore, the assumption in Section 4.2 that
the optimal sensor deployment is measured by the con-
dition number of the information matrix is also valid in
the context of crlb.

5 Target Tracking Experiment
In order to track vehicles, one does not want to ex-

clude the possibility to incorporate process noise in the
model. Furthermore, in tracking applications the best
estimation at each time instance should be provided.
Therefore the model (10) has to be considered and the
state rk, vk and mk can at each time instant t = kTs

be estimated using an Extended Kalman Filter.
To find the initial conditions for the EKF seems to

be quite difficult if one does not know anything about
the vehicle heading direction. However, with the prior
knowledge that the vehicle follows a one-dimensional
road, a better prediction of the initial states can be
made. In order to track Vehicle 6, two EKFs have
been initialized, assuming the vehicle is coming from
the left and from the right respectively. With the filter
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Figure 6: Results from a tracking experiment with two
differently initialized EKFs predicting the state of Ve-
hicle 6 presented with a confidence interval of 90%.

bank methodology [11] the modes δ = {Left,Right} can
be defined representing these two differently initialized
EKFs. Their probabilities can now be calculated as a
function of time. All results are found in Figure 6.

Due to the nonlinearity of the model one of these
filters will not converge to the correct solution. For
the false one it violates the assumption that the vehicle
moves in x-direction (see Figure 6b). Furthermore, only
one filter produces a good fit with the measured data
(see Figure 6a). Finally, the filter bank weights in Fig-
ure 6c provide the absolute measure which enables us
to decide which hypothesis is correct. With these com-
ments it can be clearly stated that this specific vehicle
is coming from the right, which is correct according to
Figure 3f.

6 Conclusions and Future Work
We have shown (theoretically and experimentally)

that a moving metallic object can be modeled as a
magnetic dipole if the distance to the object is large in
comparison to its characteristic length. With a single

magnetometer, the position, the velocity and the mag-
netic dipole moment of the vehicle can be estimated
with high accuracy. Furthermore, it has been shown
that for large objects close to the sensor this far-field
model is not satisfactory. In the future, higher order
terms of the model approximation will be used to de-
sign a more accurate sensor model enabling bias and
variance compensation. Also, methods to classify ob-
jects will be analyzed.
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Appendix
A magnetized vehicle can be regarded as a region

with localized current density. That means, charged
particles can move within the region, but neither leave
it nor be added to it. This current density gives rise to
an induced magnetic field outside the region (see Fig-
ure 7). With the assumption that the velocity of the
vehicle is constant, this current density will be time-
independent (relative to the vehicle). This induced

P

J(r′)

r′

r

OV

Figure 7: Localized current density J(r′) gives rises to
a magnetic induction at the point P with coordinate r.

magnetic field, together with the homogeneous mag-
netic field of the earth, is measured by the magnetome-
ter when a vehicle passes by. In order to derive an
expression of this magnetic field as a function of the
vector r from the vehicle to the observer, the electro-
magnetic theory has to be addressed.

All electromagnetic phenomena are governed by
Maxwell’s equations which are

∇ · E =
ρ

ε0
(27)

∇ × B − µ0ε0
∂E

∂t
= µ0J (28)

∇ × E +
∂B

∂t
= 0 (29)

∇ · B = 0, (30)

where E is the electric field, ρ is the charge density,
B is the magnetic field, J is the current density and
ε0/µ0 are the permittivity/permeability of free space.
Since all currents are constant, only the static version



of these equations has to be considered. Furthermore,
only the equations concerning the magnetic field and
the current density (28) and (30) are of relevance.

∇ × B = µ0J (31)

∇ · B = 0 (32)

Since ∇ ·B = 0 everywhere, B must be the curl of some
vector field A(r), called the vector potential

B(r) = ∇ × A(r). (33)

Substituting (33) into (31) gives

∇ × (∇ × A(r)) = µ0J ⇒ (34)

∇(∇ · A) −∇2A = µ0J. (35)

Since (33) only specifies the curl of A, the freedom of
the so called gauge transformation allows one to make
∇ ·A have any convenient functional. With the choice
∇ · A = 0, each rectangular component of the vector
potential satisfies the Poisson’s equation

∇2A = −µ0J, (36)

which has the solution

A(r) =
µ0

4π

∫

J(r′)

|r − r′|
d3r′. (37)

The vector potential of the induced magnetic field
in Figure 7 can now be calculated by using (37) and
then integrate over region of the localized current. Fur-
thermore, the denominator in (37) can be expanded in
powers of r′. With r > r′ this will be

1

|r − r′|
=

1

r
+ (−r′)T

∇

(

1

r

)

+

1

2!
(−r′)T

(

∇∇

(

1

r

))

(−r′) + . . . , (38)

where r = |r|. By using this Taylor expansion in (37)
one gets

Ai(r) =
µ0

4π

(

1

r

∫

V

Ji(r
′)d3r′ +

r

r3
·

∫

V

Ji(r
′)r′d3r′ + . . .

)

.

(39)

Due to the fact that the current density J(r) is local-
ized and obeys the static continuity condition ∇·J = 0,
Gauss’ theorem makes the first term in (39) zero. Fur-
thermore, it can be shown that

r ·

∫

V

r′Jid
3r′ = (m × r)i, (40)

where m is the magnetic dipole moment

m =
1

2

∫

V

r′ × J(r′)d3r′. (41)

The details of these steps are clearly outlined in [1].
Using (41) in (39) gives

A(r) =
µ0

4π

m × r

r3
. (42)

The induced magnetic field can now be calculated
directly by evaluating the curl of (42).

B(r) =
µ0

4π

3(r · m)r − r2m

r5
(43)

When r ≫ r′ the truncation of the Taylor expansion
in (38) makes a good approximation. Thus (43) is a
good far-field model for the magnetic field induced by
the vehicle.
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