
Implementation of Time-Multiplexed Sparse
Periodic FIR Filters for FRM on FPGAs

Syed Asad Alam and Oscar Gustafsson
Department of Electrical Engineering, Linköping University

SE-581 83 Linköping University, Sweden
E-mail: {asad, oscarg}@isy.liu.se

Abstract—Frequency-response masking (FRM) is a set of
techniques for lowering the computational complexity of narrow
transition band FIR filters. These FRM use a combination of
sparse periodic filters and non-sparse filters. In this work we
consider the implementation of these filters in a time-multiplexed
manner on FPGAs. It is shown that the proposed architectures
produce lower complexity realizations compared to the vendor
provided IP blocks, which do not take the sparseness into
consideration. The designs are implemented on a Virtex-6 device
utilizing the built-in DSP blocks.

I. I NTRODUCTION

Finite-length impulse response (FIR) filters are digital filters
whose impulse responses to a Kronecker delta input are finite,
i.e., they settle to zero in a finite number of sample intervals
[1]. The difference equation that defines the output of anN th-
tap (filter order:N − 1) FIR filter in terms of its input is:

y(n) =

N−1
∑

i=0

h(k)x(n− k) (1)

wherey(n) is the output sequence,x(n) is the input sequence
andh(k) are the coefficients.

The complexity of FIR filters mainly depends on the number
of multiplications, which can be seen in (1) is proportionalto
the filter order. The filter order is in turn roughly inversely
proportional to the width of the transition band, i.e., the
difference between the passband edge and the stopband edge.
Clearly, this will lead to high filter orders for narrow transition
bands.

Linear-phase FIR filters exhibit symmetry or anti-symmetry
of the filter coefficients. For ease of exposition we assume
symmetry, i.e.

h(i) = h(N − 1− i), i = 0, 1, . . . , N − 1. (2)

this halves the total number of multiplications.
Further complexity reduction can be achieved, e.g., by

employing so called frequency-response masking techniques
where the key building block is a periodic filter. This leads
to a periodic filter with periodL, i.e., the transfer function
can be written asH(zL), there areL− 1 zeros between every
non-zero coefficient [1]–[3]. We will refer to such a filter as
a periodic sparsefilter.

While the design of FRM and related structures have re-
ceived considerable attention, only a few attempts of dedicated
implementation have been reported [4]–[6]. Furthermore, there

has been no attempt to study the relationship between resource
utilization, time-multiplexing and periodic sparsity of filters.
Reference [4] studies multiplierless narrow band frequency
masking filters with a fixed tap count. The authors of [5]
focused on reducing memory fetches between the FPGA and
an external memory. In [6], the authors compare FRM filters
with conventional, sharp FIR filters developed using Xilinx
core generator tool. However, that work only considers fully
parallel filters. Apart from FRM implementation, authors in[7]
compare the impact of different sparsity factors and placement
of zeros on FPGA utilization while implementing a 200-order
fully parallel FIR filter.

Time-multiplexing is an efficient way to fully utilize FPGA
resources for cases where the sample rate is lower than
the maximum obtainable clock frequency. Especially, it will
help in reducing the number of multipliers required. This,
combined with sparseness helps to significantly reduce the
hardware complexity. The current work proposes an architec-
ture, incorporating both sparseness and time-multiplexing and
compares it against the FIR core provided by Xilinx. Field-
programmable gate array (FPGA) is used for implementation
purposes.

This paper is arranged as follows: Section II briefly de-
scribes FRM FIR filters. Section III explains different aspects
of FPGA for implementing signal processing algorithms. Sec-
tion IV describes the proposed architectures for implementing
time-multiplexed sparse periodic filters on FPGAs. Finally
Sections V and VI present the results and conclude this paper,
respectively.

II. FREQUENCY-RESPONSEMASKING FIR FILTERS

Frequency-response masking is a set of techniques for
realizing filters with very narrow transition bands. Basically,
there are two different structures that have been utilized.The
first is for narrowband or wideband filters, i.e., where the
passband edge for a lowpass filter is close to 0 rad orπ rad.
In this case it is possible to use a periodic filter, i.e., a filter
with inserted zeros. This filter will have a periodic frequency
response with multiple passbands, one which is the required.
This filter is cascaded with a second filter that removes the
unwanted passbands. The first filter is called a model filter or
a band-edge shaping filter, while the second filter is called a
masking filter. This structure is sometimes referred to as an
interpolated FIR (IFIR) filter [3].



The second approach can be used for arbitrary bandwidths
and is composed of a complementary pair of periodic filters.
These are cascaded with two masking filters, each removing
the unwanted periodic passbands in the resulting stopband.
The outputs of these filters are then added to form the final
passband and stopband [2].

While the filter order increases when using these types of
filters, the arithmetic complexity decreases as many of the filter
coefficients are zero. The arithmetic complexity varies with the
period and can be minimized by a careful selection. In this
work we focus on the implementation of the periodic filters
since much work has already considered the implementation
of regular FIR filters.

III. I MPLEMENTING FILTERS ON FPGAS

FPGAs have, in addition to the general purpose LUTs and
registers, a number of dedicated blocks for different special-
ized functions. Current state-of-the-art FPGAs, like Xilinx
Virtex-5 and Virtex-6, have dedicated blocks, called DSP
blocks, for implementing multipliers, multiply-accumulates
(MACs) and multiply-adds (MADs). These DSP blocks are
very efficient in implementing the convolution operation which
is at the center of filter operation.

The DSP blocks can also be deeply pipelined by using
the available internal registers. Virtex-6 devices also have a
pre-adder, which helps in realizing symmetric, linear phase
FIR filters. The FPGAs also have resources for implementing
memories. There are two types, dedicated memory blocks
called Block RAMs (BRAMs) and memories provided by
Look-Up Tables (LUTs) called Distributed RAMs (DRAMs).

This combination of DSP and memory blocks (BRAM
or DRAM) provide an opportunity to efficiently map time-
multiplexed FIR filter architectures. The addition of periodic
sparsity to the complexity equation helps to reduce the number
of these DSP blocks required to realize the whole filter with
a slight overhead in the control circuitry.

IV. PROPOSEDARCHITECTURES

The proposed architectures, both pipelined and non-
pipelined, are explained in this section. LetN andL be defined
as before, i.e., number of taps and period of sparsity. LetM

denote the time-multiplexing factor such that a new sample
arrives everyM th cycle,Ndm number of data memories and
Ddm denote the depth of each data memory.

Since FIR filters are commonly linear phase, focus is on
trying to utilize coefficient symmetry. However, this architec-
ture can also be extended easily to implement non-linear, non-
symmetric filters. The design methodology is as follows: an
array of ROMs holds the non-zero coefficients and an array
of RAMs is used to store data. The DSP blocks are used to
implement the convolution function.

For time-multiplexed filters, there hasM−1 cycles between
each input. This indicates that current and previous inputs
need to be saved in memories. Thus, each delay element
in the path of inputs in direct form representation can be
replaced by a memory of depthDdm = M . With regards to

x(n−Ddm − 2)

x(n− 2Ddm − 1)

x(n− 2Ddm − 2)

x(n− 3Ddm − 1)

Multiply-Add 0

Accumulator

Multiply-Add1

y(n)

x(n)

x(n−Ddm − 1)

x(n− 3Ddm − 2)

x(n− 4Ddm − 1)

x(n)

h(M − 1)

h(M − 2)

h(2M − 1)

Coeff Mem 0 Coeff Mem 1

h(0)

wr

rd2 rd2 rd2 rd2

rd1

wr

rd1

rd1 wr

wrMemory Set 0 Memory Set 1

Fig. 1. Time-multiplexed architecture for FIR filters.

coefficients, instead of one coefficient per multiplier, there are
M coefficients in a ROM. This architecture is shown in Fig.
1 for a4M -tap filter with symmetrical coefficients, where the
arrows on the data memory show transfer of data between
memories.

The box around the pre-adder, multiplier and adder shows
that all these elements can be combined in one DSP element of
Virtex-6 [8]. The final accumulator will also be implemented
in the DSP block due to its support for fast 48-bit addition
[8]. For the data memories, distributed RAM is used because
of short length of these. Each data memory should be able
to concurrently support1 write and2 reads, where first read
operation is for generating the taps and the second one is for
copying the oldest data in each memory to the next memory.
Each memory is implemented as acircular buffer, where
write andread pointers control the two operations. To exploit
symmetry, the data memory array is divided into two halves,
where one memory from each half is combined to form one
memory set. The total number of sets equal the number of
coefficient memories and is given by:

⌈

N − 1

M × 2

⌉

(3)

All the memories in the first half are read in a top-down
manner and all in second half are read in bottom-up manner.
These two different read sequence are controlled by aread
counter. This counter is then incremented (decremented for
the other memory half) by one to read out all the data. To
copy the oldest data in each memory to the next, the write
pointer is updated, after every write operation, to the oldest
data. This makes this data appear on the output port of the
shared read/write port and is registered in the next clock cycle.
This register is directly connected to the input port of the next
memory. A write enable writes this data at the appropriate



TABLE I
EQUATIONS FOR TIME MULTIPLEXED, PERIODIC SPARSE FILTERS.

Description Equation

New tap count (NL) (N − 1) × L+ 1

Data memory count (Ndm)
⌈

NL−1
M×L

⌉

Coefficient memory/Data memory set count
⌈

NL−1
M×L×2

⌉

DSP count
⌈

NL−1
M×L×2

⌉

+ 1

Data memory depth (Ddm) M × L

Middle memory depth NL−L×M×(Ndm−2)
2

time.
However, there are two issues whenN is not an integer

multiple of M . First, the depth of last memory was less than
M . Second, quite a few indices of data memories that need
to be pre-added to exploit symmetry ended up in the same
memory with no regularity. The solution to these problems is
to make the head and tail memories equal. This results in either
one or two middle memories which were of shorter length. In
the case of one middle memory, the memory was split into two
small memories. This is done to make data available for pre-
addition easily and caused the data memory count to increase
by one. The depth of the middle memories is now given by
(3)

N −M × (Ndm − 2)

2
(4)

The same architecture could also be mapped to sparse filters.
There are a few key differences. First, the effective numberof
taps, denoted byNL, increases because of interpolation by
L. Secondly, the coefficient memory which would now hold
only the non-zero coefficients. The size of the ROM would be
the same as before. Finally, the data memory would now be
larger and total number of data memories would be smaller.
This is because with one coefficient memory holding only
the non-zero coefficients, the range of coefficients stored in a
ROM is larger. However, only the data indices corresponding
to the non-zero coefficients are read out. This means, that
read counter would be incremented/decremented by a factor
of L. The equations showing the new filter order and those
that govern different resources are given in Table I. The+1
in DSP count in the table indicates that the accumulator is
implemented in a DSP slice.

This architecture can be pipelined deeply. The dotted lines
in Fig. 1 show the points where pipelining registers can be
added. The registers after thepre-addition, multiplicationand
addare available in the DSP blocks [8]. In fact, even the non-
pipelined architecture can also use the registers after pre-add
and multiplication. The effective pipelining register is only
after the final adder in the DSP block. The other pipelining
after the second memory could either be implemented as
a separate register or included within the data memory. As
shown in Fig. 2, the extra registers approach is selected to
keep the read counter simple. This pipelining, when extended

x(n− 2Ddm − 2)

x(n− 3Ddm − 1)

Internal registers
in DSP Block

x(n−Ddm − 2)

x(n− 2Ddm − 1)

Multiply-Add 0 Multiply-Add1

Memory Set 1

x(n)

wr

wrrd1 Memory Set 0

x(n−Ddm − 1)

x(n− 3Ddm − 2)

x(n− 4Ddm − 1)

x(n)

Accumulator

y(n)

pipelining
registers

Coeff Mem 0 Coeff Mem 1

wr rd1

rd2rd2rd2rd2

rd1 wr

h(M − 1)

h(M − 2)

h(2M − 1)

h(0)

Fig. 2. Pipelined time-multiplexed architecture for sparse periodic FIR filters.

for larger filter orders, would result in two pipeline register
in the memory setM2, three registers inM3 andk pipeline
registers in the memory setMk.

Pipelining could also have been implemented by retiming
the architecture. That involves changing the number of delays
between the memories. This, in turn, would have needed
different reading scheme to copy data to the next memory,
something which would require more specialized memory like
quad-port distributed memories or block RAMS provided by
Xilinx [9], [10].

There is one exception to the above design methodology.
One extra middle tap is introduced whenN is odd. This
was handled by one extra flip flop between the two halves
of data memory array. This middle tap along with the middle
coefficient is fed to the multiplier of the DSP block used as an
accumulator. The output of this multiplier is used, insteadof a
zero, as the initializing value of the accumulator, thus saving
one extra DSP slice. This arrangement is shown in Fig. 3.
To properly pipeline this tap,m registers were added after
the middle tap in the pipelined architecture withm coefficient
memories.

V. RESULTS

The results are based around a 41-tap lowpass filter. This
is then implemented with varying time-multiplexing factors as
well as periods. The data and coefficient word length are fixed
at 18 bits which fit the25×18 multiplier of the DSP block [8].
All the VHDL code is generated by MATLAB and synthesized
by Xilinx ISE to a Virtex-6 XC6VLX75T-2 FPGA. Both the
straight forward architecture in Fig. 1 as well as the pipelined
in Fig. 2 are implemented with the middle tap extension. For
comparison reasons we generated time-multiplexed FIR filters
using Xilinx core generator. All results reported are obtained
after placement and routing. Timing results were obtained by
running static timing analysis on the placed and routed design.

Figure 4 shows the results for varying time-multiplexing
factor with L = 5. It is clear that the proposed architectures
result in a significantly reduced use of DSP blocks. The



x(n−Ddm− 2)

x(n− 2Ddm− 1)

x(n− 2Ddm− 2)

x(n− 3Ddm− 1)

tap
middle

middle
coefficient

Multiply-Add 0 Multiply-Add1

Memory Set 1

x(n)

x(n−Ddm− 1)

x(n− 3Ddm− 2)

x(n− 4Ddm− 1)

x(n)

h(M − 1)

h(M − 2)

h(2M − 1)

Coeff Mem 0 Coeff Mem 1

Multiply-Add and Accumulator

y(n)

Memory Set 0

wr

rd2 rd2 rd2 rd2

rd1wrwrrd1
rd1

wr

h(0)

Fig. 3. Time-multiplexed architecture using the final accumulator DSP block
for the middle tap.

2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

Time−multiplexing factor, M

LU
T

s

 

 
Proposed
Pipelined
Coregen

2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

Time−multiplexing factor, M

D
S

P
s

2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

Time−multiplexing factor, M

M
ax

. s
pe

ed
 [M

H
z]

Fig. 4. Synthesis results for varying time-multiplexing factor: (above) number
of LUTs, (middle) number of DSPs, and (below) maximum clock frequency.

graphs show significant improvement of speed between the
two proposed architectures due to pipelining. However, the
speeds achieved are, for most cases, slightly lower than theone
achieved by Xilinx core generator. This could be improved by
pipelining the control signals which are currently in the critical
path.

Similar advantage is visible in Fig. 5, where the results
for varying period is shown withM = 5. Also, the number
of DSP blocks required by the proposed design is constant.
This is because, asL increases, so doesNL, keeping the DSP
count constant. The only effect is the increase in data memory
depth. It is also worthy to note that the number of DSP blocks
required by Xilinx core generator flattens out at a certain point,
as a number of multipliers end up with only zero coefficients

2 3 4 5 6 7 8 9 10
0

1000

2000

3000

Period, L

LU
T

s

 

 
Proposed
Pipelined
Coregen

2 3 4 5 6 7 8 9 10
0

10

20

30

Period, L

D
S

P
s

2 3 4 5 6 7 8 9 10
0

200

400

600

Period, L

M
ax

. s
pe

ed
 [M

H
z]

Fig. 5. Synthesis results for varying period: (above) number of LUTs,
(middle) number of DSPs, and (below) maximum clock frequency.

and are removed.

VI. CONCLUSION

In this work we have presented architectures for time-
multiplexed sparse periodic filters, found in frequency-
response masking filters. The different design trade-offs were
discussed and results show that the complexity is significantly
lower compared to FIR filter generators not optimized for
sparse periodic filters.

REFERENCES

[1] L. Wanhammar and H. Johansson,Digital Filters. Department of
Electrical Engineering, Linköping University: Linköping University,
2007.

[2] Y.-C. Lim, “Frequency-response masking approach for the synthesis of
sharp linear phase digital filters,”IEEE Trans. Circuits Syst., vol. 33,
no. 4, pp. 357–364, 1996.

[3] T. Saramäki, T. Neuvo, and S. Mitra, “Design of computationally
efficient interpolated FIR filters,”IEEE Trans. Circuits Syst., vol. 35,
no. 1, pp. 70–88, 1998.

[4] Y. Lian, “FPGA implementation of high speed multiplierless frequency
response masking FIR filters,” inProc. IEEE Workshop Signal Process-
ing Syst., Lafayette, LA, 2000, pp. 317–325.

[5] Y. C. Lim, Y. J. Yu, H. Q. Zheng, and S. W. Foo, “FPGA implementation
of digital filters synthesized using the FRM technique,”Circuits Syst.
Signal Processing, vol. 22, no. 2, pp. 211–218, 2003.

[6] S. Li and J. Zhang, “Efficient FPGA implementation of sharp FIR filters
using the FRM technique,”IEICE Electronics Express, vol. 6, no. 23,
pp. 1656–1662, Dec. 2009.

[7] S. G. Patronis and L. S. DeBrunner, “Sparse FIR filters andthe impact
on FPGA area usage,” inProc. Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, Oct. 2008, pp. 1862–1866.

[8] Xilinx, Virtex-6 FPGA DSP48E1 Slice User Guide, Sep. 2009. [Online].
Available: http://www.xilinx.com/support/documentation/virtex-6.htm

[9] ——, Virtex-6 FPGA Memory Resources User Guide, Jan. 2010. [On-
line]. Available: http://www.xilinx.com/support/documentation/virtex-
6.htm

[10] ——, Virtex-6 FPGA Configurable Logic Block
User Guide, Sep. 2009. [Online]. Available:
http://www.xilinx.com/support/documentation/virtex-6.htm


