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Identification of Mixed Linear/Nonlinear State-Space Models

Fredrik Lindsten and Thomas B. Schön

Abstract— The primary contribution of this paper is an
algorithm capable of identifying parameters in certain mixed
linear/nonlinear state-space models, containing conditionally
linear Gaussian substructures. More specifically, we employ
the standard maximum likelihood framework and derive an
expectation maximization type algorithm. This involves a non-
linear smoothing problem for the state variables, which for the
conditionally linear Gaussian system can be efficiently solved
using a so called Rao-Blackwellized particle smoother (RBPS).
As a secondary contribution of this paper we extend an existing
RBPS to be able to handle the fully interconnected model under
study.

I. INTRODUCTION

Identification of nonlinear systems is probably one of the
currently most active areas within the system identification
community [1, 2]. This is basically due to its relevance and
challenging nature. During the last decade or so, identifica-
tion methods based on the so called Sequential Monte Carlo
(SMC) method, also referred to as particle filters [3, 4], have
appeared at an increasing rate and with increasingly better
performance. The two overview papers [5, 6] and the recent
results in [7–10] provide a good introduction to these ideas.
We will in this paper continue this line of work and introduce
a new algorithm based on SMC methods for nonlinear system
identification.

More specifically, the main contribution of this paper is an
algorithm for identifying mixed linear/nonlinear state-space
models in the following form

at+1 = fa(at, ut, θ) +Aa(at, ut, θ)zt + wa,t, (1a)
zt+1 = fz(at, ut, θ) +Az(at, ut, θ)zt + wz,t, (1b)
yt = h(at, ut, θ) + C(at, ut, θ)zt + et, (1c)

where xt =
(
aTt zTt

)T ∈ Rnx , ut ∈ Rnu , yt ∈ Rny
denote the state, the measured input signal and the measured
output signal, respectively. The model is parameterized by
θ ∈ Rnθ . The random processes wt =

(
wTa,t wTz,t

)T
and et

are assumed to be white and Gaussian according to

wt ∼ N (0, Q(at, θ)), et ∼ N (0, R(at, θ)), (1d)

Q(at, θ) =

[
Qa(at, θ) Qaz(at, θ)

(Qaz(at, θ))
T Qz(at, θ)

]
. (1e)

Furthermore, the initial state z1 is assumed Gaussian accord-
ing to z1 ∼ N

(
z1|0(a1, θ), P1|0(a1, θ)

)
and the density of

a1, p(a1, θ), is assumed to be of known structure, but can
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depend on θ. We could also straightforwardly allow time-
varying models, but to keep the notation simple we shall not
make this dependence explicit.

Maximum Likelihood (ML) estimation has, due to its
appealing theoretical properties, a long tradition in many
fields of science, including the field of system identification.
The ML problem we are concerned with in this work is

θ̂ = arg max
θ∈Θ

pθ(YN ) = arg max
θ∈Θ

Lθ(YN ), (2)

where YN , {y1, y2, . . . , yN}, Lθ(YN ) , log pθ(YN ) is
the log-likelihood function and Θ ⊂ Rnθ denotes a set
of permissible values for the unknown parameter vector θ.
For future reference we also introduce the notation ys:t ,
{ys, ys+1, . . . , yt}.

The EM algorithm [11] is by now a standard tool for
solving maximum likelihood problems. Despite this, it is
only recently that it has gained serious interest in solving
system identification problems [7, 9, 12].

When it comes to nonlinear problems, an appealing prop-
erty of the EM algorithm is that it allows for straightforward
application of SMC methods. This is thoroughly explained
in [7], but basically it comes down to the fact that we have
to compute conditional expectations of the form

E{g(xt:t+1) | YN} =

∫
g(xt:t+1)p(xt:t+1 | YN )dxt:t+1,

(3)

for arbitrary functions g( · ). Here, it is the presence of the
smoothing density function p(xt:t+1 | YN ) that opens up for
direct use of SMC methods. These quantities could of course
be computed using standard particle smoothers, similar to
what was done in [7], not acknowledging the conditionally
linear Gaussian substructure available in (1). However, as we
will show in this paper, by exploiting this inherent structure,
better results can be obtained.

A secondary contribution of this paper is a so called
Rao-Blackwellized particle smoother (RBPS) capable of
estimating the smoothing density p(at:t+1, zt:t+1 | YN ), re-
quired in (3), by exploiting the conditionally linear Gaussian
substructure inherent in (1). Several RBPS algorithms have
already been published [13, 14]. However, to the best of the
authors’ knowledge, this is the first time an algorithm capable
of handling the more general model structure (1) is presented.

II. RELATED WORK

This section provides an overview of the existing work
on using SMC methods, which during the last decade have
experienced a rapid increase in popularity, for solving the
nonlinear system identification problem. A recent and more
thorough overview is provided in [6].



When it comes to solving the ML problem (2) using
SMC methods the literature can roughly be divided into two
different categories,
• Direct maximization of the log-likelihood function.

There are some methods only working with the function
values, see e.g. [15]. However, most methods exploit a
quadratic or linear model of the cost function Lθ(Y ),
rendering the computation of gradients and Hessians
necessary [10, 16]. This is a challenging problem, since
these objects are not easily approximated. However,
interesting developments, based on SMC, are available
in [5, 10, 16].

• Methods based on the EM algorithm [5, 7–9]. In this
approach we refrain from working directly with the
log-likelihood. Instead, as already mentioned in the
introduction, we need to compute certain conditional
expectations which straightforwardly can be approxi-
mated using standard SMC methods. This is explained
in detail in for example [7] and it will also be elaborated
in the subsequent development of the present work.

There are also some interesting developments based on
the Bayesian approach. The most commonly used Bayesian
approach is probably the idea of treating the parameter as
a random walk state variable [17], θt+1 = θt+1 + vt, vt ∼
N (0, Vt), where the noise covariance Vt is decreasing with
time t. This variable is then augmented to the state xt,
forming an augmented model. We [18] have previously used
this idea for estimating parameters in models of the form (1).

III. MAXIMUM LIKELIHOOD USING EM
The EM algorithm [11] is by now a standard tool in

solving maximum likelihood problems. There are, as we have
seen in Section II, by now quite a few publications containing
general derivations of the EM algorithm with the problem of
system identification in mind, see e.g. [7, 9, 12, 19]. Hence,
we refrain from repeating that here and simply point the
reader to the above references for such a derivation.

However, it is still necessary to define some basic quan-
tities for mixed linear/nonlinear systems on the form (1).
Let us start by defining the latent variables (sometimes also
referred to as the missing data or the hidden variables) ac-
cording to XN , {x1, x2, . . . , xN}. The EM algorithm is an
iterative method that finds the ML solution by alternatively
computing (an approximation of) the Q-function,

Q(θ, θk) , Eθk {Lθ(XN , YN ) | YN} (4a)

=

∫
Lθ(XN , YN )pθk(XN |YN ) dXN , (4b)

and solving the following maximization problem

θk+1 = arg max
θ∈Θ

Q(θ, θk). (5)

We will throughout the rest of this section assume that
approximations of p(at:t+1, zt:t+1 | YN ) are available in the
form

p̂(at:t+1, zt:t+1 | YN ) =
1

M

M∑
j=1

δ(at:t+1 − ãjt:t+1)×

N
(
zt:t+1; z̃jt:t+1|N , P̃

j
t:t+1|N

)
. (6)

The notation used in (6) will be introduced in Section IV,
where an algorithm for computing these approximations will
be provided. Based on (6) we can compute an approximation
of the Q-function, which is the topic of Section III-A. The
resulting EM algorithm is then provided in Section III-B.

A. Approximating the Q-Function
According to the definition of the Q-function (4a) it

depends on the joint log-likelihood function Lθ(XN , YN ),
which for the model (1) under consideration is given by

Lθ(XN , YN ) = log pθ(YN | XN ) + log pθ(XN )

= log pθ(x1) +

N−1∑
t=1

log pθ(xt+1 | xt) +

N∑
t=1

log pθ(yt | xt).

(7)

From (4b) it appears as if we need the joint smoothing
density for all the states, p(XN | YN ). However, since the
log-likelihood can be written according to (7) it is sufficient
with marginal smoothing densities p(xt:t+1 | YN ) in order
to compute the Q-function.

Inserting (7) into the definition of the Q-function straight-
forwardly results in the following expression

Q(θ, θk) = I1(θ, θk) + I2(θ, θk) + I3(θ, θk), (8)

where we have defined

I1(θ, θk) , Eθk {log pθ(x1) | YN} , (9a)

I2(θ, θk) ,
N−1∑
t=1

Eθk {log pθ(xt+1 | xt) | YN} , (9b)

I3(θ, θk) ,
N∑
t=1

Eθk {log pθ(yt | xt) | YN} . (9c)

The fact that we in (1) have additive Gaussian noise allows us
to derive explicit expressions for calculating the Q-function.
This is the topic throughout the rest of this section. In the
interest of a clearer notation, let us start by rewriting (1)
according to

xt+1 = f(at, θ) +A(at, θ)zt + wt, (10a)
yt = h(at, θ) + C(at, θ)zt + et, (10b)

where

f(at, θ) ,

[
fa(at, θ)
fz(at, θ)

]
, A(at, θ) ,

[
Aa(at, θ)
Az(at, θ)

]
. (11)

Here we have neglected the possible dependence of a known
input ut to keep the notation simple.

Let us start by considering the term I2 defined in (9b). Us-
ing the fact that xTAx = Tr(AxxT ), provides the following
expression for the density function pθ(xt+1|xt),

− 2 log pθ(xt+1|xt) = −2 log pw,θ(xt+1 − f(at)−A(at)zt)

= log detQ(at) + Tr
(
Q−1(at)`2(at:t+1, zt:t+1)

)
+ const.,

(12)
where

`2(at:t+1, zt:t+1) , (xt+1 − f(at)−A(at)zt)×
(xt+1 − f(at)−A(at)zt)

T . (13)



For notational convenience we have dropped the dependence
on θ, but remember that all of f , A, Q, h, C, R, z1|0, P1|0
and p(a1) may in fact be θ-dependent.

Inserting this into (9b) results in

I2 = −1

2

N−1∑
t=1

(
Eθk

{
Tr
(
Q−1(at)`2(at:t+1, zt:t+1)

)
| YN

}
+ Eθk {log detQ(at) | YN}

)
+ const. (14)

Except for simple special cases, such as linear Gaussian
models, it is impossible to obtain explicit solutions for the
involved conditional expectations. However, using (6) we can
compute arbitrarily good approximations according to

Î2 = − 1

2M

N−1∑
t=1

M∑
j=1

(
log detQ(ãjt ) + Tr

(
Q−1(ãjt )

ˆ̀j
2,t

))
,

(15)
where

ˆ̀j
2,t , Eθk

{
`2(ãjt:t+1, zt:t+1) | ãjt:t+1, YN

}
. (16)

Observe that the expectation here only is taken over the z-
variables, conditioned on the a-variables. The nontrivial parts
of the above conditional expectation are the terms

Eθk{ztzTt | ã
j
t:t+1, YN} = z̃jt|N z̃

j T
t|N + P̃ jt|N , (17a)

Eθk{ztzTt+1 | ã
j
t:t+1, YN} = z̃jt|N z̃

j T
t+1|N +M j

t|N , (17b)

where z̃jt|N , P̃ jt|N and M j
t|N are provided in Section IV.

The rest of the computations involved in finding (16) are
straightforward and in the interest of saving space, we refrain
from providing all the details here. Analogously, for I1 and
I3, we obtain

Î1 = − 1

2M

M∑
j=1

(
log detP1|0(ãj1) + Tr

(
P−1

1|0 (ãj1)ˆ̀j
1

))
+

1

M

M∑
j=1

log p(ãj1), (18a)

Î3 = − 1

2M

N∑
t=1

M∑
j=1

(
log detR(ãjt ) + Tr

(
R−1(ãjt )

ˆ̀j
3,t

))
(18b)

where

ˆ̀j
1 , Eθk

{
(z1 − z1|0(ãj1))(z1 − z1|0(ãj1))T | ãj1, YN

}
,

(19a)

ˆ̀j
3,t , Eθk

{
(yt − h(ãjt )− C(ãjt )zt)×

(yt − h(ãjt )− C(ãjt )zt)
T | ãjt , YN

}
. (19b)

B. Final Algorithm
We summarize the above calculations in Algorithm 1.
Algorithm 1 (RBPS-EM):
1) Initialize: Let k = 1 and initialize the parameter

estimate θ1.
2) Expectation (E) step:

a) Smoothing: Parameterize the model (1) using
the current parameter estimate, θk. Run the

RBPS (See Algorithm 2) and store the particles
and the sufficient statistics for the linear states
{ãjt:N , z̃

j
t|N , P̃

j
t|N}

M
j=1 for t = 1, . . . , N and

{M j
t|N}

M
j=1 for t = 1, . . . , N − 1.

b) Approximate the Q-function: Let

Q̂(θ, θk) = Î1(θ, θk) + Î2(θ, θk) + Î3(θ, θk),

where Î1, Î2 and Î3 are given by (18a), (15)
and (18b), respectively.

3) Maximization (M) step: Compute

θk+1 = arg max
θ∈Θ

Q̂(θ, θk)

4) Termination condition: If not converged, set k ←
k + 1 and go to step 2, otherwise terminate.

The M step can be carried out using any appropriate opti-
mization routine. For all examples presented in this paper a
BFGS Quasi-Newton method was used (see e.g. [20]).

IV. A RAO-BLACKWELLIZED PARTICLE SMOOTHER

As previously pointed out, a crucial step of the proposed
identification algorithm is to compute conditional expecta-
tions of the form (3). This can, for general nonlinear state-
space models, be done using so called particle smoothers,
see e.g. [4, 14]. However, when there is a conditionally linear
Gaussian substructure present in the model, as is the case in
(1), it is of interest to exploit this to reduce the variance
of the Monte Carlo approximation. This can be done by
marginalizing the conditionally linear Gaussian states (i.e.
the part of the state vector here denoted by zt). This approach
is often called Rao-Blackwellization after the Rao-Blackwell
theorem (see [21]) and we shall hence call a smoother that
exploits it a Rao-Blackwellized Particle Smoother (RBPS).

Several RBPS have been presented in the literature [13,
14]. However, both of these assume a different model struc-
ture and can only be used for model (1) in the special case
Aa ≡ Qaz ≡ 0, i.e. when the nonlinear state dynamics
are independent of the linear states. In this section we
will provide an extension of the smoother derived in [13],
capable of handling the fully interconnected model (1). The
derivation that follows is rather brief and for all the details
we refer to [22].

The idea is to run a Rao-Blackwellized Particle Filter
(RBPF) forward in time (see e.g. [4, 23]) and then carry out
the smoothing by simulating trajectories backward in time.
We shall assume that we already have performed the forward
filtering (FF) and, for t = 1, . . . , N , have approximations
of the filtering distribution according to

p̂(zt, at | Yt) =

M∑
i=1

witN
(
zt; z

i
t|t, P

i
t|t

)
δ(at − ait). (20)

The task at hand is now to, starting at time t = N , backward
in time sample trajectories ãjt:N in the nonlinear state dimen-
sion and for each trajectory evaluate the sufficient statistics
for the linear states. At time t = N we can do this simply by
resampling the FF. Thus, assume that we have completed the
smoothing recursion at time t+1, i.e. we have the trajectories



and the sufficient statistics {ãjt+1:N , z̃
j
t+1|N , P̃

j
t+1|N}

M
j=1. For

each trajectory we wish to append a sample

ãjt ∼ p(at | ã
j
t+1:N , YN ). (21)

It turns out that it is in fact easier to sample from the joint
distribution (see [22])

p(zt+1,at | ãjt+1:N , YN ) (22)

= p(at | zt+1, ã
j
t+1:N , YN )N

(
zt+1; z̃jt+1|N , P̃t+1|N

)
by first drawing Z̃jt+1 from the second factor in (22) and
thereafter sample from

p(at | Z̃jt+1, ã
j
t+1:N , YN ) ∝ p(Z̃jt+1, ã

j
t+1 | at, Yt)p(at | Yt).

(23)

This density is, using (20), approximately given by

p(at | Z̃jt+1, ã
j
t+1:N , YN ) ≈

M∑
i=1

wi,jt|Nδ(at − a
i
t), (24)

where

wi,jt|N ∝ w
i
tp(Z̃

j
t+1, ã

j
t+1 | ait, Yt),

M∑
i=1

wi,jt|N = 1. (25)

From the FF we can obtain the density involved in the above
expression (using the model description (10a)) as

p(zt+1, at+1 | ait, Yt)

= N
(
xt+1; f i +Aizit|t, Q

i +AiP it|t(A
i)T
)
. (26)

Here we have employed the shorthand notation, f i = f(ait)
etc. Hence, we can compute the weights (25) and sample ãjt
from (24) as P (ãjt = ait) = wi,jt|N .

Once we have appended the new sample to the trajectory,
ãjt:N := {ãjt , ã

j
t+1:N}, we must update the expressions for the

sufficient statistics of the linear states. Since we also need
to compute expectations of the form (17b), we also require
an expression for

M j
t|N , Cov{ztzTt+1 | ã

j
t:N , YN}. (27)

As a stepping stone, let us start by considering

p(zt | zt+1, at:N , YN ) = p(zt | zt+1, at, at+1, Yt), (28)

where the equality follows from the Markov property of the
model. The right hand side in (28) can be recognized as
the filtering distribution for the linear states, but conditioned
on the “future” state xt+1. From the filtering distribution,
p(zt | ait, Yt) = N (zt; z

i
t|t, P

i
t|t) and the dynamics of the

system (10a) we can find an expression for (28) which turns
out to be Gaussian and its mean is affine in zt+1,

p(zt | xt+1, a
i
t, Yt) = N

(
zt; Σit|tW

i
zzt+1 + cit|t(at+1),Σit|t

)
(29)

where we have defined[
Wa(at) Wz(at)

]
, A(at)

TQ−1(at), (30a)

Σit|t , P it|t − P
i
t|t(A

i)T
(
Qi +AiP it|t(A

i)T
)−1

AiP it|t,

(30b)

cit|t , Σit|t

(
W i
a(at+1 − f ia)−W i

zf
i
z + (P it|t)

−1zit|t

)
.

(30c)

Now, from (28) and (29) we see that the density

p(zt | zt+1, a
i
t, ã

j
t+1:N , YN ) (31)

is Gaussian and affine in zt+1. Furthermore, let us approxi-
mate

p(zt+1 | ait, ã
j
t+1:N ,YN ) ≈ p(zt+1 | ãjt+1:N , YN )

= N
(
zt+1; z̃jt+1|N , P̃

j
t+1|N

)
. (32)

The approximation involved in (32) is discussed in detail in
[22]. Basically it implies that we assume that the smoothing
estimate for zt+1 is independent of which FF particle ait that
is appended to the backward trajectory.

Finally, we observe that the product of the densities
(31) and (32) will yield the joint density for zt and zt+1

conditioned on the backward trajectory ãjt:N (where we have
sampled ãjt = ait) and the measurements YN . Since both
densities are Gaussian and (31) is affine in zt+1, their product
will be Gaussian as well. Hence, from the joint distribution
we can extract the sufficient statistics for zt and the sought
cross covariance (27), yielding

z̃jt|N = Σit|tW
i
z z̃
j
t+1|N + cit|t(ã

j
t+1), (33a)

P̃ jt|N = Σit|t +M j
t|N (W i

z)
TΣit|t, (33b)

M j
t|N = Σit|tW

i
zP̃

j
t+1|N . (33c)

We summarize the resulting RBPS in Algorithm 2.
Algorithm 2 (Rao-Blackwellized Particle Smoother):
1) Initialize: Run a forward pass of the RBPF

[23] and store the particles, the weights and
the sufficient statistics for the linear states
{ait, wit, zit|t, P

i
t|t}

M
i=1. Resample the FF at time t = N ,

i.e. {ãjN , z̃
j
N |N , P̃

j
N |N}

M
j=1 := {aiN , ziN |N , P

i
N |N} with

probability wiN .
2) Backward simulation: For t = N − 1 to 1, do:

For j = 1, . . . , M ,

a) Sample Z̃jt+1 ∼ N
(
zt+1; z̃jt+1|N , P̃

j
t+1|N

)
.

b) Evaluate {wi,jt|N}
M
i=1 from (25) and (26) and sam-

ple P (ãjt = ait) = wi,jt|N .
c) Update the sufficient statistics according to (33),

where index i refers to the FF particle that was
drawn in step 2b).

In a straightforward implementation, the above smoother
has complexity O(M2), which is typical for many particle
smoothers. However, recent developments show that the
complexity can be reduced to O(M) [24, 25]. One interesting
topic for future work would be to incorporate these ideas into
the proposed estimation method.



V. NUMERICAL ILLUSTRATIONS

In this section we will evaluate the proposed method on
simulated data. Two different examples will be presented,
first a linear Gaussian system and thereafter a nonlinear
system. The purpose of including a linear Gaussian example
is to gain confidence in the proposed method. This is
possible, since, for this case, there are closed form solutions
available for all the involved calculations (see [12] for all the
details in a very similar setting). The smoothing densities can
for this case be explicitly calculated using the Rauch-Tung-
Striebel (RTS) recursions [26]. We will refer to the resulting
estimation algorithm as RTS-EM.

For both the linear and nonlinear examples, we can clearly
also address the estimation problem using standard particle
smoothing (PS) based methods, as in [7]. This approach will
be denoted PS-EM. Finally, we have the option to employ
the proposed RBPS-EM presented in Algorithm 1.

A. A Linear Example

To test the proposed algorithm, we shall start by consid-
ering a linear, second order system with a single unknown
parameter θ according to(
at+1

zt+1

)
=

(
1 θ
0 1

)(
at
zt

)
+ wt, Q =

(
0.1 0
0 0.1

)
(34a)

yt = at + et, R = 0.1 (34b)

with the initial state
(
a1 z1

)T ∼ N ((0 1
)T
, I2×2

)
.

The comparison was made by pursuing a Monte Carlo
study over 130 realizations of data YN from the system (34),
each consisting of N = 200 samples (measurements). The
true value of the parameter was set to θ? = 0.1. The three
estimation methods, RTS-EM, PS-EM and RBPS-EM were
run in parallel for 100 iterations of the EM algorithm. The
latter two both employed M = 50 particles and the initial
parameter estimate θ1 was set to 0.3 in all experiments.

Table I gives the Monte Carlo means and standard devi-
ations for the parameter estimates. On average, all methods
converge rather close to the true parameter value 0.1. This
is expected, since they all use ML which gives an unbiased
estimate. The major difference is in the standard deviations
of the estimated parameter. For RTS-EM and RBPS-EM, the
standard deviations are basically identical, whereas for PS-
EM it is more than twice as high.

TABLE I
MONTE CARLO MEANS AND STANDARD DEVIATIONS

Method Mean (×10−2) Std. dev. (×10−2)

RTS-EM [12] 9.86 3.54
PS-EM [7] 8.54 9.01
RBPS-EM [this paper] 9.77 3.47

The key difference between PS-EM and RBPS-EM is that
in the former, the particles have to cover the distribution in
two dimensions. In RBPS-EM we marginalize one of the
dimensions analytically and thus only need to deal with one
of the dimensions using particles. In this example, it is clear
that 50 particles is insufficient to give an accurate enough

approximation of the distribution in two dimensions. In [7],
PS-EM is shown to have good performance even with few
particles. However, this is only true for low order systems.
To deal with higher order systems we need to increase the
number of particles, resulting in an increased computational
complexity. As the dimension goes up, this will soon make
standard particle method inapplicable.

B. A Nonlinear Example
We shall now study a fourth order nonlinear system, where

three of the states are conditionally linear Gaussian,

at+1 = θ1 arctan at +
(
θ2 0 0

)
zt + wa,t, (35a)

zt+1 =

1 θ3 0
0 θ4 cos(θ5) −θ4 sin(θ5)
0 θ4 sin(θ5) θ4 cos(θ5)

 zt + wz,t, (35b)

yt =

(
0.1a2

t sgn(at)
0

)
+

(
0 0 0
1 −1 1

)
zt + et, (35c)

with Q = 0.01I4×4, R = 0.1I2×2, a1 ∼ N (0, 1), z1 =(
0 0 0

)T
and the parameters θ = {θi}5i=1. The true

parameter vector is θ? =
(
1 1 0.3 0.968 0.315

)T
.

The z-system is oscillatory, with poles in 1, 0.92 ± 0.3i
and the z-variables are connected to the nonlinear a-system
through z1,t. First, we assume that the z-system and also
the parameter θ1 are known, i.e. we are only concerned with
finding the parameter θ2 connecting the two systems.

For this Monte Carlo study, 130 realizations of data YN
were generated, each consisting of N = 200 samples. The
parameter was thereafter identified using RBPS-EM and PS-
EM, respectively. Both methods used M = 50 particles and
500 iterations of the EM algorithm. The initial parameter
estimate was chosen randomly in the interval [0, 2] for
each simulation. Figure 1 illustrates the convergence of the
two methods. For RBPS-EM the Monte Carlo mean and
the standard deviation of the final parameter estimate was
θ̂RBPS

500 = 0.991±0.059. For PS-EM the corresponding figures
were θ̂PS

500 = 1.048± 0.162. The parameter variance is much
higher for PS-EM than for RBPS-EM, which is obvious from
Figure 1 as well. When using Rao-Blackwellization we know
that the variance of the estimated states will be reduced [21].
The intuition is that this will influence the variance of the
estimated parameters as well, and from the above results it
seems as if this truly is the case.

As a final experiment we assumed all parameters θ =
{θi}5i=1 to be unknown. PS-EM and RBPS-EM were run
on 70 realizations of data, for 1000 iterations of the EM
algorithm (N = 200 and M = 50 as before). Parameters θ1,
θ2 and θ3 were initialized randomly in the intervals ±100 %
of their nominal values. The initial value for θ4 was chosen
randomly in the interval [0, 1] and for θ5 in the interval [0,
π/2] (i.e. the complex poles of the z-system were initiated
randomly in the first and the fourth quadrants of the unit
circle). In one of the 70 experiments, the estimates diverged.
This experiment has been removed from the comparison, not
to overshadow the standard deviations. Table II summarizes
the results.

The difference between the two methods becomes even
more evident in this, more challenging, experiment. The
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Fig. 1. Parameter estimates as functions of iteration number for RBPS-EM
(top) and PS-EM (bottom). Each line corresponds to one realization of data.
The true parameter value is 1.

TABLE II
MONTE CARLO MEANS AND STANDARD DEVIATIONS

Parameter True value RBPS-EM PS-EM

θ1 1 0.966 ± 0.163 0.965 ± 0.335
θ2 1 1.053 ± 0.163 1.067 ± 0.336
θ3 0.3 0.295 ± 0.094 -0.754 ± 1.141
θ4 0.968 0.967 ± 0.015 0.880 ± 0.154
θ5 0.315 0.309 ± 0.057 0.064 ± 0.285

parameter standard deviations for PS-EM are much higher
for all parameters, and for two (θ3 and θ5) of the five
parameters, PS-EM totally fails in identifying the true values.

VI. CONCLUSION

In this paper we have presented a new method for max-
imum likelihood parameter estimation in nonlinear state-
space models containing conditionally linear Gaussian sub-
structures. The method is based on the expectation maximiza-
tion algorithm and a Rao-Blackwellized Particle Smoother
(RBPS). As a secondary contribution we have extended a
previously existing RBPS [13], to be able to handle the fully
interconnected mixed model under study.

Through simulations, the proposed method is shown to re-
duce the variance of the parameter estimate, when compared
to a similar method based on standard particle methods [7].
It is well known that the variance of the state estimates is
reduced when Rao-Blackwellization is used. Here, we have
shown that this seems to be the case also for the estimated
parameters. Furthermore, we have shown that we are able to
estimate parameters in a special type of high-dimensional
nonlinear state-space models, for which standard particle
methods fail due to the high state dimension.
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