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Abstract

When designing robust controllers, H-in�nity synthesis is a common tool to
use. The controllers that result from these algorithms are typically of very
high order, which complicates implementation. However, if a constraint on
the maximum order of the controller is set, that is lower than the order of the
(augmented) system, the problem becomes nonconvex and it is relatively
hard to solve. These problems become very complex, even when the order
of the system is low.
The approach used in this work is based on formulating the constraint on
the maximum order of the controller as a polynomial (or rational) equation.
This equality constraint is added to the optimization problem of minimizing
an upper bound on the H-in�nity norm of the closed loop system subject
to linear matrix inequality (LMI) constraints. The problem is then solved
by reformulating it as a partially augmented Lagrangian problem where the
equality constraint is put into the objective function, but where the LMIs
are kept as constraints.
The proposed method is evaluated together with two well-known methods
from the literature. The results indicate that the proposed method has
comparable performance in most cases, especially if the synthesized con-
troller has many parameters, which is the case if the system to be controlled
has many input and output signals.

Keywords: H-in�nity synthesis, augmented Lagrangian, linear systems
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Abstract— When designing robust controllers, H-infinity syn-
thesis is a common tool to use. The controllers that result
from these algorithms are typically of very high order, which
complicates implementation. However, if a constraint on the
maximum order of the controller is set, that is lower than
the order of the (augmented) system, the problem becomes
nonconvex and it is relatively hard to solve. These problems
become very complex, even when the order of the system is
low.

The approach used in this work is based on formulating
the constraint on the maximum order of the controller as a
polynomial (or rational) equation. This equality constraint is
added to the optimization problem of minimizing an upper
bound on the H-infinity norm of the closed loop system subject
to linear matrix inequality (LMI) constraints. The problem
is then solved by reformulating it as a partially augmented
Lagrangian problem where the equality constraint is put
into the objective function, but where the LMIs are kept as
constraints.

The proposed method is evaluated together with two well-
known methods from the literature. The results indicate that the
proposed method has comparable performance in most cases,
especially if the synthesized controller has many parameters,
which is the case if the system to be controlled has many input
and output signals.

I. INTRODUCTION

The development of robust control theory emerged during
the 80s and and a contributory factor certainly was the fact
that the robustness of Linear Quadratic Gaussian (LQG)
controllers can be arbitrarily bad as reported in [1]. A few
years later, in [2], an important step in the development
towards a robust control theory was taken, where the concept
of H∞ theory was introduced. The H∞ synthesis, which
is an important tool when solving robust control problems,
was a cumbersome problem to solve until a technique was
presented in [3], which is based on solving two Riccati
equations. Using this method, the robust design tools be-
came much easier to use and gained popularity. Quite soon
thereafter, linear matrix inequalities (LMIs) were found to be
a suitable tool for solving these kinds of problems by using
reformulations of the Riccati equations, see [4].

Typical applications for robust control include systems that
have high requirements for robustness to parameter variations
and for disturbance rejection. The controllers that result from
these algorithms are typically of very high order, which
complicates implementation. However, if a constraint on the
maximum order of the controller is set, that is lower than the

order of the plant, the problem is no longer convex and it is
then relatively hard to solve. These problems become very
complex, even when the order of the system to be controlled
is low. This motivates the development of efficient algorithms
that can solve these kinds of problems.

In [5], Apkarian et. al presented a method for low order
H∞ controller synthesis which relaxes only one of the con-
straints and is thus called a partially augmented Lagrangian
method. In [6] the method is extended to more general robust
control than H∞ controller problems and [7] generalizes
the framework to optimization problems with general matrix
inequality constraints.

In this paper we will describe a method based on what
is done in [5], but where the equality constraint involves
coefficients of a characteristic polynomial, similarly to what
is done in some of our previous work, [8], [9]. In contrast
to the approach in [5], our method does not introduce
additional variables when synthesizing dynamic controllers,
i.e. controller of order one or higher.

Other methods for solving reduced order H∞ problems
that have gained attention recently are e.g. HIFOO and HIN-
FSTRUCT, see [10] and [11] respectively. These methods are
based on nonconvex, nonsmooth approaches for minimizing
the H∞ norm of a closed loop system that do not involve
any LMIs. The advantage of these methods is that they in
general reduce the number of variables of the problem, while
they on the other hand introduce other difficulties due to the
nonsmooth formulation of the problem.

Denote with Sn the set of real symmetric n× n matrices
and Rm×n is the set of real m × n matrices. The notation
A � 0 (A � 0) and A ≺ 0 (A � 0) means A is
a positive (semi)definite matrix and negative (semi)definite
matrix, respectively.

II. PRELIMINARIES

We begin by describing a linear system, G, with state
vector, x ∈ Rnx . The input vector contains the disturbance
signal, w ∈ Rnw , and the control signal, u ∈ Rnu . The
output vector contains the measurement, y ∈ Rny , and the
performance measure, z ∈ Rnz . In terms of its system



matrices, we can represent the linear system as

G :

 ẋ
z
y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x
w
u

 , (1)

where D22 is assumed to be zero, i.e., the system is strictly
proper from u to y. If this is not the case, we can find a
controller K̃ for the system where D22 is set to zero, and then
construct the controller as K = K̃(I + D22K̃)−1. Hence,
there is no loss of generality in making this assumption. For
simplicity, it is also assumed that the whole system is on
minimal form, i.e., it is both observable and controllable.
However, in order to find a controller, it is enough to
assume detectability and stabilizability (non observable and
non controllable modes are stable).

The linear controller is denoted K. It takes the system
measurement, y, as input and the output vector is the control
signal, u. The system matrices for the controller are defined
by the equation

K :

(
ẋK
u

)
=

(
KA KB

KC KD

)(
xK
y

)
, (2)

where xK ∈ Rnk is the state vector of the controller.
Lemma 1 (H∞ controllers for continuous plants): The

problem of finding a linear controller such that the closed
loop system Gc is stable and such that ‖Gc‖∞ < γ, is
solvable if and only if there exist positive definite matrices
X,Y ∈ Snx , which satisfy(
NX 0
0 I

)TXA+ATX XB1 CT1
BT1 X −γI DT

11

C1 D11 −γI

(NX 0
0 I

)
≺0 (3a)

(
NY 0
0 I

)TAY + Y AT Y CT1 B1

C1Y −γI D11

BT1 DT
11 −γI

(NY 0
0 I

)
≺0 (3b)

(
X I
I Y

)
�0 (3c)

rank(XY −I)≤nk.
(3d)

where NX and NY denote any bases of the null-spaces of(
C2 D21

)
and

(
BT

2 DT
12

)
respectively.

Proof: See [4].
It could be desirable to replace the rank constraint in (3d)
with a smooth function in order to be able to apply gradient
methods for optimization. To do this, the following lemma
is used.

Lemma 2: Assume that the inequality(
X I
I Y

)
� 0 (4)

holds. Let

det(λI−(I −XY )) =

nx∑
i=0

ci(X,Y )λi =

= λnx + cnx−1(X,Y )λnx−1 + . . .

+ c1(X,Y )λ+ c0(X,Y ) (5)

be the characteristic polynomial of (I − XY ), where the
functions ci(X,Y ) are its coefficients. Then the following
statements are equivalent if nk < nx:

1) rank(XY − I) ≤ nk
2) cnx−nk−1(X,Y ) = 0

Additionally, all coefficients are non-negative, i.e.

ci(X,Y ) ≥ 0, ∀i. (6)
Proof: See [12].

How to compute ci(X,Y ) and their derivatives is explained
in [12] where also additional properties of the coefficients
are shown.

III. PROBLEM FORMULATION

The problem we wish to solve is this paper is to minimize
γ subject to the constraints in (3). Formally this can be stated
as the following optimization problem.

minimize γ

subject to cnx−nk−1(X,Y ) = 0

(γ,X, Y ) ∈ X
(7)

where X is a convex set defined by the three LMIs
in (3a)–(3c). We have noticed that scaling the equal-
ity constraint function in (7) by the next coefficient in
the characteristic polynomial in (5) makes it numerically
sounder, i.e., we replace cnx−nk−1(X,Y ) by ĉ(X,Y ) =
cnx−nk−1(X,Y )/cnx−nk

(X,Y ). This results in the follow-
ing problem.

minimize γ

subject to ĉ(X,Y ) = 0

(γ,X, Y ) ∈ X
(8)

This problem can be solved by using the partially augmented
Lagrangian algorithm, see e.g. [11], where the equality
constraint is relaxed and added to the objective function in
the following way.

minimize γ + λĉ(X,Y ) +
µ

2
ĉ2(X,Y )

subject to (γ,X, Y ) ∈ X
(9)

where λ is a Lagrangian multiplier and µ is a penalty
multiplier. The word “partially” refers to the fact that only
the equality constraint is used in the augmentation while the
LMIs are kept as they are. The solution to the original prob-
lem (8) is obtained by iteratively solving an approximation
of (9) for a sequence of increasing values of µ. More details
on augmented Lagrangian methods can be found in e.g. the
books by Bertsekas, [13], [14] and Nocedal and Wright, [15].

IV. REFORMULATING THE PROBLEM

To simplify the notation, let us first define the half-
vectorization operator.

Definition 1 (Half-vectorization): Let

X =


x11 x12 . . . x1n

x21 x22
...

...
. . .

xn1 xn2 . . . xnn

 .



Then

vech(X) = (x11 x21 . . . xn1 x22 . . . xn2 x33 . . . xnn)T ,

i.e., vech stacks the columns of X from the principal diag-
onal downwards in a column vector. See [16] for properties
and details.
Next, let us do a variable substitution as follows. Let

x =
(

vech(X)T , vech(Y )T , γ
)T
.

By choosing b as the last unit vector such that γ = bTx, the
optimization problem (9) can be written as

minimize
x

Φc(x, λ, µ)

subject to x ∈ X
(10)

where

Φc(x, λ, µ) = bTx+ λĉ(x) +
µ

2
ĉ2(x).

This is a nonconvex problem, since the function ĉ(x) =
cnx−nk−1(x)/cnx−nk

(x) is nonconvex. However X is a
convex set which makes the problem somewhat less difficult
to solve than a general nonconvex problem.

V. CALCULATING THE SEARCH DIRECTION

The next step is to approximate Φc(x + p, λ, µ) by a
quadratic function related to the first three terms in the Taylor
series expansion around the point x. Similarly to what is done
in regular Newton methods, we intend to find a step direction
p that minimizes this second order model, but the difference
is that we also require that x+p ∈ X, i.e. that the next point
also lies in the feasible set. This problem can be formulated
as

argmin
p

∇xΦc(x, λ, µ)T p+
1

2
pTH(x, λ, µ)p

subject to x+ p ∈ X
(11)

which is a conic programming problem that can be solved
using e.g. Yalmip, [17] with SDPT3, [18]. The symmetric
matrix H(x, λ, µ, δ) is a positive definite approximation of
the Hessian of Φc(x, λ, µ). We will come back to how this
approximation is calculated later.

A. Calculating the derivatives

In order to solve (11), we need to calculate the gradient
and Hessian of Φc. Differentiating Φ(x, λ, µ) with respect to
x yields

∇xΦc(x, λ, µ) = b+ λ∇xĉ(x) + µĉ(x)∇xĉ(x)

∇xxΦc(x, λ, µ) =
(
λ+ µĉ(x)

)
∇2
xxĉ(x) + µ∇xĉ(x)∇Tx ĉ(x)

with

∇ĉ =
1

cnx−nk

∇cnx−nk−1 −
cnx−nk−1

c2nx−nk

∇cnx−nk

∇2ĉ =
1

cnx−nk

∇2cnx−nk−1 −
cnx−nk−1

c2nx−nk

∇2cnx−nk

+
2cnx−nk−1

c3nx−nk

(∇cnx−nk
∇T cnx−nk

)

− 1

c2nx−nk

(∇cnx−nk−1∇T cnx−nk

+∇cnx−nk
∇T cnx−nk−1)

where we have omitted the dependence on x to simplify
notation. Since the constraint function ĉ(x) is nonconvex,
the Hessian ∇2

xxĉ(x) is not always positive definite which
in turn might lead to that H(x, λ, µ) = ∇2

xxΦc(x, λ, µ) is not
necessarily positive definite, which has to be dealt with. Two
common ways are to either use Newton methods in which the
Hessian is convexified or to use Trust-region methods where
the nonconvexity is dealt with by optimizing over a limited
region in each iteration. The authors of [5] advice against
using Trust-region methods since the complexity of such a
method is too large in this case. Therefore, our choice is to
convexify the Hessian ∇2

xxΦc(x, λ, µ) as will be explained
next.

B. Hessian modification

We have chosen to calculate the exact Hessian
∇2
xxΦc(x, λ, µ), and then convexifying it using a modified

indefinite symmetric factorization as described in [19]. The
procedure is as follows. First calculate the indefinite symmet-
ric factorization ∇2

xxΦc = PTLDLTP , where L is lower
triangular, P is a permutation matrix and D is a block
diagonal matrix with block sizes of 1× 1 or 2× 2. Then we
construct a modification matrix F such that L(D+F )LT is
sufficiently positive definite. The matrix F is chosen to be

F = Qdiag τiQ
T ,

where

τi =

{
0, di ≥ δ,
δ − di, di < δ,

i = 1, 2, . . . , nx(nx + 1) + 1,

(12)
and where Qdiag diQ

T is the spectral factorization of D.
We then have that the modified Hessian is

H(x, λ, µ, δ) = PTL(D + F )LTP. (13)

The parameter δ is chosen as 10−4‖∇2
xxΦc‖∞, where the

matrix norm ‖A‖∞ denotes the largest row sum of A.
Now we are ready to outline the suggested algorithm for

H∞ synthesis.

VI. AN OUTLINE OF THE ALGORITHM

The algorithm can be outlined as follows.
1) Initial phase. (Find a starting a point.)

Let Φc = γ + trace(X + Y ), and solve (10). This is
a convex SDP. Denote the solution (X(0), Y (0)). Set
k = 0.



2) Optimization phase.
Set k := k + 1.

a) Solve (11) for the solution
p =

(
vech(pX)T , vech(pY )T , pγ

)T
.

b) Update the variables as

X(k) = X(k−1) + αpX ,

Y (k) = Y (k−1) + αpY ,

γ(k) = γ(k−1) + αpγ

where α = 0.98.
3) Update phase.

Update Lagrangian multiplier λ and penalty multiplier
µ using the following update rules.

λ(k) = λ(k−1) + µ(k−1)cnx−nk−1(X(k), Y (k)) (14)

If |cnx−nk−1(X(k), Y (k))| > tol, we update µ as
follows.

µ(k) =


ρµ(k−1) if |cnx−nk−1(X(k), Y (k))| >

ρ0|cnx−nk−1(X(k−1), Y (k−1))|
µ(k−1) if |cnx−nk−1(X(k), Y (k))| ≤

ρ0|cnx−nk−1(X(k−1), Y (k−1))|
(15)

The first option in (15) reflects our thought that the de-
crease in the equality constraint function value was not
enough. Therefore we increase the penalty parameter.
The second option reflects our content with the value
of the constraint function, and we leave the penalty
parameter at its current value.

4) Terminating phase.
If |cnx−nk−1(X(k), Y (k))| > tol, go to phase 2, other-
wise we check the following.
• if γ(k) < 0.99γ(k−1) for three consequent iterates,

it is quite likely we are close enough to a local
optimum. Proceed to phase 5.

• Otherwise, the objective function value is still
decreasing, hence we continue the optimization,
i.e., go back to phase 2.

5) Recover controller phase.
Recover the controller parameters (KA,KB ,KC ,KD)
as described in [4] and verify that the closed loop
system is stable and that ‖Gc‖∞ < γ holds true. These
requirements should normally be satisfied, but if there
are numerical problems this might not hold true.

Remark 1: The objective function Φc = γ+trace(X+Y )
used in the initial phase is a combination of two objec-
tives. The first objective is that the performance measure γ
should be low and the second is that the equality constraint
ĉ(X,Y ) = 0 should be approximately satisfied. Minimizing
trace(X + Y ) is a heuristic for minimizing the rank of
I −XY that is used e.g. in [20].

Remark 2: Note that in the optimization phase, one nor-
mally choose α in the interval 0 < α ≤ 1 by performing a
line search. However, we noticed that very small step-lengths
α were taken which resulted in bad performance that might

be caused by the Maratos effect. A solution could be to use
a watchdog strategy to remedy this, but we have chosen to
simply use α = 0.98 which seem to work well. For more
details on the Maratos effect and watchdog strategies, see
[15].

VII. NUMERICAL EXPERIMENTS

All experiments were performed on a DELL OPTIPLEX
GX620 with 2GB RAM, INTEL P4 640 (3.2 GHz) CPU
running under WINDOWS XP using MATLAB, version 7.11
(R2010b).

Evaluation of the methods was done on examples from the
benchmark problem library COMPleib, see [21]. The sug-
gested method was evaluated and compared to HIFOO 3.01

see [10] and HINFSTRUCT which is part of the ROBUST
CONTROL TOOLBOX in MATLAB, version 7.11 (R2010b),
and based on the paper [11].

The result from the evaluation is presented in Table I,
where the H∞ norms and required computation time for the
respective methods are displayed. We have chosen to evaluate
the methods on a couple of systems of different orders and to
synthesize controllers of different orders for these. Note that
the same settings were used throughout the whole evaluation
for the suggested method and that default settings were used
for HIFOO and HINFSTRUCT. Cases where the suggested
method had numerical problems are marked in Table I by ∗.

In the upper part of the table, controllers of order either
zero or three was synthesized in order to evaluate both
the static output feedback controllers and reduced order
feedback controllers. In cases where only the static output
feedback controller is evaluated it is because the higher order
controllers have the same performance.

Since the computational complexity of HIFOO and HINF-
STRUCT is dependent on the number of parameters in the
controller while ours is not, we chose to also include a
system (IH) which has 11 input signals and 10 output signals
in order to check if the results would differ. The number
of optimization variables for HINFSTRUCT and HIFOO is
n2k + nkny + nunk + nuny while for our method it is
nx(nx+1)+1, which means that our method is not affected
by the number of states (nk), inputs (nu) or outputs (ny)
of the controller, while the other methods are. The results
are shown in the lower part of Table I. For this example we
also synthesized controllers of higher order than for the other
examples.

Note that HIFOO was run ten times for every combination
of system and controller order. This was done in order to
lessen the effect of the random initialization of the method.
The best H∞ norm from these ten runs is displayed in Table I
while the required time is the sum of all ten runs.

VIII. RESULTS

The result in upper part of Table I indicates that the
suggested method achieves comparable results in most cases,
while HINFSTRUCT by far is the fastest algorithm. However

1Code freely available from
http://www.cs.nyu.edu/overton/software/hifoo/.



TABLE I
RESULTS FROM EVALUATION ON A COLLECTION OF SYSTEMS FROM

COMPLE IB. THE FIRST COLUMN DISPLAYS THE SYSTEM NAME, THE

ORDER OF THE SYSTEM, THE NUMBER OF INPUTS AND OUTPUTS AND

THE ORDER OF THE CONTROLLER THAT WAS SYNTHESIZED. THE

SECOND, THIRD AND FORTH COLUMNS SHOW THE H∞ NORM AND

REQUIRED TIME FOR THE SUGGESTED METHOD (AL), HINFSTRUCT

(HS) AND HIFOO (HF) RESPECTIVELY. CASES WHERE THE SUGGESTED

METHOD HAD NUMERICAL PROBLEMS ARE MARKED BY ∗ .

Sys, (nx,nu,ny,nk) ‖ · ‖AL
∞ , tAL ‖ · ‖HS

∞ , tHS ‖ · ‖HF
∞ , tHF

AC2 (5,3,3,0) 0.11, 19.1 s 0.11, 2.72 s 0.11, 168 s
AC5 (4,2,2,0) 670, 20.8 s 665, 0.73 s 669, 24.8 s
AC5 (4,2,2,3) 660∗, 10.3 s 658, 1.20 s 643, 1100 s
AC18 (10,2,2,0) 14.8, 37.4 s 10.7, 1.08 s 12.6, 124 s
AC18 (10,2,2,3) 8.09, 36.9 s 6.51, 2.17 s 6.54, 3860 s
CM1 (20,1,2,0) 0.84, 278 s 8.15, 0.72 s 0.82, 125 s
EB4 (20,1,1,0) 2.46∗, 460 s 2.06, 1.97 s 2.06, 10.5 s
EB4 (20,1,1,3) 2.14, 370 s 1.82, 3.66 s 1.82, 1160 s
JE3 (24,3,6,0) 8.74, 645 s 5.10, 3.14 s 5.10, 4880 s
JE3 (24,3,6,3) 2.89∗, 1403 s 2.90, 3.58 s 2.89, 5910 s
IH (21,11,10,0) 1.88, 367 s 2.45, 14.2 s 1.90, 2450 s
IH (21,11,10,1) 1.86, 523 s 1.96, 13.3 s 1.80, 2410 s
IH (21,11,10,3) 1.49, 373 s 1.69, 18.5 s 1.74, 2170 s
IH (21,11,10,5) 1.39∗, 868 s 1.98, 23.0 s 1.69, 2620 s
IH (21,11,10,7) 1.61∗, 169 s 1.73, 28.9 s 1.72, 2450 s

it does not always find the best result of the three methods.
HIFOO achieves consistent results, but keep in mind that the
best result in ten runs is displayed.

The results in the lower part of Table I indicates that the
suggested method has an edge when the number of controller
parameters are many, which is the case when the system to be
controlled has many input and output signals, i.e. the product
nu×ny is large as in system IH. The suggested method beats
HINFSTRUCT in all cases and it beats HIFOO in four out of
five cases. Unfortunately, COMPleib does not include more
systems with comparable amount of input and output signals
for us to evaluate our method on in order to make a more
certain statement.

IX. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a method for low order H∞ controller
synthesis based on the LMI formulation of the problem
which is smooth. The approach is to reformulate the rank
constraint as a rational equality constraint and then solve
the problem by using a partial augmented Lagrangian min-
imization algorithm. The suggested method was evaluated
and compared with two other methods from the literature.
The evaluation indicates that the suggested algorithm obtains
comparable results in most cases and that it has an edge in
cases where the number of controller parameters are many,
which is the case if the system to be controlled has many
input and output signals. Overall, HINFSTRUCT is the fastest
of the three compared methods.

B. Future Works

We would like to improve the numerical properties of the
method so that it becomes more stable and able to handle
higher order systems.
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