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Effect of short- and long-range scattering on the conductivity of graphene: Boltzmann approach
vs tight-binding calculations
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We present a comparative study of the density dependence of the conductivity of graphene sheets calculated
in the tight-binding (TB) Landauer approach and on the basis of the Boltzmann theory. The TB calculations are
found to give the same density dependence of the conductivity, o'® ~n, for short- and long-range Gaussian
scatterers. In the case of short-range scattering the TB calculations are in agreement with the predictions of the
Boltzmann theory going beyond the Born approximation but in qualitative and quantitative disagreement with
the standard Boltzmann approach within the Born approximation, predicting o%°/“=const. Even for the long-
range Gaussian potential in a parameter range corresponding to realistic systems the standard Boltzmann
predictions are in quantitative and qualitative disagreement with the TB results. This questions the applicability
of the standard Boltzmann approach within the Born approximation, commonly used for the interpretation of
the results of experimental studies of the transport in graphene.
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I. INTRODUCTION

Understanding factors that affect conductivity of graphene
represents a fundamental task of great importance in view of
possible application of graphene-based devices for electron-
ics and optoelectronics. Currently, the majority of experi-
mental measurements of conductivity o in graphene'~? is
analyzed on the basis of the standard Boltzmann approach

within the Born approximation predicting qualitative differ-

ent results for short- and long-range impurity scattering®'3
o =const (short-range scattering), (1a)
o~ n (long-range scattering), (1b)

where n is the electron density. It has been recently argued
by Stauber et al.'3 that a standard way to examine the colli-
sion rate within the Born approximation (utilizing the unper-
turbed wave functions for a clean system) is not suitable for
the case of short-range interaction such as vacancies, reso-
nant impurities, cracks, etc. Going beyond the Born approxi-
mation, Stauber et al.'® and Katsnelson and Novoselov!4
demonstrated that the short-range disorder, with the accuracy
up to logarithmic corrections, leads to a linear density depen-
dency similar to the one for the long-range potential,

2

o= =2 (1n VTR, 2)

h n;

where R|, is the scatterer’s radius and n; is the impurity con-
centration. (Similar results have been also obtained by Os-
trovsky et al.'”) Apparently, this has important consequence
for interpretation of the experimental results, as the linear
density dependence of the conductivity is typically related to
the long-range Coulomb impurities and deviations from this
dependence is attributed to the short-range scattering.'~8 In
contrast, Eq. (2) implies the short- and long-range scattering
may lead to similar density dependencies of the conductivity.
Indeed, Monteverde et al.'® have recently analyzed the ex-
periment on the basis of Eq. (2) and arrived to the conclusion
that strong neutral defects (as opposed to the long-range
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Coulomb impurities) was the main scattering mechanism in
graphene. The dominant role of neutral defects has been also
recently outlined in Refs. 17 and 18.

The reliability of the above predictions Egs. (1) and (2)
can be established by testing them against “exact” Landauer-
type quantum-mechanical numerical calculations for the con-
ductivity based on the tight-binding (TB) (or Dirac) Hamil-
tonian for carriers in graphene.!®->> Recently, Adam et al.>*
compared the standard Boltzmann and the Landauer ap-
proaches for the case of a long-range Gaussian potential that
varies smoothly on the scale of a lattice constant,

S ( —'r"_r"'P) (3)
;= o expl| — 5 ,
i'=1 28

where & can be interpreted as the effective screening length
and the potential heights is assumed to be uniformly distrib-
uted in the range U; € [-8, §]. The conductivity obtained in
the two approaches agrees quantitatively away from the
Dirac point, which was interpreted as a proof of validity of
both. According to Adam et al.,** the conductivity follows a
density dependence o~ n>?. This, however, disagrees with
all experimental observations reported so far!-816-18:26 and
with previous Landauer-type numerical calculations?!20-24.25
demonstrating the linear or sublinear density dependence of
the conductivity. Hence, a comparison between the Boltz-
mann and Landauer approaches still remains an open and an
important issue.

The main purpose of the present study is to compare the
exact Landauer TB conductivities with those given by the
standard Boltzmann approach within the Born approximation
as well as with those given by Eq. (2). As in the standard
Boltzmann approach the density dependence is different for
long- and short-range scatterers, one of our aims is to inves-
tigate whether the TB calculations also give different density
dependencies for these scattering mechanisms. Finally, the
Born approximation is valid for the case of weak scattering
when the wave functions remains unperturbed. It is not, how-
ever, apparent that the condition of a weak scattering is sat-
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isfied in a parameter range typical for realistic systems. By
comparing the exact TB calculations with those based on the
predictions of the standard Boltzmann approach we test the
applicability of the later to realistic systems.

II. THEORY

We calculate conductivity of the graphene sheets using
the standard p-orbital nearest-neighbor tight-binding Hamil-
tonian for noninteracting electrons for zero temperature, H
=3, V|iXi| -1, ;]i)(j|, with the hopping integral 1=2.7 eV.?’
We utilize a model for screened scattering centers of the
Gaussian shape [Eq. (3)] commonly wused in the
literature.'*2%-2425 The correlator of the potential Eq. (3) has

the form,'-2%2* (V;V;)==—2- Kitop)* —exp(— ‘rT_rﬁ) where the dimen-
sionless 1mpur1ty strength 1s described by the parameter K
~40.5n,,,(8/1)*(&/ \3a)* given by the screening length &,
the potential strength &, and the relative impurity concentra-
tion n,,, (a being the carbon-carbon distance and v is the
Fermi  velocity). For realistic — graphene  samples
K=1-10."9202425 In our calculations we use the screening
length 1=¢/a=38, spanning the range between the short-
range potential (¢é=a), and the long-range potential (£§=8a)
that varies smoothly on the scale of a lattice constant. Note
that we also performed calculations for the & scattering, and
the results obtained are, as expected, practically identical to
those obtained for the case of the Gaussian disorder with &
=a.

The conductance G and the electron density n are com-
puted with the aid of the recursive Green’s function
technique.?>>3?> We assume that the semi-infinite leads are
perfect graphene strips of the width W, and the device region
is a rectangular graphene strip WXL, where the impurity
potential is defined. The zero-temperature conductance G is
given by the Landauer formula G=2762T, where T is the total
transmission coefficient between the leads. Then we calcu-
lated the conductivity 0'=—G the electron density n
=[tFdED(E), and the mean- free path (mfp) mfp:zm as a
function of the Fermi energy Ej. The density of states (DOS)
D(E) is computed by averaging the local DOS (LDOS) over
the whole device area. The LDOS is given by the diagonal
elements of the total Green’s function.?? Because of compu-
tational limitations we study the strips with L/W>1. [In
most calculations we use L=368 nm (3000 sites) and L/W
~6.] We, however, checked that the obtained results are in-
sensitive to the aspect ration L/W as soon as L/ W> 1.

The results of the tight-binding calculations are compared
to the predictions obtained within the standard Boltzmann
approach within the Born approximation for the scattering
potential Eq. (3). The conduct1v1ty of graphene sheet is given

by* 4 o=27D(Ep) 2L >, where the DOS D(Ey)
—2EF/(7rﬁ21) the dispersion relation E=hvzk, and k
=v\mn with vp= 327 being the Fermi velocity. The scattering
rate  within the Born approximation reads 77!

27TD(E) f”dm —cos” 8|U , where U, is the Fourier trans-
form of the scattermg potential, g= |k k'|=2k 51n2, where 6
is the angle between the initial and final states k and k’.
Using the Wiener-Kitchine theorem for the correlator, we
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FIG. 1. (Color online) (a) The conductivity vs the electron den-
sity for two representative graphene strips with different lengths L
=3000 and 1500 sites for the case of the short-range scattering (&
=a) with n;,,=10'2 cm™. Each curve is averaged over eight im-
purity configurations. The impurity strength 6=0.86z. The inset
shows the dependence y=y(n;,,).

obtain the Fourier transform of the Gaussian potential,
|U,|*=K(fvp)*exp(-¢*&*/4), which leads to the expression
for the conductivity,'>*

__ const, mé <1,

n?, 7Tn§2 > 1,

4e mmée e’

h Kll(ﬂ'ng)

oltz _

(4)

where /; is the modified Bessel function.

III. RESULTS AND DISCUSSIONS

The Boltzmann predictions for the density dependence of
the conductivity are valid in the diffusive transport regime
when the mfp is larger than a system size. Let us therefore
first discuss a transition from the ballistic to diffusive regime
focusing on the short-range scattering, £=a. In a purely bal-
listic regime (no impurity scattering) the conductivity fol-
lows the density dependence o~ n? with y=3. It has been
demonstrated for the case of the long-range Gaussian scat-
terers that with the increase in the system size the exponent y
gradually increases from its ballistic value reaching the value
y=1 in the diffusive regime.?> Figure 1 shows the depen-
dence o=0(n) for the case of the short-range scattering cal-
culated within the TB approach. The conductivity shows the
same behavior as for the case of the long-range scattering®
with 7y increasing from % in the ballistic regime to y=1 in the
diffusive regime as the size of the system or the impurity
concentration increases. This obtained density dependence in
the diffusive regime (y=1) is in a stark contrast with the
standard Boltzmann predictions for the -impurity scattering,
Eq. (1a), when o is expected to be density independent (y
=0).

A more detailed comparison between the TB and Boltz-
mann calculations for the short-range scatterers for different
impurity strengths & is presented in Figs. 2(a) and 2(b). As
expected, for very weak scattering (6= 0.5¢) the transport is
in the ballistic regime with y=1/2. This is fully consistent
with the calculated mfp which is comparable to the largest
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FIG. 2. (Color online) (a) The conductivity of
the graphene sheets vs electron density for the
short-range Gaussian potential with é=a for dif-

ferent potential strength 6. Each curve is aver-
aged over eight impurity configurations. Straight
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dashed lines show fitting o~n”. Red solid and
dotted-dashed lines show predictions based, re-
spectively, on Egs. (2) and (4). (b) The depen-
dence y=v(5). (c) The mfp vs the electron den-
sity n. n,,=8%10'? cm™, L=3000 sites (368
nm), W/L=0.14.

1.0

dimension of the system L, see Fig. 2(c). For the case of
strong scattering (8=2.5¢) the system is in the diffusive
transport regime when the calculated mfp is smaller than the
smallest dimension of the system W. In this regime the ex-
ponent 1y saturates to 1, see Fig. 2(b). Figure 2(a) also shows
the conductivity calculated on the basis of the standard Bolt-
zmann approach, Eq. (4), as well as given by Eq. (2). The
Boltzmann theory predicts that y=0 which is in qualitative
disagreement with the numerically calculated exponent 7y
~]. Boltzmann predictions are also quantitatively different
from the tight-binding calculations with ®°“< g™ (note
the logarithmic scale of the figure). At the same time, we find
that the TB calculations are in a good qualitative and even
reasonable good quantitative agreement with Eq. (2) predict-
ing quasilinear density dependence of the conductivity. Why
does the standard Boltzmann approach fail to describe the
conductivity of the system at hand? Following Stauber et
al.,'3 we believe this is because the scattering rate 7 in the
standard Boltzmann approach is calculated in the Born ap-
proximation, with unperturbed clean-graphene wave func-
tions. Apparently, this approximation is applicable in the case
of weak perturbations but cannot be applied for strong scat-
tering potential. In contrast, the approach proposed by
Stauber et al. uses wave functions for a hard-wall barrier,
appropriate in the case of strong scattering.

3.0 5.0

n(10°cm’)

Let us finally compare the tight-binding and Boltzmann
calculations for the long-range Gaussian scatterers with &
=8a for different impurity strengths, see Fig. 3. As for the
case of the short-range scatterers the TB calculations exhibit
the ballistic behavior (mfp~ L) with y=1/2 for weak scat-
tering and the diffusive behavior (mfp<W) with y=1 for
the strong scattering. Again, the result obtained in the diffu-
sive regime, y= 1, is qualitatively different from the corre-
sponding Boltzmann prediction. Indeed, for the latter case
the exponent vy is poorly defined because for the considered
density interval 7né&>~ 1 which, according to Eq. (4), corre-
sponds to the transition regime between two asymptotes
oo =const and B ~pn32. Besides, the Boltzmann and
the tight-binding calculations disagree even quantitatively
with o8°"2< g8, [Note the logarithmic scale of Fig. 3(a).]

The opposite limit 7n&?>1 (when o~ n*?) was consid-
ered by Adam er al.** who found a good qualitative and
quantitative agreement between the Landauer-type and the
Boltzmann calculations. This regime (in contrast to the re-
gime mné =<1 considered here) corresponds to high electron
energies and smooth potential (with large &) when the scat-
tering is weak and the Boltzmann theory within the Born
approximation is therefore justified. However, the density de-
pendence predicted by Eq. (4), 0®°“~n32, has never been
observed in any experiment. In contrast, the dependence

FIG. 3. (Color online) (a) The conductivity of
the graphene sheets vs electron density for the
long-range Gaussian potential with £€=8a for dif-

ferent potential strength é. Each curve is aver-
aged over eight impurity configurations. Straight

lines show fitting o~ n?. Dashed lines show pre-
dictions based on Eq. (4). (b) The dependence y
=%(6). (c) The mfp vs the electron density n. Pa-
rameters of the graphene sheet are the same as in
Fig. 2.
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0’8 ~n, obtained in the TB calculations for the regime

mné& =<1 considered here, is in agreement with the majority
of experimental findings. We regard this as a strong indica-
tion that the regime appropriate for realistic graphene
samples is & < 1. As demonstrated here, in this parameter
range the results obtained in the standard Born approxima-
tion disagree both quantitatively and qualitatively with those
obtained by the exact TB calculations. This therefore ques-
tions the validity of the standard Boltzmann predictions
within the Born approximation for realistic graphene sheets.

Let us finally discuss the transition regime between the
ballistic and diffusive behavior when W<mfp<L. For the
short-range scatterers the exponent y shows a pronounced
minimum dropping to y= 0.2 for 6=t, whereas for the long-
range scatterers 7y increases monotonically from 0.5 to 1, cf.
Figs. 2(b) and 3(b). We are not aware of any theories ad-
dressing this transition regime corresponding to the quasibal-
listic transport. We speculate, however, that this peculiar be-
havior might be related to the corresponding Boltzmann
results predicting o®°“=const and o?°"*=gB""(n) for the
short- and long-range scatterers, respectively, [see dotted-
dashed curves in Figs. 2(a) and 3(a) corresponding to Eq.
(4)]. Tt is worth to emphasize that while in the diffusive
regime o'® shows the same linear density dependence for the
long- and short-range scatters, in the quasiballistic regime
the corresponding o'® are different. Our findings suggest
that quasiballistic transport regime can be used to distinguish
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between the effects of short- and long-range Coulomb scat-
tering.

IV. CONCLUSIONS

(i) In the diffusive transport regime the TB calculations
give the same linear density dependence of the conductivity,
o™~ n, for both short- and long-range Gaussian scatterers.

(ii) In the case of short-range potential the obtained linear
dependence is in quantitative and qualitative disagreement
with the standard Boltzmann predictions within the Born ap-
proximation, Egs. (1a) and (4) but in agreement with the
predictions going beyond the Born approximation, Eq. (2).

(iii) Even for the long-range Gaussian potential the stan-
dard Boltzmann predictions Eq. (4) are in quantitative and
qualitative disagreement with the TB results in the parameter
range corresponding to realistic systems (7né& <1 regime).
This questions the applicability of the predictions based on
the standard Boltzmann theory for conductivity in graphene
which are widely used for interpretation of experimental
data.
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