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Electric-field control of magnetization in biased semiconductor quantum wires and point contacts

H. Lind, I. I. Yakimenko, and K.-F. Berggren
Department of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping, Sweden

(Received 21 September 2010; revised manuscript received 16 December 2010; published 17 February 2011)

The true origin of the 0.25 and 0.85 conductance features which have been observed in biased split-gate
quantum wires and quantum point contacts in semiconductor heterostructures is debated in the literature; one
suggestion is that they are caused by spontaneous spin polarization due to the electron-electron interactions. The
present work confirms that spontaneous spin splitting may occur within the system and is responsible for both
the 0.25 and 0.85 plateaux. We have also shown that the 0.25 plateau consists of two regions, one that is spin
polarized, and one that is degenerate with a conductance that remains essentially the same at both sides of the
transition. This finding could be of interest for semiconductor spintronics because it opens the possibility for spin
manipulation by electric means only.
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I. INTRODUCTION

Conductance in quantum wires and quantum point contacts
(QPCs) made from split-gate semiconductor heterostructures
is quantized in steps of 2e2/h.1,2 This phenomenon may
be explained in terms of noninteracting electrons, as in
Ref. 3, and the stepwise occupation of higher subbands as
the electron density is increased. Each occupied subband
contributes a fixed amount 2e2/h to the conductance G where
the factor of 2 derives from spin degeneracy. Experiments have
also revealed other conductance features which may not be
explained within a single-particle model. Possible underlying
mechanisms are, however, still debated. The most well-known
example is the “0.7” conduction anomaly4 for which different
explanations have been proposed. One advocates spontaneous
spin splitting due to direct and exchange interactions,5–7

another the formation of quasibound states giving rise to
Kondo-like behavior accompanied by the zero-bias anomaly
(ZBA).8–10 At present these two appear to be the most favored
and possibly interrelated models. There is, however, a rich
literature on this subject and we refer to the special “0.7 issue”
in Ref. 11, the review in Ref. 12, as well as some recent
developments including also effects of spin-orbit interactions
and localization (Refs. 13–19, and references within).

In addition to the 0.7 anomaly there are the 0.25 and 0.85
nonlinear conductance features.12,20 Here we focus on the
nonlinear case which has been less explored in theoretical
modeling. In doing so we will assume that spontaneous spin
polarization is the leading mechanism, a choice which appears
natural for the nonlinear biased regime. As already the name
ZBA indicates, it is operative only in the very vicinity of
zero source-drain bias. In this sense the present case appears
more clear cut as ZBA appears to be less of an issue in the
nonlinear, biased regime and/or at elevated temperatures (see,
e.g., Ref. 13 for some recent experimental data).

In the following we will explore how a finite source-
drain bias, temperature, and parallel magnetic field B may
influence the nonlinear conductance of an extended biased
wire. Experiments appear to support such an approach. For
example, the 0.25 plateau at high source-drain bias is found to
be unaffected by an external magnetic field, which indicates
that the plateau is already fully polarized at zero field.20 From
this point of view it is interesting that a recent theory assumes

the opposite assumption and ties the 0.25 feature to pinning in
spin degenerate bands.21 This theory indeed predicts the 0.25
conductance at zero magnetic field. Unfortunately the theory in
Ref. 21 was only applied to this case. Generally, however, one
would expect that a finite B field would lift the degeneracy and
thereby cause changes within the 0.25 plateau in contradiction
to experiments.

II. MODEL SYSTEM

As in previous successful analyses and modeling of the so-
called 0.7 conduction analogs22,23 in QPCs, we assume that we
may replace the real system with an extended (infinite) quasi-
one-dimensional (Q1D) wire at a GaAs/AlxGa1−x As interface
in which electrons propagate freely along the wire, in the x

direction, with transmission coefficients 0 or 1 consistent with
long wires; the transverse motions (in the y and z directions)
are quantized into discrete sublevels because of a confining
potential. For simplicity, let the cross section be elliptic as in
Ref. 22. For parabolic confinements we then have total external
confinement potential Uext,

Uext = 1
2m∗ω2

yy
2 + 1

2m∗ω2
zz

2, (1)

where ωy and ωz are parameters of the confinement potential
and m∗ is the effective electron mass for GaAs, m∗ = 0.067me,
where me is the free-electron mass. For a magnetic field
B̄ = Bx̂ parallel to the wire and a gauge Ā = −Bzŷ the
one-electron Hamiltonian is

Ĥ0 = 1

2m∗

(
−h̄2∇̄2 + e2B2z2 − 2ih̄eBz

∂

∂y

)

+Uext + 1

2
gμBBσ̂ , (2)

where the last term is the Zeeman term (g is the effective g

factor, μB is the Bohr magneton, and σ̂ is the spin operator).
The complex term represents a magnetic coupling between the
y and z directions. Assume now that the wire is quite flat, i.e.,
the cross section is elongated with ωz � ωy . The coupling is
then weak due to the large difference between sublevels related
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to the y and z directions22) and we therefore simplify Eq. (2)
as23

Ĥ0 � − h̄2

2m∗ ∇̄2 + 1

2
m∗ω2

yy
2

+1

2
m∗(ω2

z + ω2
c

)
z2 + 1

2
gμBBσ̂ , (3)

where ωc = |eB/m∗| is the cyclotron frequency. The corre-
sponding wave functions and subband dispersions are

�σ
k,n,l(x,y,z) = eikxϕn(y)φl(z)χ (σ ), (4)

Eσ
n,l(k) = ε(k) +

(
n + 1

2

)
h̄ωy +

(
l + 1

2

)
h̄

√
ω2

z + ω2
c

+1

2
gμBBσ, (5)

where ε(k) = h̄2k2/2m∗ is the translational energy, ϕn(y)
and φl(z) are harmonic oscillator wave functions with n,l =
0,1,2, . . . for frequencies ωy and

√
ω2

z + ω2
c , respectively;

χ (σ ) is the spin eigenfunction for up and down spins (↑, ↓).
The g factor in the Zeeman term is set at 1.9,22 μB is
the Bohr magneton. Given the differences in sublevels in
the two directions, we assume that only the lowest mode
ϕ0(z) is occupied (l = 0). Consequently, we may ignore the
diamagnetic shift in energy and wave-function component in
the z direction, leaving the simple effective Q1D Hamiltonian
for the x and y components,

Ĥ0 � − h̄2

2m∗ ∇̄2 + 1

2
m∗ω2

yy
2 + 1

2
gμBBσ̂ , (6)

Eσ
n (k) = ε(k) +

(
n + 1

2

)
h̄ωy + 1

2
gμBBσ. (7)

From now on we refer to ωy as ω. The choice of magnetic
field and gauge made here thus only generates a Zeeman
splitting and has virtually no other effects on the system.
Any other choice of magnetic-field direction would shift the
wave function sideways and thereby complicate the modeling
significantly.

So far our wave functions have been found without consid-
ering any electron interactions. At low subband fillings these
one-electron wave functions are expected to remain essentially
unchanged, an assumption that makes further calculations
easier. To include interactions among the particles and the
possibility of spontaneous spin polarization, we introduce the
spin-relaxed Hatree-Fock approximation. To use, for example,
more sophisticated approaches like the local spin-density
approximation (LSDA) would be quite cumbersome because
the required exchange-correlation potential Vxc is not known
for a biased wire for which the subband occupations may
become strongly asymmetric. To simplify further at this
exploratory stage, we follow the approach of Lassl et al.24 who
proposed that the Coulomb interactions may be represented by
Dirac point interactions,

Vint(�r − �r ′) = γ δ(�r − �r ′), (8)

for two particles at �r and �r ′. The interaction strength used
here is γ = πh̄2/m∗.24 The Dirac contact potential may be
seen as an approximation of a sufficiently screened Coulomb
potential, and while experimental setups never reach quite that

level of screening the approximation will reveal itself to be
quite effective. Lassl et al. and more recently Wan et al.14

have used this approach with considerable success to simulate
the transport in split-gate QPCs and it should also be accurate
enough for our purposes.12 To validate the present case we
have also used Coulomb interactions for some typical cases.

With these simplifications we get the unrestricted Hartree-
Fock equations for a wave function �σ

i (�r) for a particle with
spin σ,

[H0 + γ n−σ (�r)]�σ
i = Ēσ

i �σ
i , (9)

where Ĥ0 is given by Eq. (6), Ēσ
i is a subband energy, and

n−σ (�r) is the density of particles with spin −σ , i.e., the sum
over all occupied states |�−σ

i |2, which are normalized to a
unit length of the wire. Thus only particles with opposite spins
interact. The total density is obviously n(�r) = nσ (�r) + n−σ (�r).

Index i in Eq. (9) is a shorthand for the different subband
indices (n,k) where n refers to the n:th sublevel and k to
the subband dispersion ε(k). Thus Ēσ

i ≡ E(n,k,σ ) = Eσ
n +

ε(k). Let us now assume that a source-drain bias potential
VSD is applied over the wire. The bias potential is modeled by
shifting the chemical potential EF up and down symmetrically
depending on the direction of motion,25

μS = EF + eVSD/2, (10)

μD = EF − eVSD/2. (11)

The potential is thus assumed to be constant within the wire
because the applied voltage VSD is assumed to drop at the
two (distant) ends of the wire, i.e., a behavior that should
be expected for long wires. Separating left and right motions
we have the corresponding Fermi-Dirac occupation numbers
for electrons with positive and negative k values,

f +
FD(n,k,σ ) = (k)(e(E(n,k,σ )−μS )/kBT + 1)−1, (12)

f −
FD(k,n,σ ) = (−k)(e(E(n,k,σ )−μD)/kBT + 1)−1, (13)

where we have omitted the diamagnetic shift; the step function
(x) equals 1 for x � 0 and 0 for x < 0; kB is the Boltzmann
constant and T is the temperature. With the notation fFD =
f +

FD + f −
FD we have for the density of σ electrons

nσ =
∑

n

∫
dk

2π
fFD(k,n,σ )

∣∣�σ
n

∣∣2
. (14)

Transmission coefficients are tacitly assumed to be either 0 or
1, which applies to long QPCs and wires.

As mentioned, electrons interact only with electrons of
opposite spin. Therefore if the electrons are spin polarized,
the interaction energy is lowered. As also seen, the electrons
will arrange themselves in parabolic bands along the k axis.
Although the expressions above work for multiple bands with
different values for n, we use in most cases only the first
band n = 0 to make contact with measurements. We have
performed self-consistent calculations using Eq. (9) under
various settings for Fermi energy EF , bias potential VSD,
magnetic field B, and temperature T in order to determine
how the electron bands split and populate. The calculations are
repeated until the results in two successive iterations become
the same within a given tolerance level. The total current I is
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afterwards calculated using the given population of electron
states as

I = eh̄2

m∗
∑

n

∑
σ

∫
dk

2π
kfFD(k,n,σ ) (15)

and the conductance as GAC = dI/dVSD at fixed EF ;
fFD(k,n,σ ) is divided into two parts depending on the sign of
k as in Eqs. (12) and (13). In the non-Ohmic regime, E(n,k,σ )
may depend on VSD in a complex way. For this reason it is
convenient to use numerical differentiation as is actually done
also for the measured data. Below we report on the differential
conductance GAC. The present model is indeed quite basic. In
spite of that it predicts conduction features that are of principle
interest, e.g., the 0.25 and 0.85 plateaux and an associated spin
alignment. As mentioned above, we have also used Coulomb
interactions for some typical cases to validate our approach.
In this case the full computations become rather prohibitive
and, as it seems, do not yield a deeper physical insight than
the present model.

III. RESULTS OF SIMULATIONS

Subband levels and energy bands obtained from the self-
consistent calculations are shown in Fig. 1. As seen, a number
of polarization regions will form, marked by A–F . The figure

also shows schematically the population of the bands for the
corresponding polarization states. When the wire begins to
be populated the electrons will begin to polarize so that only
one type of spin exists in the system. This happens in region
A for zero bias. This case is similar to the spin splitting
obtained previously for infinite wires5–7 and for finite QPCs
and wires,14,24,26–28 although the splitting often appears more
gentle in these cases.

The effect of applying a finite VSD on the splitting is
profound.12 As shown for regions C and D, a finite bias
makes the polarization region in A split into more complex
substructures. Since the interaction energy only depends on
electrons of opposite spin, occupied spin states as in Fig. 1
become interaction free. Hence the sublevel is the same as
for noninteracting particles except for only minor deviations
due to the thermal population of the higher down-spin states.
At T = 0 K the sublevel E

↑
0 would thus remain perfectly

pinned at the bottom of the band with no down-spin electrons
present. At the same time, E

↓
0 is raised above the chemical

potential via the interactions with the up-spin electrons in the
occupied band. However, since the interaction energy increases
as

√
EF , the upper level E

↓
0 will eventually have to become

populated. As that happens, the electrons can no longer remain
fully polarized—instead they turn spin degenerate. Generally,
spin splitting only persists as long as at least one directional

FIG. 1. (Color online) Plots of the lowest subband levels Eσ
0 and the corresponding population of the subbands as a function of the Fermi

energy EF for different bias potentials VSD. Lower and upper curves refer to up- and down-spin electrons, respectively. The diagonal lines
denote chemical potentials; solid line for EF and dashed lines for μS and μD . The calculations have been performed for 100 mK, zero magnetic
field, and h̄ω = 1 meV for the transverse confinement. The left upper panel refers to zero-bias potential, the top right to eVSD = 0.1 meV, and
the bottom left to eVSD = 0.14 meV. A number of different polarization features are marked by A–G. Cases A, C, D, and E are partially or
fully spin polarized while B, F, and G are spin degenerate. The right bottom panel shows schematically the band populations for four cases
that are closely related to the 0.25 and 0.85 features.
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FIG. 2. (Color online) Zeeman splitting of the subband levels Eσ
0 at a magnetic field B = 0.5 T (the g factor is 1.9 (Ref. 22) and the

remaining parameters are as in Fig. 1. Although there is now a Zeeman splitting, the system receives additional splitting through interactions
into the same marked population regions as in Fig. 1. The left panel refers to zero bias VSD and the right one to a bias of 0.3 meV.

subband may be fully spin polarized. We have found that
this also takes place when multiple electron bands have been
considered.

Results for a moderate magnetic field are shown in Fig. 2.
Although there is now an additional Zeeman splitting that
eliminates spin degeneracy there will still be an additional
splitting due to electron-electron interactions. This additional
splitting will cause the bands to form the same type polariza-
tion regions with the same subband populations as found for
zero magnetic field. Because the populated subbands are still
the same, and because the conductance features are defined by
the subband populations, not the spin splitting itself, the same
conductance plateaux will form regardless of the magnetic
field, as illustrated by Fig. 3. The only difference is the
extension of the different spin regions. Figure 3 also shows
the impact of these polarization states on the conductance,
without or with a magnetic field present.

State C, in which only positive-k electrons are present, is
spin polarized according to Figs. 1 and 2. If the lowest subband
level is pinned within C and assuming that we may evaluate
the zero-temperature conductance from Eq. (15) as

GAC = d

dVSD

e

h

(
EF + eVSD

2
− E

↑
0

)
= 0.25

2e2

h
. (16)

The 0.25 conductance observed in experiments20 may thus
be explained in terms of spontaneous spin polarization of
unidirectional electrons at high bias. If calculations were done
with a Coulomb interaction potential, however, there would
also be some interaction between spin electrons with parallel
spins. As a consequence, the sublevel would be pinned less
perfectly and some deviation from 0.25 should be expected.
Finite temperatures also cause deviations, in our case ∼ 5% at
100 mK.

At zero B field the spin-splitting in C collapses into
degenerate states G on increasing EF . The conductance varies
between ∼0.25 and 0.4, increasing slowly with EF but still
behaving much like a plateau. At 0 K the conductance is

GAC = d

dVSD

e

h

(
EF + eVSD

2
− E

↑
0 + EF + eVSD

2
− E

↓
0

)

= (0.5 − ζ )
2e2

h
, (17)

where ζ = dE
↑
0 /d(eVSD) = dE

↓
0 /d(eVSD) because of degen-

eracy in region G. The sublevels are no longer constant in
this region. For a given EF the two degenerate sublevels
will thus increase with VSD which implies that ζ > 0. The
conductance should therefore be less than 0.5 in G; in fact,

FIG. 3. Gray-scale images of the magnitude of the transconductance |dGAC/dEF |. Bright regions are conductance plateaux and dark
branches are regions in which the current and conductance change rapidly due to the rearrangements of electron states and band occupations.
The regions C–F refer to the same polarization regions as in Figs. 1 and 2. The left panel refers to zero magnetic field (cf. Fig. 1) and the right
one to an applied moderate magnetic field (cf. Fig. 2). The conductance (in units of 2e2/h) is 0.25 in C; in G it varies from 0.25 at low EF to
0.4 at high EF , and in E from 0.85 at low EF to 1 at high EF . In D and F the conductance equals 0.5 and 1, respectively.
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in this degenerate region the model yields values between
0.25 and 0.4 at T = 0 (cf. the Hartree model21 referred to in
the Introduction). At higher temperatures the C population
region eventually disappears and, in that case, region G

persists all the way from the onset of band population. In
such cases the conductance begins at zero and increases
slowly over the previous C region. Apart from a spike in
the theoretical conductance just at the transition between C

and G it remains smooth at that point. Together the C and G

regions correspond well to the entire 0.25 plateau as observed
in experiments,20 including the slight increase in conductance
with increasing EF for a given VSD. However, there is no sign
in experiments of the spike just at the crossover from C to
G. This is not unexpected since our model refers to infinite
wires with steplike transmission coefficients. Numerically
the spiky region is hard to treat accurately and for this
reason we prefer to focus on the magnitude of the transcon-
ductance |dGAC/dEF | in Fig. 3. Similar “resonancelike”
behavior at the border regions between different polarizations
may also be noticed for finite QPCs with sharp geometric
features.14,23,28

Region E is characterized by partial spin polarization
as seen in Fig. 1. Although there is not a well-defined
plateau, a conductance of approximately 0.85–1 is obtained,
which corresponds well to the experimental observations of a
0.85 plateau.20 Neglecting ζ in Eq. (17), simple analytical
calculations12 of the conductance in the E region gives a
contribution of 0.5 from the up-spin electrons and 0.25 from the
down-spin electrons, in total 0.75. Although roughly correct,

it indicates the importance of including the dependence of the
sublevels on the bias.

IV. SUMMARY AND CONCLUDING REMARKS

Using a very basic translational subband model frequently
used in the analysis of experimental transport data12 we have
shown that the 0.25 and 0.85 plateaux may be associated
with spontaneous spin splitting due to electron-electron
interactions. The 0.25 plateau is, however, not one region
but in fact two. One part that is spin split, the 0.25-lower
case, and the other, the 0.25-upper case, is degenerate as in
Ref. 21. Although not all of the plateau is related to spin
splitting, it is the 0.25-lower region that defines the plateau
by creating a steplike behavior as population sets in. Without
such an onset the conductance would decrease gradually to
pinchoff. Finally, transitions between the different regions
and associated magnetizations in the non-Ohmic regime may,
as indicated here, be controlled by electric means only. As
noted in Refs. 14 and 29, in connection asymmetric QPCs
with spin-orbit coupling this could be of potential interest for
semiconductor spintronics in which there would be no need of
an external magnetic field. This is, of course, highly speculative
but certainly very challenging.
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16A. D. Güçlü, C. J. Umrigar, H. Jiang, and H. U. Baranger, Phys.
Rev. B 80, 201302(R) (2009).

17E. Welander, I. I. Yakimenko, and K.-F. Berggren, Phys. Rev. B 82,
073307 (2010).

18J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21,
023203 (2009).

19W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson,
G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 102, 056804
(2009).

20T.-M. Chen, A. C. Graham, M. Pepper, I. Farrer, D. A. Ritchie, and
M. Y. Simmons, Appl. Phys. Lett. 93, 032102 (2008).

21S. Ihnatsenka and I. V. Zozoulenko, Phys. Rev. B 79, 235313
(2009).

22A. C. Graham, K. J. Thomas, M. Pepper, N. R. Cooper, M. Y.
Simmons, and D. A. Ritchie, Phys. Rev. Lett. 91, 136404 (2003).

23K.-F. Berggren, P. Jaksch, and I. I. Yakimenko, Phys. Rev. B 71,
115303 (2005).

24A. Lassl, P. Schlagheck, and K. Richter, Phys. Rev. B 75, 045346
(2007).

075308-5

http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevB.54.R14257
http://dx.doi.org/10.1103/PhysRevB.57.4552
http://dx.doi.org/10.1103/PhysRevB.57.4552
http://dx.doi.org/10.1103/PhysRevLett.89.246801
http://dx.doi.org/10.1103/PhysRevB.72.033309
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1103/PhysRevLett.89.196802
http://dx.doi.org/10.1038/nature05054
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1088/0953-8984/20/16/160301
http://dx.doi.org/10.1098/rsta.2009.0226
http://dx.doi.org/10.1098/rsta.2009.0226
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1103/PhysRevB.80.155440
http://dx.doi.org/10.1103/PhysRevB.80.155440
http://dx.doi.org/10.1088/0953-8984/22/29/295302
http://dx.doi.org/10.1088/0953-8984/22/29/295302
http://dx.doi.org/10.1103/PhysRevB.80.201302
http://dx.doi.org/10.1103/PhysRevB.80.201302
http://dx.doi.org/10.1103/PhysRevB.82.073307
http://dx.doi.org/10.1103/PhysRevB.82.073307
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1103/PhysRevLett.102.056804
http://dx.doi.org/10.1103/PhysRevLett.102.056804
http://dx.doi.org/10.1063/1.2963478
http://dx.doi.org/10.1103/PhysRevB.79.235313
http://dx.doi.org/10.1103/PhysRevB.79.235313
http://dx.doi.org/10.1103/PhysRevLett.91.136404
http://dx.doi.org/10.1103/PhysRevB.71.115303
http://dx.doi.org/10.1103/PhysRevB.71.115303
http://dx.doi.org/10.1103/PhysRevB.75.045346
http://dx.doi.org/10.1103/PhysRevB.75.045346


H. LIND, I. I. YAKIMENKO, AND K.-F. BERGGREN PHYSICAL REVIEW B 83, 075308 (2011)

25L. Martin-Moreno, J. T. Nicholls, N. K. Patel, and M. Pepper,
J. Phys.: Condens. Matter 4, 1323 (1992).

26A. A. Starikov, I. I. Yakimenko, and K.-F. Berggren, Phys. Rev. B
67, 235319 (2003).

27P. Jaksch, I. I. Yakimenko, and K.-F. Berggren, Phys. Rev. B 74,
235320 (2006).

28P. Havu, M. J. Puska, R. M. Nieminen, and V. Havu, Phys. Rev. B
70, 233308 (2004).

29P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock,
M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert,
M. Muhammad, and M. Johnson, Nat. Nanotechnol. 4, 759
(2009).

075308-6

http://dx.doi.org/10.1088/0953-8984/4/5/012
http://dx.doi.org/10.1103/PhysRevB.67.235319
http://dx.doi.org/10.1103/PhysRevB.67.235319
http://dx.doi.org/10.1103/PhysRevB.74.235320
http://dx.doi.org/10.1103/PhysRevB.74.235320
http://dx.doi.org/10.1103/PhysRevB.70.233308
http://dx.doi.org/10.1103/PhysRevB.70.233308
http://dx.doi.org/10.1038/nnano.2009.240
http://dx.doi.org/10.1038/nnano.2009.240

	Linköping University Post Print-TitlePage.pdf
	e075308

