Implementation of Time-Multiplexed Sparse
Periodic FIR Filters for FRM on FPGAs

Syed Asad Alam and Oscar Gustafsson
Department of Electrical Engineering, Linkdping Univigrs
SE-581 83 Linkdping University, Sweden
E-mail: {asad, oscarg}@sy.!liu.se

Abstract—Frequency-response masking (FRM) is a set of has been no attempt to study the relationship between mesour
techniques for lowering the computational complexity of narow ytilization, time-multiplexing and periodic sparsity oftdirs.
transition band FIR filters. These FRM use a combination of peference [4] studies multiplierless narrow band freqyenc
sparse periodic filters and non-sparse filters. In this work ve . : . .
consider the implementation of these filters in a time-multplexed masking filters W!th a fixed tap count. The authors of [5]
manner on FPGAs. It is shown that the proposed architectures focused on reducing memory fetches between the FPGA and
produce lower complexity realizations compared to the vendr an external memory. In [6], the authors compare FRM filters
provided IP blocks, which do not take the sparseness into with conventional, sharp FIR filters developed using Xilinx
Eglri];ilr?ger?h“eogh Ithﬁl (lj:)eggnbsloirfslmplemented ona Virtex-6 d&e 410 generator tool. However, that work only considersyfull

’ parallel filters. Apart from FRM implementation, authorg 7

. INTRODUCTION compare the impact of different sparsity factors and plaa@m
Finite-length impulse response (FIR) filters are digitagfis Of Zeros on FPGA utilization while implementing a 200-order
whose impulse responses to a Kronecker delta input are, finftelly parallel FIR filter. o N
i.e., they settle to zero in a finite number of sample interval Time-multiplexing is an efficient way to fully utilize FPGA
[1]. The difference equation that defines the output of\th- resources for cases where the sample rate is lower than

tap (filter order:N — 1) FIR filter in terms of its input is: the maximum obtainable clock frequency. Especially, itl wil
help in reducing the number of multipliers required. This,

N-1 combined with sparseness helps to significantly reduce the
y(n) =Y h(k)x(n—k) (1) hardware complexity. The current work proposes an architec
=0 ture, incorporating both sparseness and time-multiptg=ind
wherey(n) is the output sequence(n) is the input sequence compares it against the FIR core provided by Xilinx. Field-
andh(k) are the coefficients. programmable gate array (FPGA) is used for implementation
The complexity of FIR filters mainly depends on the numbgyurposes.
of multiplications, which can be seen in (1) is proportiotal ~ This paper is arranged as follows: Section Il briefly de-
the filter order. The filter order is in turn roughly inverselycribes FRM FIR filters. Section Il explains different asfse
proportional to the width of the transition band, i.e., thef FPGA for implementing signal processing algorithms.-Sec
difference between the passband edge and the stopband etige.lV describes the proposed architectures for implemgnt
Clearly, this will lead to high filter orders for narrow tratisn time-multiplexed sparse periodic filters on FPGAs. Finally
bands. Sections V and VI present the results and conclude this paper
Linear-phase FIR filters exhibit symmetry or anti-symmetrgespectively.
of the filter coefficients. For ease of exposition we assume
symmetry, i.e. Il. FREQUENCY¥RESPONSEMASKING FIR FILTERS
Frequency-response masking is a set of techniques for
realizing filters with very narrow transition bands. Batlica
this halves the total number of multiplications. there are two different structures that have been utiliZée:
Further complexity reduction can be achieved, e.g., biyst is for narrowband or wideband filters, i.e., where the
employing so called frequency-response masking techeiqumssband edge for a lowpass filter is close to O rad oad.
where the key building block is a periodic filter. This leadn this case it is possible to use a periodic filter, i.e., &filt
to a periodic filter with periodL, i.e., the transfer function with inserted zeros. This filter will have a periodic freqagn
can be written ag(z%), there arelL — 1 zeros between every response with multiple passbands, one which is the required
non-zero coefficient [1]-[3]. We will refer to such a filter asThis filter is cascaded with a second filter that removes the
a periodic sparsdilter. unwanted passbands. The first filter is called a model filter or
While the design of FRM and related structures have ra-band-edge shaping filter, while the second filter is called a
ceived considerable attention, only a few attempts of dgdit masking filter. This structure is sometimes referred to as an
implementation have been reported [4]—[6]. Furthermdrexg interpolated FIR (IFIR) filter [3].

h(i)=h(N—-1—-14), i=0,1,...,N —1.)

1

The second approach can be used for arbitrary bandwidths b
and is composed of a complementary pair of periodic filters.
These are cascaded with two masking filters, each removing rdl Memory Set0_ywr wry Memory Set ¥dl
the unwanted periodic passbands in the resulting stopbang, (n) w(n = 3Dgm— 2)|| |[£(n = Dam—2) | |w(n — 2Dgm — 2)
The outputs of these filters are then added to form the finalwr rdlﬂ»w,
passband and stopband [2].

While the filter order increases when using these types of |#(n—Dan—1)| w(n—4Dam—1)|| |w(n = 2Dgm—1)| @(n = 3Dan— 1)
filters, the arithmetic complexity decreases as many of lee fi 2 2 2 2
coefficients are zero. The arithmetic complexity variesilite 1
period and can be minimized by a careful selection. In this |
work we focus on the implementation of the periodic filters
since much work has already considered the implementation
of regular FIR filters. h(0)

]

B(M —2)

taeM —1)
i Coeff Mem 1

I1l. | MPLEMENTING FILTERS ONFPGAS h(M 1)
Coeff Mem 0

Accumulator
FPGAs have, in addition to the general purpose LUTs and an W y(n)
registers, a number of dedicated blocks for different sgeci 3
ized functions. Current state-of-the-art FPGAs, like ili Multiply-Add 0 - Muliply-AddL
Virtex-5 and Virtex-6, have dedicated blocks, called DSP
blocks, for implementing multipliers, multiply-accumtgs
(MACs) and multiply-adds (MADs). These DSP blocks are
very efficient in implementing the convolution operationieth . ,efficients, instead of one coefficient per multiplier,réhare
is at the center of filter operation. o M coefficients in a ROM. This architecture is shown in Fig.
The DSP blocks can also be deeply pipelined by usingsor 5.41/-tap filter with symmetrical coefficients, where the

the available internal registers. Virtex-6 devices alsveha 4.qys on the data memory show transfer of data between
pre-adder, which helps in realizing symmetric, linear Bhas,emories.

FIR filters. The FPGAs also have resources for implementing-l-he box around the pre-adder, multiplier and adder shows

memories. There are two types, dedicated memory blogks, 5] these elements can be combined in one DSP element of
called Block RAMs (BRAMs) and memories provided biey 6 [g]. The final accumulator will also be implemented
Look-Up Tables (LUTS) called Distributed RAMs (DRAMS).i, the DSP block due to its support for fast 48-bit addition

This combinqtion of DSP ar!d memf?f}’ blocks (BRAMS]. For the data memories, distributed RAM is used because
or DRAM) provide an opportunity to efficiently map time-q¢ ghort |ength of these. Each data memory should be able

multiplexed FIR filter a_rchitectu_res. The addition of pefio concurrently support write and? reads, where first read
sparsity to the complexity equation helps to reduce the rmby e ation s for generating the taps and the second one is for
of these DSP blocks required to realize the whole filter W't@opying the oldest data in each memory to the next memory
a slight overhead in the control circuitry. Each memory is implemented as circular buffer, where

IV. PROPOSEDARCHITECTURES write andread pointers control the two operations. To exploit

h q hi both bipelined q symmetry, the data memory array is divided into two halves,
_The proposed architectures, both pipelined and nofipere one memory from each half is combined to form one
pipelined, are explained in this section. L}étand L be defined

))) memory set. The total number of sets equal the number of
as before, i.e., number of taps and period of sparsity. et

.) . coefficient memories and is given by:
denote the time-multiplexing factor such that a new sample

arrives everyMth cycle, Ngm number of data memories and N1
Dgm denote the depth of each data memory. [mw
Since FIR filters are commonly linear phase, focus is on
trying to utilize coefficient symmetry. However, this arfu- All the memories in the first half are read in a top-down
ture can also be extended easily to implement non-linear, nananner and all in second half are read in bottom-up manner.
symmetric filters. The design methodology is as follows: a@fhese two different read sequence are controlled bgaal
array of ROMs holds the non-zero coefficients and an arragunter This counter is then incremented (decremented for
of RAMs is used to store data. The DSP blocks are usedtte other memory half) by one to read out all the data. To
implement the convolution function. copy the oldest data in each memory to the next, the write
For time-multiplexed filters, there hdd — 1 cycles between pointer is updated, after every write operation, to the siide
each input. This indicates that current and previous inpulata. This makes this data appear on the output port of the
need to be saved in memories. Thus, each delay elemshared read/write port and is registered in the next cloclecy
in the path of inputs in direct form representation can BEhis register is directly connected to the input port of tlestn
replaced by a memory of depthy, = M. With regards to memory. A write enable writes this data at the appropriate

Fig. 1. Time-multiplexed architecture for FIR filters.

®)

TABLE | B
EQUATIONS FOR TIME MULTIPLEXED, PERIODIC SPARSE FILTERS | Q |
rdl Memory Set 0 wr wr{ Memory Set 1 [rd1
Description Equation) #(n) lo(n — 3Dam — 2)|| |[e(n — Dam—2) | |2(n — 2Dgm—2)
New tap count {Vy) (N—-1)xL+1 wr \ rd:ﬂ. wr
Data memory countNgm) Wf{ﬂ 2(n — Dam—1)| [r(n — 4Dgm— 1)|| |l2(n — 2Dgm—)| |e(n — 3Dgm — 1)
Coefficient memory/Data memory set count [M1 a2 a2 a2 02

MXxLx2 i
pipelinint
DSP count [%-‘ +1 registers ﬁ - F'
; Internal registers
Data memory depthIdqm) M x L g

in DSP Block
h(0)

h(M —2) Accumulator

C\J: ﬂ(ﬂ)

ﬁig. 2. Pipelined time-multiplexed architecture for sgapgriodic FIR filters.

Middle memory depth

Np—LxMxX(Ngn—2)
2

h(M—1)
Coeff Mem 0

h(2M — 1)
Coeff Mem 1

@ I
time. ultiply-Add 0 Multiply-Add1
However, there are two issues whén is not an integer
multiple of M. First, the depth of last memory was less tha
M. Second, quite a few indices of data memories that need

fo be pre-gdded to exp_|0|t symmetry ended up in the Sast larger filter orders, would result in two pipeline regist
memory with no regularity. The solution to these problems R the memory sef\l,, three registers inf; and & pipeline
to make the head and tail memories equal. This results imem?egisters in the mem(’)ry sétl,

one or two middle memories which were of shorter length. In Pipelining could also have been implemented by retiming

the case of one mddle_memory, the memory was split into “’Yﬁe architecture. That involves changing the number ofydela
small memories. This is done to make data available for PrES

addition easily and caused the data memory count to incre cween the memories. This, in turn, would have needed
by one. The depth of the middle memories is now given @ﬁ?eren_t read|_ng scheme to_ copy data tq t_he next memory,
y ' P 9 é’omethlng which would require more specialized memory like
(3) N — M x (Nam— 2) guad-port distributed memories or block RAMS provided by
m (4) Xilinx [9], [10].
2 There is one exception to the above design methodology.
The same architecture could also be mapped to sparse filt€se extra middle tap is introduced whe¥i is odd. This
There are a few key differences. First, the effective nunafer was handled by one extra flip flop between the two halves
taps, denoted byV;, increases because of interpolation byf data memory array. This middle tap along with the middle
L. Secondly, the coefficient memory which would now holgoefficient is fed to the multiplier of the DSP block used as an
only the non-zero coefficients. The size of the ROM would b&ccumulator. The output of this multiplier is used, insteéd
the same as before. Finally, the data memory would now bero, as the initializing value of the accumulator, thusirsgv
larger and total number of data memories would be smallene extra DSP slice. This arrangement is shown in Fig. 3.
This is because with one coefficient memory holding onljo properly pipeline this tapn registers were added after
the non-zero coefficients, the range of coefficients stomeal i the middle tap in the pipelined architecture withcoefficient
ROM is larger. However, only the data indices correspondimgemories.
to the non-zero coefficients are read out. This means, that
read counter would be incremented/decremented by a factor
of L. The equations showing the new filter order and thoseThe results are based around a 41-tap lowpass filter. This
that govern different resources are given in Table I. e is then implemented with varying time-multiplexing factas
in DSP count in the table indicates that the accumulator ugll as periods. The data and coefficient word length are fixed
implemented in a DSP slice. at 18 bits which fit the25 x 18 multiplier of the DSP block [8].
This architecture can be pipelined deeply. The dotted linédl the VHDL code is generated by MATLAB and synthesized
in Fig. 1 show the points where pipelining registers can @y Xilinx ISE to a Virtex-6 XC6VLX75T-2 FPGA. Both the
added. The registers after tpes-addition multiplicationand straight forward architecture in Fig. 1 as well as the pipesi
add are available in the DSP blocks [8]. In fact, even the noma Fig. 2 are implemented with the middle tap extension. For
pipelined architecture can also use the registers afteagde comparison reasons we generated time-multiplexed FIRfilte
and multiplication. The effective pipelining register imlp using Xilinx core generator. All results reported are ol
after the final adder in the DSP block. The other pipeliningfter placement and routing. Timing results were obtaingd b
after the second memory could either be implemented asning static timing analysis on the placed and routedgtesi
a separate register or included within the data memory. AsFigure 4 shows the results for varying time-multiplexing
shown in Fig. 2, the extra registers approach is selectedfé@tor with L = 5. It is clear that the proposed architectures
keep the read counter simple. This pipelining, when exténdeesult in a significantly reduced use of DSP blocks. The

V. RESULTS

1 1
b] % 3000
I Proposed
rd] Memory Set Oywr wr rd:ltllemorySet:l\rdl & 2000F -Pipelined 1
o) x(n) +(n — 3Dgm — 2)|| |le(n — Dam — 2) l2(n — 2Dgm — 2) E 3 1000t :]Coregen |
wr wr Q midd|
\ \ 1 OMH—'LH—“H—
2(n— Dam—1)| [o(n — 4Dgm— 1)|| [e(n — 2Dgm—)| |u(n — 3Dgm — 1) 2 3 4 5 6 7 8 9 10
Period,L
rd2 rd2 rd2 rd2
30
L | | L S ct;:‘eiffdigilgnt QU_) 20t
al
h(0) h(M —2) X 101
L ’ L 0
h(M —1) h(2M —1) 2 3 45 6 7 8 9 10
Coeff Mem 0 -1 Coeff Mem 1 -1 .
V) = Period,L
s> £ > T 600
ultiply-Add O Multiply-Add1 Multiply-Add and Accumulator g
T 400}
Fig. 3. Time-multiplexed architecture using the final acolator DSP block g)-’. 200t
for the middle tap. 5
0
=
2 3 45 6 7 8 910
3000 Period,L
I Proposed
2 2000} I Pipelined | Fig. 5. Synthesis results for varying period: (above) numbkeLUTSs,
3 1000} [lcCoregen|| (middle) number of DSPs, and (below) maximum clock freqyenc
234567 8 9101112 d d
Time-multiplexing factorM and are removed.
30 VI. CONCLUSION
§ 20y In this work we have presented architectures for time-
a 10t multiplexed sparse periodic filters, found in frequency-
0 response masking filters. The different design trade-oéfsew
2345678 9101112 discussed and results show that the complexity is significan
= Time-multiplexing factorivl lower compared to FIR filter generators not optimized for
éGOO T sparse periodic filters.
g 400y 1 REFERENCES
o
o 200r 1 [1] L. Wanhammar and H. Johanssobjgital Filters. Department of
o Electrical Engineering, Linkdping University: Linkdpg University,
= 2345678 9101112 2007.

[2] Y.-C. Lim, “Frequency-response masking approach fa& sfinthesis of

sharp linear phase digital filtersfEEE Trans. Circuits Systvol. 33,
, , o e no. 4, pp. 357364, 1996.
Fig. 4. Synt_he5|s results for varying tlme-multlplexmg;t_tar: (above) number [3] T. Saramaki, T. Neuvo, and S. Mitra, “Design of compiaaally
of LUTs, (middle) number of DSPs, and (below) maximum cloggfiency. efficient interpolated FIR filters,JEEE Trans. Circuits Systvol. 35,

no. 1, pp. 70-88, 1998.
[4] Y. Lian, “FPGA implementation of high speed multipliegls frequency
L . response masking FIR filters,” roc. IEEE Workshop Signal Process-

graphs show significant improvement of speed between the ing Syst, Lafayette, LA, 2000, pp. 317-325.
two proposed architectures due to pipelining. However, th&] Y.C.Lim, Y. J.Yu, H. Q. Zheng, and S. W. Foo, “FPGA implentation

. : of digital filters synthesized using the FRM techniqu€jtcuits Syst.
speeds achieved are, for most cases, slightly lower thaoribe Signal Processingvol. 22, no. 2, pp. 211-218, 2003,

achieved by Xilinx core generator. This could be improved byes] s. Liand J. Zhang, “Efficient FPGA implementation of ghaR filters

Time—multiplexing factoriv

pipelining the control signals which are currently in théical using the FRM technique [EICE Electronics Expressvol. 6, no. 23,
ath pp. 1656-1662, Dec. 2009.
p : [7] S. G. Patronis and L. S. DeBrunner, “Sparse FIR filters gnredimpact

Similar advantage is visible in Fig. 5, where the results on FPGA area usage,” iRroc. Asilomar Conf. Signals Syst. Comput.
for varying period is shown with\/ = 5. Also, the number Pacific Grove, CA, Oct. 2008, pp. 1862-1866.

. . .] Xilink, Virtex-6 FPGA DSP48E1 Slice User Gujdgep. 2009. [Online].
of DSP blocks required by the proposed design is ConStar{g Available: http:/Avww.xilinx.com/support/documenttivirtex-6.htm

This is because, ak increases, so do€¥;, keeping the DSP [9] ——, Virtex-6 FPGA Memory Resources User Gyidan. 2010. [On-
count constant. The only effect is the increase in data mgmor Iénr(]et]m Available: http://www.xilinx.com/support/docuentation/virtex-

depth. It is also worthy to note that the number of DSP blockf) — " vitex6 =~ FPGA Configurable Logic Block
required by Xilinx core generator flattens out at a certaimio User Guide Sep. 2009. [Online]. Available:

as a number of multipliers end up with only zero coefficients ~ http://www.xilinx.com/support/documentation/virtéhtm

