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Abstract—Parametric statistical methods are traditionally
employed in functional magnetic resonance imaging (fMRI)
for identifying areas in the brain that are active with a
certain degree of statistical significance. These parametric
methods, however, have two major drawbacks. First, it is
assumed that the observed data are Gaussian distributed
and independent; assumptions that generally are not valid
for fMRI data. Second, the statistical test distribution can
be derived theoretically only for very simple linear detection
statistics. In this work it is shown how the computational
power of the Graphics Processing Unit (GPU) can be used to
speedup non-parametric tests, such as random permutation
tests. With random permutation tests it is possible to
calculate significance thresholds for any test statistics. As
an example, fMRI activity maps from the General Linear
Model (GLM) and Canonical Correlation Analysis (CCA)
are compared at the same significance level.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is used
in neuroscience and clinic for investigating brain activ-
ity patterns and for planning brain surgery. Activity is
detected by fitting an activity model to each observed
fMRI voxel time series and then testing whether the null
hypothesis of no activity can be rejected or not based on
the model parameters. Specifically, this test is performed
by subjecting a test statistic calculated from the model
parameters to a threshold. To control the randomness due
to noise in this test procedure, it is desirable to find
the statistical significance associated with the detection
threshold, i.e., how likely it is that a voxel is declared
active by chance. When the statistical distribution of the
data is known and when the probability (null-)distribution
of the test statistic can be derived, parametric statistics can
be used to this end. This is for example the case for the
commonly used General Linear Model (GLM), for which
the well known t-test and F -test can be derived when
the input data are independently Gaussian distributed.
However, when the data distribution is not known or the
distribution of the test statistic cannot be derived, paramet-
ric statistical tests can only yield approximate thresholds
or cannot be applied at all. This is generally the case in
fMRI analysis as the noise in fMRI data is not Gaussian
and independent. Furthermore, more advanced detection
approaches often adaptively utilize the spatial context of
fMRI activation patterns to improve the detection, or they
perform other operations that make the derivation of the

test statistic distribution mathematically intractable. Said
otherwise, only for the very simplest test statistics, such
as the GLM, can a parametric test distribution be derived
theoretically. On top of the problems described above, the
multiple testing problem must be solved since more than
20 000 voxels normally are tested for activity. This com-
plicates the derivation of the test statistic distribution even
further. To conclude, the parametric statistical approach is
applicable only to a very limited set of tests and is subject
to many sources of error.

An alternative is to use non-parametric statistics. The
major drawback of non-parametric statistical approaches
for single subject fMRI analysis is the computational
complexity, requiring hours or days of processing time
on regular computer hardware. In this work, it is shown
how random permutation tests can be made practical for
fMRI analysis by using the parallel processing power of
the Graphics Processing Unit (GPU), making it possible to
estimate the null-distribution of a test statistic, corrected
for multiple testing, in the order of minutes. This has
significant implications on the way fMRI analysis can
be carried out as it opens the possibility to routinely
apply more powerful detection methods than the GLM.
As an example, the results of the standard GLM detection
is in this work compared with a restricted Canonical
Correlation Analysis (CCA) method [1] that adaptively
incorporates spatial context in the detection.

II. METHODS

A. Basics of random permutation tests

One subset of non-parametric tests is permutation tests
where the statistical analysis is done for all the possible
permutations of the data. Complete permutation tests are
however not feasible if the number of possible permu-
tations is very large. For a voxel time series with 80
samples, there exists 7.16 · 10118 possible permutations.
It is therefore common to instead do random permutation
tests [2], also called Monte Carlo permutation tests, where
the statistical analysis is made for a sufficiently large
number of random permutations, for example 10 000, of
the data. The main idea is to estimate the null distribution
of the test statistics, by generating and analysing surrogate
data that is similar to the original data. The surrogate
data is generated by permuting, or reshuffling, the data
between the different groups to be compared.



B. The problem of multiple testing

By applying a threshold to the activity map, each voxel
can be classified as active or inactive. The threshold is
normally selected as a level of significance, one may for
example want that only voxels that with at least 95%
significance are to be considered as active. If a statistical
test is repeated and a family wise error rate α is desired,
the error rate for each test must be smaller than α. This is
known as the problem of multiple testing. If Bonferroni
correction is used, the error rate for each comparison
becomes α/N , where N is the number of tests. This is
a correct solution, if the tests are independent. In fMRI
it is common to perform the statistical analysis for more
than 20 000 brain voxels, if a threshold of p = 0.05 is
used to consider the voxel as active, the p-value becomes
0.05/20000 with Bonferroni correction. The assumptions
that are made about the behaviour of the tail of the
distribution are thereby critical.

The non-parametric approach can be used to solve
the problem of multiple testing as well. This is done
by estimating the null distribution of the maximum test
statistic by only saving the maximum test value from
each permutation, to get a corrected threshold. This means
that something like 10 000 permutations have to be used,
while as little as 10 permutations can be enough if an
uncorrected threshold is sufficient.

C. Preprocessing of fMRI time series

As fMRI time series are temporally correlated [3],
the time series have to be preprocessed before they are
permuted, otherwise the exchangeability criteria is not
satisfied and the temporal structure is destroyed. A lot of
the temporal correlations originate from different kinds
of trends, like scanner imperfections and physiological
noise. In our case these trends are removed by a cubic
detrending, such that the mean and any polynomial trend
up to the third order is removed, but more advanced
detrending is possible.

Several approaches have been proposed for the re-
sampling, the most common being whitening transforms,
wavelet transforms and Fourier transforms. A comparison
of these approaches [4] indicates that whitening performs
best, at least for fMRI data that is collected during block
based stimuli paradigms. The whitening transform is done
by first estimating an auto regressive (AR) model for each
time series. An AR model, of order p, states that a time
series x(t) is generated as

x(t) = α1x(t − 1) + ... + αpx(t − p) + e(t) (1)

where e(t) is white noise. The parameters α1, ... , αp,
the AR parameters for the different time lags, can be
estimated by solving the equation system that is given
by the Yule-Walker equations. The whitened time series
w(t) are then calculated as

w(t) = x(t) −
p∑

i=1

α̂ix(t − i) (2)

where p is the order of the AR model and α̂i are the
estimated AR parameters. An AR model of order 4 was
used in our case.

D. Statistical analysis, GLM & t-test

The general linear model (GLM) [5] is the most used
approach for statistical analysis of fMRI data. For each
voxel time series, a linear model is fitted according to

Y = Xβ + ε (3)

where Y is the time series, X are the regressors that
model brain activity, β are the parameters to estimate and
ε are the residuals.

The regressors were created by convolving the stimulus
paradigm with the hemodynamic response function (HRF)
(difference of gammas) and its temporal derivative [3].
The regression weights are estimated as

β̂ = (XT X)−1XT Y (4)

and the t-test value is then calculated as

t =
cT β̂√

var(ε)cT(XTX)−1c
(5)

where c is the contrast vector ([1 0]T ).
Prior to the GLM the time series were whitened by

using the same AR(1) model for all the voxels [3].

E. Statistical analysis, CCA

One statistical approach for fMRI analysis that pro-
vides more adaptivity to the data is canonical correlation
analysis (CCA) [6]. While the GLM works with one mul-
tidimensional variable (temporal basis functions), CCA
works with two multidimensional variables (temporal and
spatial basis functions). Ordinary correlation between two
one-dimensional variables x and y can be written as

ρ = Corr(x, y) =
E[xy]√

E[x2]E[y2]
(6)

The GLM calculates the correlation between one multi-
dimensional variable x and one one-dimensional variable
y according to

ρ = Corr(βTx, y) (7)

where β is the weight vector that determines the linear
combination of x. Canonical correlation analysis is a
further generalization of the GLM, such that both the
variables are multidimensional. The canonical correlation
is defined as

ρ = Corr(βTx,γTy)

= βT Cxy γ√
βT Cxx β γT Cyy γ

(8)

where Cxy is the covariance matrix between x and
y, Cxx is the covariance matrix for x and Cyy is
the covariance matrix for y. The temporal and spatial



Fig. 1. Left: Flowchart for conventional parametric analysis of fMRI
data. Right: Flowchart for non-parametric analysis of fMRI data. In
each permutation a new null dataset is generated and analyzed.

weight vectors, β and γ, that give the highest correlation
are calculated as the eigen vectors of two eigen value
problems. The canonical correlation is the square root
of the corresponding eigen value. The two eigen value
problems can be written as

Cxx
−1/2 Cxy Cyy

−1 Cyx Cxx
−1/2 a = λ2 a (9)

Cyy
−1/2 Cyx Cxx

−1 Cxy Cyy
−1/2 b = λ2 b (10)

It is sufficient to solve one of the problems, since
the second weight vector can be calculated from the
first. The temporal basis functions for CCA are the same
as for the GLM. The spatial basis functions can for
example be neighbouring pixels [7], [8] or a number
of anisotropic filters [1], that linearly can be combined
to a lowpass filter with arbitrary orientation, to prevent
unnecessary smoothing. In contrast to the GLM, an adap-
tive anisotropic smoothing is obtained, instead of a fix
isotropic smoothing.

One disadvantage with CCA is that it is much harder
to calculate the threshold for a certain significance level,
since the distribution of the canonical correlation coeffi-
cients is rather complicated.

F. The complete algorithm

The complete algorithm for the random permutation
test is given in Figure 1. As reference, the algorithm for
a conventional parametric fMRI analysis is also included.

G. Implementation

The random permutation test was implemented with
the CUDA (compute unified device architecture) program-
ming language by Nvidia. The used graphics cards were
three Nvidia GTX 480, each equipped with 480 processor
cores and 1.5 GB of memory, giving a total of 1440
processor cores.

III. RESULTS

With our multi-GPU implementation, 10 000 null
datasets can be analyzed in about 50 seconds, compared
to about 4 hours for the GLM and 16 hours for CCA with
a standard C implementation.

With the random permutation test it is possible to
calculate corrected p-values for fMRI analysis by CCA,
and thereby activity maps from GLM and CCA can
finally be compared at the same significance level. The
activity maps generated by using 2D smoothing are given
in Figure 2, the activity maps generated by using 3D
smoothing are given in Figure 3. For these comparisons
10 000 permutations were used both for GLM and CCA.
For the fMRI dataset used the test subject periodically
activated the left hand.

With 8 mm of 2D smoothing, GLM detects 302 signif-
icantly active voxels while CCA detects 344 significantly
active voxels. With 8 mm of 3D smoothing, GLM detects
475 significantly active voxels while CCA detects 684
significantly active voxels.

IV. CONCLUSIONS

We have applied random permutation tests for sin-
gle subject analysis of fMRI data using the GPU. Our
work enables objective evaluation of arbitrary methods
for single subject fMRI analysis. As a pleasant side
effect, the problem of multiple testing is solved in a
way that significantly reduces the number of necessary
assumptions.
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(a) Activity map generated by using 2D GLM.

(b) Activity map generated by using 2D CCA.

Fig. 2. A comparison between corrected p-values from 2D GLM
and 2D CCA, calculated from a random permutation test with 10 000
permutations. The activity maps are thresholded at the same significance
level (corrected p = 0.05). The GLM used one isotropic 8 mm FWHM 2D
Gaussian smoothing kernel while CCA used one isotropic 2D Gaussian
kernel and 3 anisotropic 2D Gaussian kernels, designed such that the
largest possible filter that CCA can create has a FWHM of 8 mm.
The neurological display convention is used (left is left), 1 - p is shown
instead of p. Note that CCA detects active voxels in the left motor cortex
and left somatosensory cortex that not are detected with the GLM.

(a) Activity map generated by using 3D GLM.

(b) Activity map generated by using 3D CCA.

Fig. 3. A comparison between corrected p-values from 3D GLM
and 3D CCA, calculated from a random permutation test with 10 000
permutations. The activity maps are thresholded at the same significance
level (corrected p = 0.05). The GLM used one isotropic 8 mm FWHM 3D
Gaussian smoothing kernel while CCA used one isotropic 3D Gaussian
kernel and its derivative, designed such that the largest possible filter
that CCA can create has a FWHM of 8 mm. The neurological display
convention is used (left is left), 1 - p is shown instead of p. Note that
CCA detects active voxels in the left somatosensory cortex that not are
detected with the GLM.


