
Phase Based Volume Registration on the GPU
with Application to Quantitative MRI

Anders Eklund∗ †, Mats Andersson∗ †, Marcel Warntjes‡ †, Hans Knutsson∗ †
∗Division of Medical Informatics, Department of Biomedical Engineering

‡Division of Clinical Physiology, Department of Medicine and Health
†Center for Medical Image Science and Visualization (CMIV)

Linköping University, Sweden

Abstract—We present a method for fast phase based
registration of volume data for medical applications. As
the number of different modalities within medical imag-
ing increases, it becomes more and more important with
registration that works for a mixture of modalities. For
these applications the phase based registration approach has
proven to be superior. Today there seem to be two kinds of
groups that work with medical image registration, one that
works with refining of the registration algorithms and one
that works with implementation of more simple algorithms
on graphic cards for speeding up the algorithms. We put
the work from these groups together and get the best from
both worlds. We achieve a speedup of 10-30 compared to
our CPU implementation, which makes fast phase based
registration possible for large medical volumes.

I. INTRODUCTION

Image registration is needed in many cases and the goal
is to transform a target image to a reference image such
that the match is as good as possible. Common clinical
application is to easier compare medical images from dif-
ferent modalities, such as MRI and CT, or to compensate
for movement between or during scanning sessions. Since
the obtained volumes can differ significantly in intensity,
especially between different modalities, the local phase,
from for example quadrature filters, is better to use since
it is invariant to a change in intensity. Phase based image
registration has for example been done by Hemmendorff
et al. [1] and Mellor et al. [2] but none of them have
implemented their algorithm on the graphics processing
unit (GPU). GPU based image registration has been done
by Bui et al. [3] and Ozcelik et al. [4] but none of
them use the phase based approach. Wong et. al. [5]
writes about fast phase based volume registration, but
does not state any execution times in the article. Pauwels
et al. [6] have implemented phase based optical flow on
the GPU using Gabor filters. Their implementation is
however for 2D and does not perform any registration,
since the goal is to calculate motion vectors from video
frames. They calculate a motion vector for each pixel
separately, while we solve an equation system that is
setup globally, to achieve a parameter vector that best
describes the transformation between the volumes. We
then calculate a motion vector for each voxel from this
parameter vector and achieve a movement field that varies
smoothly. In this paper we take advantage of the phase
based approach to image registration in 3D and use the
parallel computing power of graphic cards at the same
time.

A. Graphic cards and CUDA

CUDA, Compute Unified Device Architecture, is a
parallel computing architecture developed by Nvidia. It
enables the user to take advantage of the massive par-
allel computing power of the GPU. In CUDA, kernels
(functions) are launched from the host (the CPU) but is
executed on the device (the GPU). Each kernel is launched
by a number of blocks, the grid, and a number of threads
per block. In cases where we want to perform the same
calculations for each pixel or voxel, the computational
time can be reduced significanlty since the graphics card
performs calculations in parallel.

II. METHOD

A. Quadrature filters and local phase

A quadrature filter is a complex valued filter for com-
bined edge and line detection. The real part of the filter,
which is even, detects planes and the imaginary part,
which is odd, detects 3D edges. The magnitude of the
complex filter response tells us the phase invariant signal
intensity and the phase tells us if there is an 3D edge or a
plane. We use log-normal quadrature filters Q, which in
the Fourier domain are expressed as spherical separable
functions with radial function R and directional function
D as function of frequency u.

Qk(u) = R(||u||)Dk(u) (1)

R(||u||) = eC ln2
(

||(u)||
u0

)
C =

−4
B2 ln(2)

(2)

Since the phase conception is valid only if we define
a direction of it, we construct quadrature filters with
different direction. The directions are defined such that

Dk(u) =

{
(uT n̂k)2 uT n̂k > 0

0 otherwise
(3)

where n̂k is the directional vector for filter k. The
complex filter response q is an estimate of a bandpass
filtered version of the analytical signal

q = A · (cos(ϕ) + i · sin(ϕ)) = A · eiϕ (4)

with magnitude A and phase ϕ. We use one filter in
the x-direction, one in the y-direction and one in the z-
direction. The filters we use have a centre frequency uo =

π
3 , a bandwidth B = 1.7 octaves and a spatial size of
9 x 9 x 9 voxels. To obtain filters with spatial locality
and desired frequency response, advanced filter design is
necessary [7].

B. Registration algorithm

Our registration algorithm is based on 2 assumptions
I. The motion can locally be described as a movement

∆x.

I(x, t) = I(x + ∆x, t + 1) (5)

II. The image can locally be described as a leaning
plane

I(x + v(x), t + 1) = I(x, t) + ∇IT v − ∆I (6)

where

∆I = I(x, t)−I(x, t+1) and ∇I = [∇xI,∇yI]T .

The first assumption says that the intensity does
not change between the two images. The second
assumption says that the image locally can be de-
scribed with a first order Taylor expansion. Combin-
ing these assumptions gives us the classical optical
flow equation

∇IT v − ∆I = 0 (7)

The problem with the normal optical flow is that
the assumptions that are needed are not met by
many images. The phase of the filter response from
quadrature filters is better suited for the assump-
tions, since it is invariant to a change in intensity
and varies more smoothly. We then get the optical
flow equation of the phase ϕ

∇ϕT v − ∆ϕ = 0 (8)

where
∆ϕ = ϕ1 − ϕ2 = arg(q1q

∗
2). (9)

q1 is the filter response from the target volume and
q2 is the filter response from the reference volume
and ∗ denotes complex conjugation. The movement
field is modelled with the help of a 12-dimensional
parametervector according to
p = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]T

v(x) =

p1

p2

p3

 +

 p4 p5 p6

p7 p8 p9

p10 p11 p12

x
y
z

 = (10)

=

1 0 0 x y z 0 0 0 0 0 0
0 1 0 0 0 0 x y z 0 0 0
0 0 1 0 0 0 0 0 0 x y z

︸ ︷︷ ︸

B

p

i.e. the first three parameters is the translation and the
last 9 parameters make up the transformation matrix.

The phase gradients can be estimated with the follow-
ing expression

∇xϕ
∇yϕ
∇zϕ

 =

arg[q1x+q∗1c + q1cq
∗
1x− + q2x+q∗2c + q2cq

∗
2x−]

arg[q1y+q∗1c + q1cq
∗
1y− + q2y+q∗2c + q2cq

∗
2y−]

arg[q1z+q∗1c + q1cq
∗
1z− + q2z+q∗2c + q2cq

∗
2z−]

(11)

where
qc = q(x, y, z)

qx+ = q(x + 1, y, z), qx− = q(x − 1, y, z)

qy+ = q(x, y + 1, z), qy− = q(x, y − 1, z)

qz+ = q(x, y, z + 1), qz− = q(x, y, z − 1)

For each voxel and each filter, we also use a certainty
that is calculated according to

c =
√
|q1q2| cos

(
∆ϕ

2

)2

(12)

This certainty measure requires that we have a high
magnitude both for the filter response from the reference
volume and for the filter response from the target volume,
and that the estimated phase does not differ too much.

If we use our model v(x) = B(x)p and minimize the
least square error

ε2 =
∑

k

∑
i

cik(∇ϕk(xi)
T
B(xi)p − ∆ϕk(xi))2 (13)

by setting ∂ε2

∂p = 0, we get the following equation
system∑

k

∑
i

cikBT
i ∇ϕik∇ϕT

ikBi︸ ︷︷ ︸
A

p =
∑

k

∑
i

cikBT
i ∇ϕik∆ϕik︸ ︷︷ ︸

h
(14)

with the solution
p = A−1h (15)

Note that the equation system is easy to solve, 12 linear
equations, but the cumbersome part is to sum over all
voxels i and all filters k. By minimizing a L2 norm we
can calculate the parameters that give the best solution.
The most common approach is otherwise to maximize a
similarity measure by searching for the best parameters,
using some optimization algorithm. The complete algo-
rithm uses the following steps in each iteration

• Filtering with 3 quadrature filters, that are complex
valued in the spatial domain and not cartesian sepa-
rable.

• Calculating phase differences, phase gradients and
certainties for each filter and for each voxel, accord-
ing to equations 9, 11 and 12 respectively.

• Setting up the equation system, i.e. calculating the
A-matrix and the h-vector and solving the equation
system to get the parameter vector.

• Calculating a motion vector for each voxel, accord-
ing to equation 10, and using interpolation to get the
value at that position from the modified volume.

To avoid the lowpass filtering effect from repeated in-
terpolation in each iteration we accumulate the parameter
vector in each iteration, i.e. ptotal = ptotal + A−1h, and
always interpolate from the original target volume.

III. CUDA IMPLEMENTATION

A. Filtering

The filtering was implemented as multiplication in the
frequency domain. Filtering in the frequency domain is
faster, than convolution in the spatial domain, if we have
filters with many coefficients (729 complex valued in
our case) and especially for filtering in 3D and 4D. The
volume is first transformed with a 3D FFT, then the
transformed volume is multiplied with the transformed
filters and finally the filter responses are transformed with
a 3D IFFT. We use a CUDA kernel for the complex
multiplications between the filters and the volume. Since
there is no fftshift function in the CUFFT library, in order
to move the origin to the middle of the filter response
volume from the corners, we instead perform a change of
coordinate system.

B. Phase differences, phase gradients and certainties

Since the calculation of the phase differences, phase
gradients and certainties are exactly the same for each
voxel, it is ideal for parallel computing on graphic cards.
We use one CUDA kernel for calculating the phase
differences and certainties and one kernel for calculating
the phase gradients.

C. Setting up the equation system

The A-matrix in the equation system is a 12 x 12
matrix and the h-vector is a 12 x 1 vector. There are,
however, only 30 of the 144 elements in the A-matrix
that need to be calculated, since the rest is zero or can
be obtained from the fact that the A-matrix is symmetric,
i.e. A(i, j) = A(j, i). To setup the equation system in the
CPU implementation we simply sum over all filters, vox-
els and non zero parameters. In the GPU implementation
we take advantage of the high number of simultaneous
threads by summing at many positions at the same time.
The first CUDA kernel calculates the A-matrix and h-
vector for each parameter and at the same time sums over
x, for each position (y,z). The second CUDA kernel sums
over y, for each z, and the third CUDA kernel sums over
z and creates the final A-matrix and h-vector.

D. Solving the equation system

Since the equation system is very small, we send the A-
matrix and the h-vector to the host and solve the equation
system there. Only 12 floats need to be sent for the h-
vector and 30 floats for the A-matrix.

E. Motion vectors and interpolation

A big advantage with graphic cards, compared to
CPU’s, is that they have hardware support for interpo-
lation, at least for linear interpolation, but cubic inter-
polation is also very fast. We use a 3D texture for fast
interpolation and use a CUDA kernel that first calculates

the motion vector, from the voxel’s position (x,y,z) and
the parameter vector p, and then simply reads the value
from the target volume at that position using a texture
call.

IV. RESULTS

The CPU implementation ran on an Intel Core 2 Quad
with 4 cores at 2.83 GHz and 4 GB of memory. Our
implementation ran on one of the four processor cores
but all the execution times for the CPU implementation
have been divided by 4 to make the comparison fair.
The graphics card used was a Nvidia GTX 285 with
240 stream processors and 1 GB of memory. Neither
the processor or the graphics card was overclocked. As
test volumes we used one synthetic test volume with a
3D cross with the resolution 128 x 128 x 128 voxels,
and a MRI volume with the resolution 240 x 240 x 140
voxels, to which we applied translations and rotations. In
the following sections we will present the computational
times for the different parts in the algorithm, for the CPU
implementation and for the GPU implementation, and the
resulting speedups. We will also present the total time
for 10 iterations of the algorithm. 10 iterations, on the
original scale, is sufficient to for example compensate for
1-5 pixels of translation and 1-5 degrees of rotation in
each dimension.

A. Filtering

Volume size CPU GPU Speedup
128 x 128 x 128 0.079 s 6.8 ms 11.6
240 x 240 x 140 0.31 s 187.7 ms 1.7

B. Phase differences, certainties and phase gradients

Volume size CPU GPU Speedup
128 x 128 x 128 0.60 s 7.8 ms 76.9
240 x 240 x 140 1.61 s 25.7 ms 62.6

C. Setting up the equation system

Volume size CPU GPU Speedup
128 x 128 x 128 0.1 s 10 ms 10
240 x 240 x 140 0.33 s 50.2 ms 6.6

D. Solving the equation system

On average it takes 1 ms to send the data to the host
and to solve the equation system there.

E. Motion vectors and interpolation

Volume size CPU GPU Speedup
128 x 128 x 128 0.17 s 0.40 ms 425
240 x 240 x 140 0.30 s 1.44 ms 208.3

F. The whole algorithm, 10 iterations, including transfers
to and from graphics card

Volume size CPU GPU Speedup
128 x 128 x 128 9.48 s 0.31 s 30.6
240 x 240 x 140 29.80 s 2.97 s 10

G. fMRI-volumes

We also tested the implementation on a set of fMRI-
volumes. In fMRI, functional magnetic resonance imag-
ing, for example one volume per second is aquired to
estimate a level of brain activity in each voxel. Since the
subject can move the head during the acquisition, image
registration is important. Each volume in the dataset had a
resolution of 80 x 80 x 20 voxels and the dataset contained
324 volumes. 3 iterations per volume was sufficient and
the registration took 5.1 s, or 0.0157 s per volume,
compared to 0.1 s for a volume of size 64 x 64 x 30,
for the fastest algorithm in the comparison by Oakes et
al. [8]. This algorithm does not use any filters at all.

H. Quantitative MRI

Quantitative magnetic resonance imaging (QMRI) has
the major advantage that it handles absolute measure-
ments of physical parameters. Parameters such as relax-
ation rates, R1 and R2, and proton density (PD) are
independent of MR scanner settings and imperfections
and are hence directly representative of the underlying
tissue characteristics.

When performing QMR a number of volumes are
collected from the MR scanner by using different set-
tings. From these volumes it is possible to estimate the
necessary physical parameters. To get a good estimate of
the parameters, this however requires that the volumes
are perfectly aligned. The collected volumes, shown in
Figure 1, differ significantly in intensity and are therefore
well suited for phase based registration. The four volumes
have a resolution of 256 x 256 x 30 voxels. QMR is
further described by Warntjes et al. [9].

We compared our registration algorithm to the sta-
tistical parametric mapping (SPM) software by Friston
et al. [10]. SPM needed about 2 minutes to register
the volumes and almost failed to register volume 4 to
volume 1, due to the large rotation and the large intensity
difference. Our algorithm did the registration in 8 seconds.

V. DISCUSSION

We have presented a method for fast phase based
volume registration. Our implementation shows a speedup
between 10 - 30, compared to our CPU implementation,
for 10 iterations of the whole algorithm.

The filtering is significantly faster on the GPU. The
problem with filtering in the frequency domain is however
the limited memory size on the graphics card, since the
filters require to be stored as volumes that are as big as
the reference volume and target volume.

Calculation of the phase differences, phase gradients
and certainties is very fast since it suits perfectly for
parallelization. The setup of the equation system is sig-
nificantly faster on the GPU since we can sum at many
positions at the same time. As expected, there is a
huge performance gain by using the hardware support
for trilinear interpolation when updating the compensated
volume in each iteration.

Fig. 1. A slice from each of the four volumes that has to be registered to
each other in order for the brain tissue quantification to work properly.
This is a challenging registration problem since the volumes differ
significantly in intensity. The most common approach is to maximize
the mutual information between the volumes, with the help of some
optimization algorithm. This may however require hundreds of iterations
before a good match is found. We instead use the local phase from
quadrature filters, since it is invariant to the intensity, and calculate
what the translation and rotation is, instead of searching for the best
parameters.

ACKNOWLEDGMENT

This work was supported by the Strategic Research
Center MOVIII, funded by the Swedish Foundation for
Strategic Research, SSF.

REFERENCES

[1] M. Hemmendorff, M. Andersson, T. Kronander, and H. Knutsson,
“Phase-based multidimensional volume registration,” IEEE Trans-
actions on Medical Imaging, vol. 21, pp. 1536–1543, 2002.

[2] M. Mellor and M. Brady, “Non-rigid multimodal image registra-
tion using local phase,” in Lecture notes in computer science,
Medical Image Computing and Computer Assisted Intervention
(MICCAI), vol. 3216, 2004, pp. 789–796.

[3] P. Bui and J. Brockman, “Performance analysis of accelerated
image registration using GPGPU,” in Proceedings of 2nd workshop
on general purpose processing on graphics processing units, 2009,
pp. 38–45.

[4] P. Muyan-Ozcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast
deformable registration on the GPU: A CUDA implementation of
demons.” in Proceedings of the 2008 International Conference on
Computational Science and Its Applications (ICCSA), 2008.

[5] A. Wong and P. Fieguth, “Fast phase-based registration of multi-
modal data,” Signal Processing, vol. 89, pp. 724 – 737, 2008.

[6] K. Pauwels and M. M. Van Hulle, “Realtime phase-based optical
flow on the GPU,” in Computer Vision and Pattern Recognition
Workshops, 2008, pp. 1–8.

[7] H. Knutsson, M. Andersson, and J. Wiklund, “Advanced filter
design,” in Scandinavian conference on image analysis (SCIA),
1999.

[8] T. Oakes, T. Johnstone, K. Ores Walsh, L. Greischar, A. Alexander,
A. Fox, and R. Davidson, “Comparison of fMRI motion correction
software tools,” Neuroimage, vol. 28, pp. 529–543, 2005.

[9] J. Warntjes, L. Dahlqvist, J. West, and P. Lundberg, “Optimization
for clinical usage of rapid magnetic resonance quantification on
the brain,” Magnetic Resonance in Medicine, vol. 60, pp. 320–
329, 2008.

[10] K. Friston, J. Ashburner, and J. Poline, “Spatial realignment and
normalization of images,” Human Brain Mapping, vol. 2, pp. 165–
189, 1995.

