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Wireless Local Area Networks (WLANs) are widely used for cable replacement and wireless Internet access.
Since the medium access control (MAC) scheme of WLANs has a strong influence on network performance, it
should be accounted for in WLAN design. This paper presents AP location models that optimize a network
performance measure specific for the MAC scheme of WLANs, which represents the efficiency in sharing
the wireless medium. For these models, we propose a solution framework based on an effective integer-linear
programming Dantzig-Wolfe reformulation. This framework is applicable to any nonlinear covering problem
where the objective function is a sum of contributions over the groundset elements (users in WLANs).
Extensive computational results show that our solution strategy quickly yields optimal or near-optimal
solutions for WLAN design instances of realistic size.

Subject classifications : Integer Programming, Networks, Telecommunications
Area of review : Telecommunications and Networking

1. Introduction

Wireless Local Area Networks (WLANs) have achieved a tremendous popularity in providing cable
replacement and Internet connection to companies, organizations, and public areas. A WLAN
consists of a set of Access Points (APs) connected to a wired network. Each AP is able to serve
users located within its radio coverage area. APs are cheap, and installation cost is typically not
an issue. The focus in WLAN planning is on network performance optimization. Unlike cellular
networks, where users obtain a dedicated resource in terms of frequency, time slot, or channelization
code, WLAN applies a randomized medium access control (MAC) scheme. As this scheme has a
strong influence on network performance, WLAN planning models should account for its behavior.

In this paper we consider a performance measure for AP location that is specific for the MAC
protocol of WLANs. The AP location problem amounts to decide, given a set of candidate sites
(CSs), where to install APs. Service coverage is defined by site measurements or signal propagation
models (Hills and Schlegel 2004, Eisenblätter et al. 2007) for a set of test points (TPs). TPs are
locations where the presence of a WLAN user device is expected. Throughout the paper we will
equivalently refer to “TPs” or “users”, whichever is more convenient. A common requirement in
WLAN planning is that each TP has to be covered by at least one installed AP. In some cases,
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however, coverage is not strictly required. If the objective function used for AP location favors
networks with good coverage, the covering constraints can then be omitted.

We focus here on single-frequency WLANs. Besides providing a basis for the general case, single-
frequency is relevant for several reasons. Unlike in cellular networks, the small number of frequencies
available in WLANs allows for only three mutually non-interfering frequencies (IEEE 802.11 1999).
Their practical availability is further restricted by national regulations, as well as by external
interference from other devices operating in the same (license-free) spectrum. Moreover, while
the AP locations are rarely modified after network deployment, the frequency assignment has to
be occasionally re-optimized to account for changes in the user distribution or in the external
interference. In common two-step planning approaches, where AP location is followed by frequency
assignment, the conservative use of one frequency in the location phase may avoid unexpected
performance degradations when the number of available frequencies decreases. For a frequency
assignment approach based on the performance measure considered here, see Bosio and Yuan 2009.

The paper is organized as follows. In the remainder of Section 1 we discuss the MAC protocol and
related work on WLAN planning. In Section 2 we describe our WLAN design problems, present
0-1 hyperbolic programming formulations, and discuss complexity and approximability issues. In
Section 3 we propose an Integer Linear Programming (ILP) formulation, based on Dantzig-Wolfe
reformulation, that is applicable to a quite general class of nonlinear set covering problems. Section 4
describes a solution approach based on this formulation, and reports extensive computational
results for our WLAN design problems. Some concluding remarks are given in Section 5.

1.1. Medium Access Control

WLANs use a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) MAC protocol,
based a “listen before talk” approach. A device can start a transmission only after sensing the
channel as idle (see the IEEE 802.11 1999 standard series for details). As channel sensing does
not completely eliminate collisions, an acknowledgment mechanism is used to certify reception. To
discuss transmission scenarios in WLANs we adopt the term interference from cellular networks.
However, whereas in cellular networks interference generally leads to lower signal quality, in WLANs
it results in transmission blocking due to channel sensing, or in an unsuccessful transmission due
to collision.

There are two main types of interference in WLAN. In direct interference two user devices cannot
access the medium simultaneously because they are within each other’s sensing range. This occurs
even if the two devices wish to communicate to different APs, as in the so-called exposed terminal
scenario illustrated in Figure 1(a). Indirect interference involves transmission collision at APs, as in
the hidden terminal scenario depicted in Figure 1(b): Two user devices with no direct interference
attempt to transmit to the same AP. Carrier sensing allows them to transmit simultaneously, which
results in a collision at the AP and in two unsuccessful transmissions. Indirect interference occurs
also if the two user devices communicate with different APs and one user is covered by both APs,
see Figure 1(c). In general, if a user device lies in the coverage area of a set of APs, transmission
from the device to its AP prohibits the other APs from being accessed by other user devices. Note
that two users can be both direct and indirect interferers to each other, and that users accessing
the same AP are always indirect interferers.

The above discussion suggests that the probability of successful transmission of a user is inversely
proportional to the number of its direct and indirect interferers. To account for this relation, we
consider a network performance measure that extends the one proposed in Amaldi et al. (2004).
The rationale behind this measure, which we refer to as network efficiency, is illustrated by two
extreme cases. In the first one, each user accesses a distinct AP without direct interference from
other users, while in the second one all users access the same AP, or are all within direct interference.
These two cases correspond respectively to the maximum and minimum network efficiency. The
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Figure 1 WLAN interference scenarios.
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Note. Example scenarios for (a) exposed terminal, (b) hidden terminal, and (c) general indirect interference. The
coverage range of the APs is shown with a solid circle, while the range of direct interference of the users (black points)
is shown with a dashed circle.

applicability of the network efficiency measure is further supported by a recent work on WLAN
engineering (Bosio et al. 2007), where simulation results show that it provides a good estimate of
WLAN performance, and that optimizing network efficiency in AP location leads to higher data
throughput with respect to other objectives aiming at reducing AP coverage overlap.

1.2. Related Work on WLAN planning

Wireless network optimization models are often based on the Set Covering Problem (SCP, see Ceria
et al. 1997) or on the Facility Location Problem (FLP, see Labbé and Louveaux 1997). SCP prob-
lems are used for selecting a subset of CSs to install radio antennas so as to cover all the TPs (see
e.g. Tutschku 1998). In FLP problems, an explicit assignment of the TPs to the antennas has also to
be decided (see e.g. Amaldi et al. 2006). Early work on WLAN planning (see e.g. Hills 2001, Prasad
2000) qualitatively investigates the impact of various planning choices on the performance. Some
mathematical programming models for WLAN design deal with signal quality without explicitly
accounting for interference. Rodrigues et al. (2000) and Mateus et al. (2001) propose an ILP model
to maximize the signal quality at the TPs. Kamenetsky and Unbehaun (2002) and Unbehaun and
Kamenetsky (2003) present a heuristic aimed at minimizing a convex combination of the average
and maximum path loss. Lee et al. (2002) propose a facility location-based model to balance the
load among APs.

Interference aspects in WLAN planning have been considered in several papers. Prommak et al.
(2002) present a constraint satisfaction model to maximize WLAN capacity subject to constraints
specifying received power, perceived interference, and achieved data rate at the user locations.
The interference constraint used in the model derives from performance considerations in cellular
networks. For WLANs, however, the constraint is less appropriate because interference blocks a
transmission or makes it fail, rather than degrading the signal quality. Lu et al. (2006) propose to
measure the performance of a WLAN cell (the service area of an AP) with a Markovian process.
The process, which is embedded into a Tabu search heuristic for WLAN planning, accurately takes
into account intra-cell interference but ignores inter-cell interference. An attempt to deal with inter-
cell interference is presented in Ling and Yeung (2006). The authors propose a model to address
the performance impact of overlapping cells operating on the same frequency, and a measure of the
total throughput. The resulting optimization problem, which combines AP location and frequency
assignment, is very challenging and out of the reach of exact methods. A simple heuristic algorithm
is presented and applied to small instances.

Eisenblätter et al. (2007) consider an FLP model for AP location that neglects interferences
and maximizes user throughput subject to a budget constraint on the number of installed APs.
Frequency assignment is addressed by a second model, which resembles cell overlap minimization
for channel allocation in cellular networks. An integrated model optimizing a convex combination of
the objective functions used in AP location and frequency assignment is also presented. In Siomina
and Yuan (2007), the frequency assignment model is extended to account for AP transmission
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power, and refined to consider both direct and indirect interference. The optimization models are
solved in both references with a standard solver.

The network efficiency considered here extends the measure defined in Amaldi et al. (2004),
where only indirect interference was taken into account, coverage was explicitly required, and the
resulting problem was solved by simple greedy heuristics. In this paper we refine the aforementioned
measure to account for direct interference, and propose efficient optimization models and methods
for finding optimal or near-optimal solutions, both with or without coverage requirements.

2. Problem definition

Let I be the set of test points (TPs), and J the set of candidate sites (CSs). We denote by Ij ⊆ I
the subset of TPs that are covered if an AP is installed at CS j, and by Ji = {j ∈ J : i∈ Ij} the set
of CSs from which TP i can be covered. For simplicity, we assume that the AP devices have fixed
transmission power, and comment later on the extension to multiple power levels. A solution to
the single-frequency WLAN design problem is a subset S ⊆ J of CSs where APs will be installed.
We denote the subset of TPs covered by S by I(S) = ∪j∈SIj. A solution S is a cover if I(S) = I,
and it is a partial cover otherwise.

Given a partial cover S and a user i∈ I(S), let Ni(S) = I(Ji ∩S) \ {i} denote the set of indirect
interferers, i.e., the set of users covered by some AP covering also user i, and let Ni be a short-hand
notation for the set Ni(Ji) of all potential indirect interferers of user i. Moreover, given for each
user i the set Di of its potential direct interferers, let Di(S) =Di ∩ I(S) denote the set of direct
interferers of user i that are active (i.e., covered) in S. Following the discussion in Section 1, user i
can successfully transmit if and only if none of the users in Ni(S)∪Di(S) is transmitting. Assuming
uniform traffic and fair access (where the latter is guaranteed by the CSMA/CA protocol), the
fraction of transmission time available to a user can be approximated by the reciprocal of the
number of its interferers plus 1 (the user itself). This leads to the network efficiency :

e(S) =
∑
i∈I

e(S, i) =
∑

i∈I(S)

1

1 + |Ni(S)∪Di(S)|
. (1)

Using the AP location variables xj for all j ∈ J (xj = 1 if j ∈ S and 0 otherwise), the interferer
variables yih for all i ∈ I,h ∈Ni (yih = 1 if h ∈Ni(S) and 0 otherwise), and the coverage variables
zi for all i ∈ I (zi = 1 if i ∈ I(S) and 0 otherwise), the Maximum Efficiency Problem (MEP) can
be formulated as the following 0-1 hyperbolic sum programming model:

max
∑
i∈I

zi
1 +

∑
h∈Di

zh +
∑

h∈Ni\Di

yih
(2)

(MEP) s.t.
∑
j∈Ji

xj > zi i∈ I (3)

zi > xj i∈ I, j ∈ Ji (4)

yih > xj i∈ I,h∈Ni, j ∈ Ji ∩Jh (5)

xj ∈ {0,1} j ∈ J (6)

yih ∈ {0,1} i∈ I,h∈Ni (7)

zi ∈ {0,1} i∈ I. (8)

The formulation for the Maximum Efficiency Problem with Complete Coverage (MEP-C) is
obtained by substituting each variable zi with a constant value 1, so that contraints (3) become
the standard SCP constraints ∑

j∈Ji

xj > 1 i∈ I. (9)
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In Amaldi et al. (2004, 2009) the network efficiency is approximated by neglecting direct inter-
ference. The resulting problems, which we refer to as Approximated Maximum Efficiency Problem
(AMEP) and Approximated Maximum Efficiency Problem with Complete Coverage (AMEP-C),
are obtained by setting Di = ∅ for all i ∈ I in MEP and MEP-C respectively. The models for all
problem variants are summarized in Table 1. Note that constraints (4), required in MEP due to
the presence of z variables in the denominator of (2), are redundant in AMEP. In all models the
integrality of the x variables implies the integrality of the y and (when present) of the z ones.

Table 1 Model formulations for all variants of MEP.

(MEP-C) (AMEP) (AMEP-C)

max
∑
i∈I

1

1 + |Di|+
∑

h∈Ni\Di

yih
max

∑
i∈I

zi
1 +

∑
h∈Ni

yih
max

∑
i∈I

1

1 +
∑

h∈Ni

yih

s.t. (5), (6), (7), (9) s.t. (3), (5), (6), (7), (8) s.t. (5), (6), (7), (9)

Figure 2 Direct versus indirect interference.

i

(a)

i

(b)

i

(c)

Note. (a)-(c) The white region contains the indirect interferers Ni(S) of a given TP i∈ I, and a dashed circle encloses
its direct interferers Di. The region containing direct interferers that are not also indirect interferers is emphasized
in gray, and can be large in some cases.

As illustrated in Figure 2, neglecting direct interference may lead to inaccurate results. However,
the average impact on optimal solutions is often limited. Moreover, as we will see, MEP turns out
to be much more difficult to solve than AMEP. Therefore such an approximation currently remains
the only option for large networks. On the contrary, MEP-C is actually easier than AMEP-C, as
in the former the users in Di are considered as fixed interferers. We will report results for AMEP-C
mainly for the sake of comparison with Amaldi et al. (2004, 2009).

Figure 3 Special case of indirect interference.

i hj1 j2 j3

Note. Users i and h interfere indirectly only if at least one of them is served by AP j2.

In all the above models, there exists a special case where two users are considered as interferers,
although interference actually depends on the choice of serving AP made by each user. Consider
the scenario depicted in Figure 3, and assume that i and h are not within direct interference range.
If at least one of i and h is served by AP j2, then the two users will be indirect interferers. But if
they are served respectively by j1 and j3, then interference does not occur. In this case the network
efficiency overestimates the total interference. In order to address such scenarios, one needs to
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collect additional signal propagation informations, and to make a modeling assumption on how
users select their serving APs (e.g. the one with strongest signal). On the other hand, as pointed
out in Amaldi et al. (2009), the impact of these non-interfering cases on the optimal solution and
on the optimal value is marginal, indicating that such situations are not frequent.

The network efficiency (1) implicitly assumes peak traffic (all users are active and attempting
to access the medium). This is justified by the fact that network performance is typically an issue
only under peak traffic. However, the measure can be easily generalized to account for user activity
levels, if this information is available, and the ILP model and the solution algorithm presented
in this paper can be directly applied. Since in reality user and traffic patterns vary over time, an
aggregation of various snapshots of the active users taken at different times is often considered.
Snapshot-based planning is a common approach in wireless network optimization (see e.g. Amaldi
et al. 2003 and Eisenblätter et al. (2002) for third generation cellular systems design).

Although no coverage level can be a-priori guaranteed in MEP and AMEP, one can typically
expect that optimal solutions cover most of the users, as the objective function contribution of
an uncovered user is zero. In Section 4.4 we present computational experiments for these models,
including results for the straightforward extension requiring a minimum coverage percentage.

As a final remark, all the above problems can be extended to the case in which APs can use
one of k possible power levels. This is done by introducing, for each physical location, k CSs with
nested covering areas. Due to the network efficiency (1), at most one of these k CSs will be selected.

2.1. Compact MILP reformulations for 0-1 hyperbolic programming

0-1 hyperbolic programming is challenging in general. The unconstrained single-ratio case is NP-
hard except in some special cases (Hammer and Rudeanu 1968, Hansen et al. 1991). Unconstrained
multiple-ratio 0-1 hyperbolic programming, which is NP-hard even in those special cases, has
been tackled with heuristics and an exact method based on decomposition (Hansen et al. 1990).
Approaches to constrained single-ratio 0-1 hyperbolic problems are described in Stancu-Minasian
(1997), but little is known on multiple-ratio versions.

A Mixed Integer Linear Programming (MILP) reformulation approach for multiple-ratio 0-1
hyperbolic problems is discussed in Tawarmalani et al. (2002). For our WLAN problem MEP, this
reformulation technique amounts to substituting each ratio in the objective function (2) with a
new continuous variable ri. The value of ri is defined by the bilinear constraint

ri(1 +
∑
h∈Di

zh +
∑

h∈Ni\Di

yih) = zi,

containing the mixed (continuous-binary) bilinear terms rizh for h ∈Di and riyih for h ∈Ni \Di.
A standard linearization technique for such terms consists in defining upper and lower envelopes
exploiting upper and lower bounds on the continuous variable ri. As proposed in Amaldi et al.
(2009), this can be improved by disjunctive arguments, separately tightening the bounds on the
continuous variable ri for each possible value of the binary variable (zh and yih). This yields a
remarkable reduction in both LP-gap and computing times, as shown in Amaldi et al. (2009) for
AMEP-C.

Besides applying bound tightening, in this paper we also consider model reduction by prepro-
cessing techniques. A first simple reduction consists in merging “duplicated users”, i.e., users for
which e(S, i) = e(S,h) for all S ⊆ J , which happens if i and h are always covered by the same set of
APs (Ji = Jh) and have the same set of direct interferers (Di =Dh). A more substantial reduction
is obtained by merging variables yih. Given two pairs of users a, b and c, d, it is easy to see that if
Ja ∩ Jb = Jc ∩ Jd, then yab = ycd. We can then replace the variables yih with a unique variable yT
for all pairs i, h for which Ji ∩ Jh = T . The compact formulation resulting from bound tightening
and model reduction will be used in Section 4.4 for comparison purposes.
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2.2. Complexity issues

We now briefly discuss and extend to our other problems some complexity results for AMEP-C
presented in Amaldi et al. (2009). By adapting the NP-hardness proof for AMEP-C, it can be
easily verified that AMEP, MEP-C, and MEP are all NP-hard in the general case. However,
WLANs are typically deployed in 2-dimensional (2D) environments, where users and AP locations
are points in the plane. In this section we consider for simplicity uniform 2D Euclidean instances,
where coverage and direct interference areas are disks with uniform radius ρ, as depicted in Figure 1.
Complexity results for the uniform 2D Euclidean case, which is an ideal case under isotropic radio
propagation, can be easily extended to the variable-radius version (APs and TPs having arbitrary
coverage and interference ranges) by considering the largest disk radius, and then to the version
with arbitrary coverage and interference patterns (the real case of anisotropic radio propagation)
by embedding each propagation pattern into a disk.

Since positioning too many APs in a bounded region would result in unacceptable interfer-
ence levels, we restrict the complexity study to uniform 2D instances in which only covers with
bounded AP density are considered, that is, covers for which the number of selected CSs inside
any circular region of diameter λρ is bounded by a constant C(λ), with λ > 0. Clearly, negative
complexity results for such instances also hold for the general case. As shown by Amaldi et al.
(2009), AMEP-C restricted to uniform 2D Euclidean instances satisfying this property remains
NP-hard (see Bosio 2006 for details), but it admits a polynomial-time approximation scheme
(PTAS). The NP-hardness proof directly applies to MEP-C, although there seems to be no easy
way to extend it to AMEP and MEP, where no explicit coverage is required. On the other hand,
the PTAS can be applied to any covering problem whose objective function can be expressed as
f(S) =

∑
i∈I fi(S ∩B(i,2ρ)), where each contribution fi is a nonnegative function of the selected

disks having center inside a ball B(i,2ρ)⊆R2 centered at i and with radius 2ρ. The PTAS directly
holds for all our problems, relaxing the coverage requirement whenever appropriate (fi(S) = 0 if
i /∈ I(S)). For AMEP, however, we provide a more efficient PTAS in Appendix A.1.

WLAN design is also of interest in 1D environments, such as a railway platform, where users can
be represented by points on the line and APs by segments. The polynomial-time algorithm given
in Amaldi et al. (2009) for the 1D Euclidean version of AMEP-C can be easily extended to solve
the 1D Euclidean version of problems AMEP, MEP-C, and MEP in polynomial time.

3. An enumerative ILP formulation

In this section we present a tight enumerative ILP formulation of our WLAN problems derived by
Dantzig–Wolfe reformulation. As this approach is applicable to a larger class of covering problems,
we derive it for the general case, using the set covering notation of groundset elements and covering
subsets (TPs and CSs in WLAN terminology), and then apply it to our WLAN problems.

Consider a Groundset-Separable Set Covering Problem (GSSCP), that is an SCP whose objective
function can be expressed as f(S) =

∑
i∈I fi(S ∩Ki), where the contribution of the i-th groundset

element is a function fi : {0,1}|Ki| → R of its local solution S ∩Ki. The sets Ki ⊆ J are given
in the input, and depend on the problem structure. For example, in MEP-C we have fi(S) =
1/|Di ∪ I(S ∩Ji)|, and hence Ki = Ji.

By considering the subset selection variables xj for all j ∈ J (xj = 1 if j ∈ S and 0 otherwise),
and denoting by {eij : j ∈Ki} the basis of {0,1}|Ki| for each i ∈ I, the incidence vector of a local
solution S ∩Ki can be written as

∑
j∈Ki

xje
i
j. Problem GSSCP can then be formulated as follows:

max
∑
i∈I

fi

(∑
j∈Ki

xje
i
j

)
(GSSCP) s.t.

∑
j∈Ji

xj > 1 i∈ I
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xj ∈ {0,1} j ∈ J,

By introducing binary variables χi ∈ {0,1}|Ki| to represent the local solutions we can write the
equivalent formulation

max
∑
i∈I

fi(χi)

(GSSCP′) s.t.
∑
j∈Ji

χij > 1 i∈ I (10)

χij = xj i∈ I, j ∈Ki (11)

χij ∈ {0,1} i∈ I, j ∈Ki

xj ∈ {0,1} j ∈ J.

Let us assume without loss of generality that Ji ⊆Ki (missing elements can simply be included).
Without constraints (11), which ensure consistency among the local-solution variables χ and the
cover variables x, GSSCP′ would decompose into |I| independent nonlinear subproblems, one for
each i∈ I, having as solution space the set Xi = {χi ∈ {0,1}|Ki| :

∑
j∈Ji

χij > 1} of all feasible local
solution vectors of i. To exploit this structure, we apply Dantzig–Wolfe reformulation for integer
programming (see e.g. Wolsey 1998) to each set Xi.

By denoting Pi = {B ⊆Ki : |B ∩ Ji|> 1} the collection of all local solutions of i, we can write
Xi = {χi ∈ {0,1}|Ki| : χi = χB

i ,B ∈ Pi}, where χB
i =

∑
j∈B e

i
j is the incidence vector of a local

solution B ∈ Pi. By introducing a binary variable wiB for every i ∈ I and B ∈ Pi (wiB = 1 if B is
the local solution is selected for i, and 0 otherwise), we obtain the Dantzig–Wolfe reformulation

Xi =
{
χi ∈ {0,1}|Ki| : χi =

∑
B∈Pi

χB
i wiB,

∑
B∈Pi

wiB = 1, wiB ∈ {0,1},B ∈Pi

}
. (12)

The reformulation leads to the equations

χij =
∑
B∈Pi

χB
ijwiB =

∑
B∈Pi : j∈B

wiB (13)

fi(χi) = fi

( ∑
B∈Pi

χB
i wiB

)
=
∑
B∈Pi

fi(χ
B
i )wiB =

∑
B∈Pi

diBwiB, (14)

where diB is the coefficient resulting from the evaluation of fi(χ
B
i ). The second equality in (14)

holds because the w variables are binary and their sum equals one. From (13) and (14) we finally
obtain the following enumerative ILP reformulation of GSSCP:

max
∑
i∈I

∑
B∈Pi

diBwiB (15)

(GSSCP-E) s.t.
∑
B∈Pi

wiB = 1 i∈ I (16)∑
B∈Pi : j∈B

wiB = xj i∈ I, j ∈Ki (17)

wiB ∈ {0,1} i∈ I,B ∈Pi

xj ∈ {0,1} j ∈ J.

The integrality of the w variables clearly implies the integrality of the x ones. This implication
also holds in the opposite direction. Assume indeed that for some feasible solution (x,w) with
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x binary there are two (or more) positive variables wiB1
,wiB2

for some i ∈ I. Then there must
exist without loss of generality a j ∈ B1 \ B2, and as xj > wiB1

> 0 one gets the contradiction
1 = xj =

∑
B∈Pi : j∈BwiB <

∑
B∈Pi : j∈BwiB +wiB2

6
∑

B∈Pi
wiB = 1.

GSSCP-E can be extended to problems where coverage is not required in two possible ways. The
first approach consists in including, for each i∈ I, a variable wi∅ representing a situation in which
i is not covered (this amounts to including the empty set into Pi). However, as any solution in
which wi∅ = 1 but xj = 1 for any j ∈Ki \Ji would violate constraints (17), we also have to relax (17)
into

∑
B∈Pi : j∈BwiB 6 xj and to include the additional constraint

∑
B∈Pi : j /∈BwiB 6 1−xj for every

groundset element i ∈ I and every j ∈Ki \ Ji. The second approach consists in introducing one
variable wiB for each “local solution” B ⊆Ki \ Ji where i is not covered, which is equivalent to
removing the condition |B ∩Ji|> 1 from the definition of Pi.

3.1. Application to WLAN design

In the nonlinear covering problems MEP-C and AMEP-C we have fi(S) = 1/|Di ∪ I(S ∩Ji)| and
fi(S) = 1/|I(S∩Ji)| respectively, and hence Ki = Ji in both problems. In this case, we can refer to a
local solution for i as a local cover, since it contains exactly the selected APs covering i (see Figure 4
for examples of local cover). This property also holds for AMEP, where fi(S) = 1/|I(S ∩ Ji)| if
i∈ I(S) and 0 otherwise. Note that for AMEP, and more in general for problems having no coverage
requirement and satisfying Ki = Ji, the two aforementioned extensions of GSSCP-E coincide.

Figure 4 Example of local covers.

i

(a)

i

(b)

i

(c)

Note. (a) TPs and CSs around a test point i. Local covers with (b) one and (c) two installed APs, whose coverage
area is shown with a circle. TPs interfering with i in AMEP are indicated in black.

For MEP, in general Ki 6= Ji. As direct interference only occurs between covered users, to
evaluate the objective function contribution of a user i in MEP we need to know not only the
selected local cover B ⊆ Ji, but also which direct interferers in Di \ I(B) are covered. Hence direct
interference is a consequence of which APs in Ki = Ji∪h∈Di

Jh are installed. Due to the size of Ki,
neither of the two extensions of GSSCP-E is viable. However, in the local solutions of MEP we are
actually not interested in which APs cover the direct interferers in Di \I(B), but simply in whether
they are covered. In Section 4.3 we provide an adaptation of GSSCP-E based on this observation
that allows to solve MEP to optimality for instances of reasonable size.

3.2. Valid cuts

In this section we introduce a class of cuts for GSSCP-E that enforce the global consistency of the
local solutions. These cuts are valid regardless of whether or not complete coverage is required.
Given two groundset elements i, h∈ I and a nonempty collection T ⊆ Ji∩Jh of the subsets covering
both i and h, the constraint ∑

B∈Pi : B∩T 6=∅

wiB =
∑

B∈Ph : B∩T 6=∅

whB, (18)
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states that if the local solution chosen for i includes covering subsets from T , then the local solution
chosen for h must do the same. For |T |= 1 these constraints are clearly equivalent to (17), and thus
only subsets T ⊆ Ji ∩ Jh with |T |> 2 should be considered. In particular, the constraint obtained
for T = Ji∩Jh deserves some remarks. Such a constraint states that if the local solution chosen for
i covers h, then the local solution chosen for h must cover i, and can be written as∑

B∈Pi : h∈I(B)

wiB =
∑

B∈Ph : i∈I(B)

whB. (19)

Note that, in the hyperbolic formulations presented in Section 2, this corresponds to the symmetry
yih = yhi of the indirect interference relation. Constraints (19) are at most |I|(|I| − 1)/2, and as
shown in Table 2 (Section 3.3) they significantly strengthen the continuous relaxation of GSSCP-E.
In the remainder we denote by GSSCP-T the tightened formulation obtained by including (19) in
GSSCP-E for every pair i∈ I,h∈Ni with i < h.

Other similar cuts can be derived, all based on the idea that local solutions for i and h have to
be coherent on Ji ∩ Jh or on Ki ∩Kh. Note that, in a column generation context, all these cuts
have an impact on the objective function of the pricing problem, as they are defined in terms of
the w-variables (see Section 4.2). Since wiB = Πj∈BxjΠj∈Ki\B(1−xj), by performing the necessary
products and linearizations it can be verified that all these cuts, and in fact also constraints (17),
can be obtained by the Reformulation-Linearization Technique (see e.g. Sherali and Adams 1998).

3.3. Preprocessing

The size of GSSCP-E can be reduced by applying some simple dominance rules. Consider two
elements i, h ∈ I for which i dominates h (Ki ⊇Kh). If the local solution for i is B ∈ Pi, the one
for h must be B′ =B∩Kh. We can then remove h, increasing each objective function coefficient diB
by dhB′ . If coverage of h is required, all local solutions B ∈ Pi for which B′ = ∅ must be removed.
At the end of the procedure, each non-dominated user i represents a set ∆i of dominated users.
Note that the sets ∆i are not uniquely defined, as they depend on the order in which the users are
considered. For simplicity of notation, we assume in the remainder that i∈∆i.

If we apply the above reduction to GSSCP-E and then introduce cuts (19), that is, for all pairs
of non-dominated users, we obtain a formulation that is weaker than GSSCP-T. A stronger formu-
lation is obtained by applying the reduction directly to GSSCP-T, lifting the cuts corresponding to
dominated users (which have been removed) to the local solution variables of their dominants. This
is in fact equivalent to applying the preprocessing to GSSCP-E, followed by introducing cuts (18)
for every pair of non-dominated users i∈ I,h∈Ni, i < h and for every subset T ∈ Tih, where Tih is
the collection of all subsets T ⊆ Ji ∩Jh such that T = Ja ∩Jb for some a∈∆i and b∈∆h.

A significant further reduction can be obtained by considering the specific structure of our WLAN
planning problems, in which there always exists an optimal solution S that is minimal with respect
to inclusion (i.e., I(S′)⊂ I(S) for all S′ ⊂ S). Non-minimal local solutions can then be removed, as
they cannot be part of a global minimal solution. Note that, while the previous reductions are valid
in general, this reduction can be applied only if the above inclusion-minimality property holds.

3.4. Impact of valid cuts and preprocessing

In this section we present some results showing the impact of valid cuts and preprocessing on
the enumerative formulation GSSCP-E. The computational experiments reported here, as well
as throughout the paper, are performed on a test set of 2D instances generated with two signal
propagation models, depicted in Figure 5. The first model is ideal isotropic propagation and gives
rise to uniform 2D Euclidean instances (cf. Section 2.2), that can be easily reproduced and tested.
The second model provides more realistic instances, corresponding to a situation of anisotropic
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propagation, and is obtained by “slicing” the disk into 12 sectors, each independently down-scaled
by a random coefficient. For each propagation model we generated 40 instances, identified by a
string “CSs-TPs-density/ID”, with CSs ∈ {50,100}, TPs ∈ {300,400}, density ∈ {L,H} (approx.
5% and 10% respectively), and ID ∈ {1, . . . ,5}. The instance density, which is the average of the
ratio |Ji|/|J |, was controlled by changing the disk radius. More details on instance generation and
on the above test set are given in Appendix A.3.

Figure 5 Signal propagation models used in the instance generator.

(a) (b)

Note. (a) isotropic propagation. (b) anisotropic propagation.

Table 2 reports results for the solution of AMEP-C on a selection of instances with the basic enu-
merative formulation GSSCP-E, with formulation GSSCP-T, which coincides with GSSCP-E plus
cuts (19), and with the formulation obtained after preprocessing, which we denote by GSSCP-P.
For each formulation, we report the total number of variables (“Cols”) and constraints (“Rows”),
the percentage gap between the LP optimum and the IP optimum (“lp-gap”), and the time required
to solve the LP relaxation with Cplex 8.1 (“time”) on an Athlon XP 2600+ with 512MB RAM,
with a time limit of 1 hour. A sign “∗” indicates that the gap is zero. The table clearly shows the
effectiveness of cuts (19) on the LP gap (formulation GSSCP-T) and the dramatic reduction in
size, and consequently in solution time, given by the preprocessing rules (formulation GSSCP-P).

Table 2 Comparison among the different enumerative formulations.
GSSCP-E GSSCP-T GSSCP-P

instance max Cols Rows lp-gap time Cols Rows lp-gap time Cols Rows lp-gap time

|Ji| (%) (sec) (%) (sec) (%) (sec)

AMEP-C, isotropic instances

100-300-L/1 12 41,880 1,858 11.2 3.43 41,880 6,712 ∗ 4.52 6,932 1,908 ∗ 0.59

100-300-L/2 13 40,692 1,769 8.3 3.19 40,692 6,586 ∗ 3.31 7,347 2,101 ∗ 0.47

100-300-L/3 12 54,920 1,954 11.7 3.89 54,920 7,489 ∗ 21.87 7,941 2,116 ∗ 0.76

100-300-L/4 10 24,820 1,800 11.8 2.19 24,820 6,226 0.4 2.72 4,561 1,739 0.4 0.28

100-300-L/5 10 24,772 1,801 8.9 2.12 24,772 6,706 ∗ 1.91 4,374 2,016 ∗ 0.24

100-300-H/1 19 7,502,000 3,418 − 7,502,000 14,595 − 153,404 5,981 ∗ 80.45

100-300-H/2 18 1,987,528 3,364 14.6 1027.54 1,987,528 14,890 − 99,580 5,487 ∗ 30.16

100-300-H/3 24 63,021,492 3,380 − 63,021,492 15,547 − 129,641 5,122 ∗ 61.84

100-300-H/4 23 29,695,064 3,524 − 29,695,064 15,450 − 160,558 5,432 ∗ 212.48

100-300-H/5 21 12,933,680 3,566 − 12,933,680 15,727 − 272,358 7,196 ∗ 296.15

∗ : gap equal to zero lp-gap : gap between the integer optimum

− : time/memory limit exceeded and the LP optimum

Comparison among the basic enumerative formulation GSSCP-E, the formulation GSSCP-T obtained by intro-
ducing cuts (19), and the formulation GSSCP-P obtained by performing the preprocessing reduction.

An important remark concerns the time required to generate the formulations, which is not
reported in Table 2. The time required to generate GSSCP-T and GSSCP-E is roughly the same,
and depending on the formulation size it can be very high (e.g., 3.7 hours for instance 100-300-H/2).
Generating GSSCP-T with a straightforward implementation of the preprocessing reductions would
clearly require even more time, as one would need to first generate GSSCP-T and then apply the
reduction rules. However, by performing a priori user aggregation and exploiting local solution
minimality within the generation scheme (see Section 4.1 for details), GSSCP-P can be generated
in significantly less time (24 seconds for the same instance 100-300-H/2).
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4. Solution approaches

Although GSSCP-P can be directly solved for small-to-medium-size WLAN instances, the worst-
case exponential number of variables (the overall number of local solutions) makes large-size
instances out of reach. A standard technique to deal with such large formulations is column genera-
tion. Column generation consists in solving alternately the LP relaxation of a restricted formulation
(typically referred to as Restricted Master Linear Problem), in which only some variables are
present, and a pricing problem, searching for a positive reduced cost variable to be added to the
restricted formulation. If no such variable exists, the restricted formulation and the original one
have the same LP optimum, though not necessarily the same integer optimum.

Unfortunately, the pricing problem for GSSCP-P turns out to be too hard to solve to allow for a
standard column generation approach, in which the pricing problem has to be solved many times.
Our approach to quickly find near-optimal solutions consists in solving a polynomial-size restricted
formulation, where an appropriate selection of local solutions Qi ⊆Pi is considered. Upper bounds
on the optimum of GSSCP-P are then obtained with a single iteration of column generation.

4.1. Restricted formulation

Let Pi be the collection of all local solutions for TP i ∈ I in GSSCP-P, and for any subcollection
Qi ⊆Pi let θ(Qi) = minB∈Pi\Qi

|B| be the minimum cardinality of an excluded local solution, with
θ(Pi) =∞. Given two parameters d, t ∈ N, we define GSSCP-P(d, t) as the restricted version of
GSSCP-P having local solution collections Qi ⊆Pi defined as follows. In a first phase, each set Qi is
initialized by including all the local solutions B ∈Pi with |B|6 d. If their overall number is larger
than t the procedure is stopped, otherwise in a second phase a TP i with smallest Qi over all TPs
for which Qi ⊂Pi is selected, and a few (see below) local solutions B ∈ Pi \Qi with |B|= θ(Qi) are
generated and included into Qi. This is repeated until the limit t is reached or until Qi = Pi for
all i ∈ I. In the latter case we say that the formulation GSSCP-P(d, t) is complete, as it coincides
with GSSCP-P.

This procedure can be efficiently implemented by exploiting local solution minimality within the
generation scheme. For each TP i we maintain a list Li of minimal local solutions that have to be
expanded successively. The list is initialized by Li = (∅). When a local solution has to be added to
Qi in any phase of the above procedure, we remove the local solution B at the head of the list and
generate a new local solution Bj =B ∪{j} for each AP j ∈Ki such that j < k for every k ∈B (so
as to avoid duplicates). All the minimal local solutions generated this way are added both to Pi

and to the tail of Li. If no minimal local solution is generated in considering B, a new element is
taken from the head of Li. If at some point Li becomes empty, then Qi =Pi.

If there exists an optimal cover S for GSSCP such that |S∩Ki|< θ(Qi) for all TPs i∈ I, then S
is feasible and optimal also for GSSCP-P(d, t). Otherwise, the solution provided by GSSCP-P(d, t)
is likely to be near optimal for our WLAN problems, as their objective functions penalize coverage
overlaps. Note that, if the parameters d, t are too small, GSSCP-P(d, t) can be infeasible.

4.2. The Pricing problem

Let π= {πi ∈R, i∈ I}, γ = {γij, i∈ I, j ∈Ki}, and λ= {λT
ih ∈R, i∈ I,h∈Ni, i < h,T ∈ Tih} be the

dual variables associated respectively with constraints (16), (17) and (18) of GSSCP-P, as defined
in Section 3.4. The pricing problem for GSSCP-P decomposes into |I| problems, one for each i∈ I.
Introducing variables yTih (yTih = 1 if i and h are both covered by some AP j ∈ T , and 0 otherwise),
the pricing problem GSSCP-PPi for a given TP i reads

ξi(π,γ,λ) = max
∑
h∈∆i

fh

(∑
j∈Jh

χijej

)
−
∑
j∈Ki

γijχij−
∑
h∈Ni

∑
T∈Tih

(λT
hi−λT

ih)yT
ih−πi(20)
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(GSSCP-PPi(π,γ,λ)) s.t.
∑
j∈Jh

χij > 1 h∈∆i (21)

yT
ih > χij h∈Ni, T ∈ Tih, j ∈ T (22)

yT
ih 6

∑
j∈T

χij h∈Ni, T ∈ Tih (23)

χij ∈ {0,1} j ∈Ki

yT
ih ∈ {0,1} h∈Ni, T ∈ Tih,

where λT
ih = 0 if i> h. Local solution minimality can be enforced with a straightforward modifica-

tion, which is omitted for the sake of simplicity. Let (π∗,γ∗,λ∗) be an optimal dual solution of the
LP relaxation of the restricted formulation GSSCP-P(d, t), with objective function value z∗. It can
be verified (see e.g. Lübbecke and Desrosiers 2005) that z∗+

∑
i∈I ξi(π

∗,γ∗,λ∗) is an upper bound
on the LP optimum of GSSCP-P, and hence on the integer optimum of GSSCP. Clearly, we need
to solve GSSCP-PPi only for users for which Qi 6=Pi.

As proved in Appendix A.2, GSSCP-PPi is NP-hard even when ∆i = ∅, which also implies that
the pricing problem for GSSCP-T is NP-hard as well. Although it inherits the nonlinearity of
GSSCP, problem GSSCP-PPi is smaller and hence easier to solve, as ∆i typically contains few
elements. As is turns out, solving GSSCP-PPi to integer optimality with the MILP reformulation
described in Section 2.1 becomes practicable, although not efficient enough to allow for a standard
column generation approach, in which pricing has to be routinely performed.

4.3. Two-level enumerative ILP formulation and heuristics for MEP

As mentioned in Section 3, in MEP the objective function contribution of a user i depends not
only on its local cover (the subset S ∩ Ji of installed APs that cover the user), but also on the
local cover of its direct interferers, and we have Ki = Ji ∪h∈Di

Jh. Due to the size of Ki, even
the polynomial-size restricted formulation GSSCP-P(d, t) becomes too large to be directly solved.
Therefore, we propose a two-level enumerative formulation, where instead of enumerating local
solutions B ⊆Ki we enumerate local covers B ⊆ Ji and associated subsets of direct interferers.

Given a local cover B ⊆ Ji, let Ui(B) =Di \ I(B) denote the set of direct interferers that are not
covered by B. Let Pi = {B ⊆ Ji : |B|> 1} denote here the set of all possible local covers for i, and
Ui(B) = {U ⊆ Ui(B)} be the collection of all subsets of Ui(B). By introducing a binary variable
wiBU for every B ∈Pi and U ∈ Ui(B) (wiBU = 1 if B is the local cover selected for i and U are the
active direct interferers not covered by B, and 0 otherwise), MEP can be formulated as follows:

max
∑
i∈I

∑
B∈Pi

∑
U∈Ui(B)

fi(B,U)wiBU

(MEP-E) s.t.
∑
B∈Pi

∑
U∈Ui(B)

wiBU +wi∅ = 1 i∈ I (24)∑
B∈Pi:j∈B

∑
U∈Ui(B)

wiBU = xj i∈ I, j ∈ Ji (25)∑
B∈Pi:h/∈I(B)

∑
U∈Ui(B):h/∈U

wiBU 6wh∅ i∈ I,h∈Di (26)

wiBU ∈ {0,1} i∈ I,B ∈Pi,U ∈ Ui(B)

wi∅ ∈ {0,1} i∈ I
xj ∈ {0,1} j ∈ J.

Constraints (24) and (25) have the same meaning as (16) and (17) respectively. Constraints (26)
state that if a direct interferer h ∈Di is covered (wh∅ = 0), then it is not possible to select a local
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cover B ∈Pi and a set U ∈ Ui(B) for which h is neither covered by B nor included in U . Note that
the inequality relation accounts for the case when none of i and h is covered.

The valid cuts (19) can be easily adapted to MEP-E and extended to consider direct interferers:∑
B∈Pi:h∈I(B)

∑
U∈Ui(B)

wiBU =
∑

B∈Ph:i∈I(B)

∑
U∈Uh(B)

whBU i∈ I,h∈Ni (27)∑
B∈Pi

∑
U∈Ui(B):h∈U

wiBU =
∑
B∈Ph

∑
U∈Uh(B):i∈U

whBU i∈ I,h∈Di. (28)

Since computational experiments show that constraints (28) increase the formulation size without
providing noticeable benefits, only constraints (27) are used.

As with GSSCP-P(d, t), we consider a restricted polynomial-size formulation MEP-E(d, t). First,
note that not all the subsets in Ui(B) need to be considered. Let Hi(B) =∪h∈Ui(B)Jh \Ji be the set
of APs that cover some direct interferer in Ui(B) but not i itself. Knowing which of these APs are
installed allows to determine which direct interferers in Ui(B) are covered. Each subset E ⊆Hi(B)
of APs induces (not uniquely) a subset U ⊆Ui(B) of interferers, but typically many U ⊆Ui(B) do
not correspond to any E ⊆Hi(B). Moreover, we need to consider only subsets E for which E∪B is
minimal. The generation procedure for MEP-E(d, t) exploits minimality and increasing cardinality
in a two-level enumeration scheme, enumerating on the first level the local covers B ⊆ Ji and
on the second level the corresponding extensions E ⊆Hi(B), which are then mapped (removing
duplicates) into interfering sets. Without entering into the details, all pairs (B,E) for which B∪E
is minimal and |B∪E|6 d are considered, and (if room is available) additional pairs are generated
by nondecreasing cardinality until the overall limit t is reached.

As shown in Section 4.4, MEP-E(d, t) allows to tackle small-size instances, but is not viable
for large ones. Therefore, we now discuss which MEP variants provide optimal solutions that
are good heuristic solutions for MEP. The optimum of MEP-C is clearly a lower bound to the
optimum of MEP. Another lower bound is obtained by evaluating optimal solutions of AMEP
with the objective function of MEP. The same holds also for AMEP-C, but the resulting bound
is dominated by the optimum of MEP-C. Consider then the following problem:

max
∑
i∈I

zi
1 + |Di \Gi|+

∑
h∈Di∩Gi

zh +
∑

h∈Ni\Di

yih
(29)

(MEP-G) s.t. (3)− (8),

where Gi = {h ∈ I : Jh ⊆ Ji} is the set of TPs covered only by the APs in Ji. It is easy to see
that in MEP-G we have Ki = Ji, as in (29) the TPs in Di \ Gi are considered as fixed direct
interferers, while knowing the selected local cover B ⊆ Ji allows to decide which TPs in Di∩Gi are
active. It is also easy to see that MEP-G dominates MEP-C. Indeed, MEP-G is a relaxation of
MEP-C, as the latter is obtained by simply setting zi = 1, and when evaluated with the objective
function of MEP the value of an optimal solution of MEP-G may increase, while for MEP-C it
does not change. As no theoretical dominance relation exists between AMEP and MEP-G, both
their optimal solutions will be considered as heuristic solutions for MEP.

4.4. Computational results

In this section we present computational results for the approaches discussed in the previous
sections on the WLAN design instances presented in Section 3.4. In Table 3 we provide results for
problems AMEP, AMEP-C, and MEP-C. Results for MEP are separately reported in Table 4.
All the formulations are solved with Cplex 8.1 on an Athlon XP 2600+ with 512MB RAM.
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Table 3 Computational results for AMEP, AMEP-C, and MEP-C on geometric 2D instances.
MILP GSSCP-P(d, t)

instance sol gap time sol gap time cov

o.f. (%) (sec) o.f. (%) (sec) (%)

AMEP, isotropic instances

100-300-L/1 19.237 6.17 − 19.563 ∗× 0.8 95.0

100-300-L/2 20.664 7.97 − 20.969 (0.26)× 1.9 95.7

100-300-L/3 19.115 8.56 − 19.457 ∗× 1.0 92.3

100-300-L/4 19.332 6.84 − 19.411 (0.37)× 21.8 92.0

100-300-L/5 21.628 5.76 − 21.750 ∗× 0.4 93.7

100-400-L/1 17.498 8.63 − 17.969 ∗× 3.7 92.5

100-400-L/2 17.577 9.06 − 18.129 (0.20)× 8.8 93.2

100-400-L/3 18.091 8.18 − 18.209 (0.08)× 7.3 92.0

100-400-L/4 17.401 8.93 − 18.106 ∗× 4.2 94.5

100-400-L/5 18.922 6.28 − 19.001 ∗× 1.9 96.5

100-300-H/1 8.991 25.3 − 10.696 ∗× 101.4 91.0

100-300-H/2 8.029 36.1 − 11.328 ∗× 19.4 95.3

100-300-H/3 6.423 47.1 − 10.893 (0.13)× 159.4 95.0

100-300-H/4 7.939 30.5 − 10.591 ∗× 32.4 92.3

100-300-H/5 8.572 29.6 − 10.846 ∗× 220.8 89.0

100-400-H/1 8.174 32.2 − 10.752 ∗× 86.2 96.0

100-400-H/2 8.899 26.2 − 11.067 ∗× 46.2 92.8

100-400-H/3 4.000 64.7 − 10.005 0.13 1431.0 88.8

100-400-H/4 8.610 25.1 − 10.527 ∗× 128.2 94.0

100-400-H/5 9.676 23.1 − 11.513 ∗× 58.8 94.8

avg 20.80 0.01 93.3

std 15.76 0.03 2.1

AMEP-C, isotropic instances

100-300-L/1 18.099 0.42 − 18.099 ∗× 0.7

100-300-L/2 20.499 ∗ 1505.2 20.499 ∗× 0.6

100-300-L/3 18.143 3.48 − 18.143 ∗× 0.9

100-300-L/4 18.487 ∗ 1952.1 18.487 (0.38)× 4.5

100-300-L/5 20.708 ∗ 1461.0 20.708 ∗× 0.3

100-400-L/1 16.076 6.56 − 16.368 ∗× 4.2

100-400-L/2 16.257 7.04 − 16.422 ∗× 2.7

100-400-L/3 17.484 2.45 − 17.502 ∗× 1.0

100-400-L/4 15.515 10.0 − 16.217 ∗× 4.6

100-400-L/5 18.029 5.23 − 18.255 ∗× 1.6

100-300-H/1 7.702 33.1 − 10.092 ∗× 86.3

100-300-H/2 10.358 14.5 − 10.696 ∗× 34.2

100-300-H/3 9.676 17.7 − 10.476 ∗× 66.7

100-300-H/4 8.685 21.2 − 9.758 ∗× 219.4

100-300-H/5 8.323 28.9 − 10.211 ∗× 308.8

100-400-H/1 8.163 29.0 − 9.679 (0.14)× 470.4

100-400-H/2 8.317 27.8 − 10.341 ∗× 68.6

100-400-H/3 − 9.018 0.12 1326.4

100-400-H/4 8.723 20.0 − 9.793 ∗× 197.6

100-400-H/5 10.040 16.5 − 10.424 (0.06)× 475.8

avg 12.83 0.01

std 10.99 0.03

MEP-C, isotropic instances

100-300-L/1 14.748 ∗ 639.3 14.748 ∗× 0.6

100-300-L/2 15.704 ∗ 1680.7 15.704 ∗× 1.3

100-300-L/3 14.272 1.45 − 14.337 ∗× 0.8

100-300-L/4 15.205 ∗ 134.6 15.205 ∗× 0.2

100-300-L/5 15.303 ∗ 422.0 15.303 ∗× 0.3

100-400-L/1 13.023 1.71 − 13.087 ∗× 3.0

100-400-L/2 13.137 3.21 − 13.226 ∗× 1.8

100-400-L/3 14.187 0.76 − 14.223 ∗× 0.8

100-400-L/4 12.643 4.47 − 12.758 ∗× 5.6

100-400-L/5 14.381 2.08 − 14.438 ∗× 1.5

100-300-H/1 7.402 11.4 − 7.921 ∗× 35.2

100-300-H/2 7.742 7.95 − 7.973 ∗× 26.9

100-300-H/3 7.636 8.03 − 7.864 (0.14)× 161.1

100-300-H/4 7.535 10.1 − 7.803 ∗× 107.3

100-300-H/5 7.576 9.25 − 7.872 ∗× 89.6

100-400-H/1 6.922 16.5 − 7.662 ∗× 116.3

100-400-H/2 6.879 16.7 − 7.799 ∗× 37.0

100-400-H/3 6.517 19.0 − 7.393 ∗ 406.5

100-400-H/4 6.788 17.0 − 7.600 (0.07)× 568.9

100-400-H/5 7.584 12.5 − 8.073 ∗× 121.2

avg 7.10 0.00

std 6.45 0.00

MILP GSSCP-P(d, t)

instance sol gap time sol gap time cov

o.f. (%) (sec) o.f. (%) (sec) (%)

AMEP, anisotropic instances

100-300-L/1 19.614 5.44 − 19.729 (0.34)× 20.6 90.7

100-300-L/2 18.890 12.4 − 19.364 (0.85)× 239.6 93.7

100-300-L/3 18.587 8.33 − 19.026 ∗× 0.8 92.3

100-300-L/4 19.207 13.8 − 20.124 ∗× 3.5 90.3

100-300-L/5 18.035 12.6 − 18.815 (0.38)× 140.8 86.3

100-400-L/1 18.673 9.86 − 19.153 (0.03)× 13.5 90.8

100-400-L/2 18.942 10.4 − 19.652 ∗× 3.2 93.8

100-400-L/3 18.230 10.5 − 18.929 ∗× 4.5 90.0

100-400-L/4 16.938 13.1 − 17.796 ∗× 28.5 97.5

100-400-L/5 17.363 14.2 − 18.544 (0.05)× 92.6 93.0

100-300-H/1 6.743 43.9 − −
100-300-H/2 9.251 28.6 − 11.621 0.08 510.2 89.7

100-300-H/3 7.769 39.4 − 11.664 0.03 303.4 91.3

100-300-H/4 3.811 69.5 − 10.764 (0.12)× 473.9 93.7

100-300-H/5 4.710 63.1 − 10.958 ∗× 89.1 91.0

100-400-H/1 7.459 41.4 − 11.454 0.10 545.5 93.0

100-400-H/2 6.846 47.0 − −
100-400-H/3 − 10.690 0.86 1584.9 94.0

100-400-H/4 − 10.983 1.61 1976.6 91.8

100-400-H/5 5.000 61.2 − 11.259 0.46 1097.9 92.0

avg 28.03 0.18 91.9

std 20.96 0.41 2.3

AMEP-C, anisotropic instances

100-300-L/1 17.655 3.49 − 17.706 ∗× 1.6

100-300-L/2 18.166 6.57 − 18.312 (0.23)× 61.7

100-300-L/3 17.777 ∗ 2544.8 17.777 ∗× 0.4

100-300-L/4 18.647 4.04 − 18.710 (0.72)× 63.3

100-300-L/5 17.371 6.79 − 17.605 ∗× 3.4

100-400-L/1 16.980 9.65 − 17.163 ∗× 12.0

100-400-L/2 17.878 7.40 − 18.001 ∗× 3.4

100-400-L/3 16.687 6.73 − 17.012 ∗× 4.4

100-400-L/4 16.487 7.78 − 16.674 ∗× 14.9

100-400-L/5 16.251 10.5 − 16.676 (0.48)× 218.4

100-300-H/1 − −
100-300-H/2 − 10.621 0.10 2663.7

100-300-H/3 8.754 28.2 − 10.292 0.23 845.9

100-300-H/4 8.337 31.0 − 10.012 (0.47)× 1568.2

100-300-H/5 8.504 29.7 − 9.962 ∗× 384.1

100-400-H/1 − 10.305 0.36 1221.4

100-400-H/2 − 9.916 −
100-400-H/3 − −
100-400-H/4 − 9.792 0.68 1528.0

100-400-H/5 − −
avg 11.67 0.09

std 10.16 0.18

MEP-C, anisotropic instances

100-300-L/1 14.055 ∗ 1814.5 14.055 ∗× 1.3

100-300-L/2 13.424 2.49 − 13.465 (0.08)× 8.9

100-300-L/3 13.970 ∗ 196.8 13.970 ∗× 0.4

100-300-L/4 13.685 1.29 − 13.710 ∗× 4.2

100-300-L/5 13.689 0.98 − 13.689 ∗× 3.4

100-400-L/1 13.615 1.81 − 13.645 ∗× 5.1

100-400-L/2 14.298 1.92 − 14.326 ∗× 2.3

100-400-L/3 13.587 0.89 − 13.607 ∗× 3.8

100-400-L/4 13.133 2.73 − 13.204 ∗× 7.9

100-400-L/5 13.333 2.58 − 13.427 (0.21)× 48.6

100-300-H/1 7.376 11.2 − 7.742 0.10 856.5

100-300-H/2 − 7.987 0.01 360.8

100-300-H/3 6.956 16.5 − 7.855 ∗ 226.0

100-300-H/4 7.320 13.0 − 7.768 (0.03)× 599.1

100-300-H/5 7.564 8.49 − 7.732 ∗× 111.7

100-400-H/1 6.970 18.0 − 7.943 0.08 541.8

100-400-H/2 − 7.613 0.35 2178.1

100-400-H/3 − −
100-400-H/4 − 7.608 0.41 1288.1

100-400-H/5 6.629 22.0 − 7.757 0.10 837.4

avg 6.49 0.06

std 7.08 0.12

gap : gap between the best lower and upper bounds found

× : complete formulation, with nonzero LP gap in parenthesis

∗ : gap equal to zero

− : time limit exceeded
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Table 3 presents results for the largest instances obtained with the standard MILP linearization
described in Section 2.1, in which bound tightening and model reduction have been applied, and
the restricted Dantzig-Wolfe reformulation GSSCP-P(d, t), with d= 4 and t= 350000. Formulation
GSSCP-P(d, t) is solved first to LP optimality (to obtain a dual optimal solution) and then to
IP optimality. Next, the pricing problem is solved, and the upper bound is evaluated. For each
formulation we report in the column “gap” the percentage gap between the best lower and upper
bounds found within the time limit of 1 hour, and in the column “time” the overall solution time
(see Table A.2 in Appendix A.3 for the time required by each step). We indicate with a sign “×”
that GSSCP-P(d, t) is complete (equivalent to GSSCP-P). In this case the actual gap provided by
the algorithm is zero, and we report in parenthesis the LP gap (if larger than zero). Column “cov”
reports the percentage of TPs covered in an optimal solution of AMEP. Table entries “avg” and
“std” show the average value and standard deviation of the gap and, for MEP-U, of the coverage
percentage.

Table 3 shows a remarkable improvement of GSSCP-P(d, t) over the MILP formulation. Optimal-
ity can be proved with the MILP formulation only for some of the smallest instances for problems
MEP-C and AMEP-C, and for no instance for AMEP. Whenever the MILP formulation can be
solved to integer optimality within the time limit, GSSCP-P(d, t) turns out to be complete, and is
solved in a few seconds. Many instances for which the MILP formulation cannot be solved to opti-
mality can be solved with GSSCP-P(d, t). For 93 instances the formulation is complete (and hence
optimal), and for two more instances the percentage gap is zero. When none of the two formulation
is solved to optimality, the percentage gaps obtained with GSSCP-P(d, t) are by far smaller than
those provided by the MILP formulation. This is even more evident for problem AMEP, for which
the MILP formulation is much less effective due to the additional variables and constraints required
to take into account user coverage.

The applicability of our approach to WLAN design is clearly demonstrated by the size of
instances for which GSSCP-P(d, t) provides optimal or near-optimal solutions. Its limits can be
seen on the largest anisotropic instance class 100-400-H, where for many instances the formulation
GSSCP-P(d, t) is too large and Cplex stops due to an excessive memory usage. It is worth noting
that for these instances most of the computing time is spent on solving the LP relaxation (see
Table A.2 in Appendix A.3). The LP relaxation is solved by dual simplex, with the default solver
parameter settings. We have also tried the other LP solvers in Cplex (primal simplex and barrier),
but for these instances dual simplex turns out to be the best option.

Table 4 reports computational results for problem MEP, comparing the standard MILP lin-
earization (see Section 2.1), the enumerative formulation MEP-E(d, t) with d= 4 and t= 200000,
and the optimal solutions of AMEP and MEP-G. The latter are re-evaluated with the objective
function of MEP. As MEP turns out to be much harder to solve than the other WLAN problems,
the results are reported only for isotropic instances with 50 APs. For each formulation we report
the objective function value of the best solution found within the time limit of 1 hour and the
computing time. A sign “×” indicates that MEP-E(d, t) is complete (equivalent to MEP-E).
MEP-E(d, t) clearly outperforms the MILP linearization both in terms of solution quality and

computing time. Only one instance can be solved within the time limit with the MILP formulation,
and the lower bound provided for the other becomes weak as instance density or size increases.
On the contrary, MEP-E(d, t) can be solved to integer optimality for all but two instances:
050-300-H/5, due to the time limit, and 050-400-H/5, because the formulation is not complete.

As for the heuristic solutions, there is no empirical dominance relation between AMEP and
MEP-G when they are used to approximate MEP. Each of them provides better solutions than
the other for roughly half of the instances. The best solution among AMEP and MEP-G provides
an average gap of 1.75% with respect to the best known solution, with standard deviation 1.10. The
time needed to obtain these results, however, is far lower than that required to solve MEP-E(d, t),
and these approaches remain the only choice for larger instances.
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Table 4 Computational results for MEP on geometric 2D
instances with 50 APs.

MILP MEP-E AMEP MEP-G

instance sol time sol time MEP time MEP time

o.f. (sec) o.f. (sec) o.f. (sec) o.f. (sec)

MEP, isotropic instances

050-300-L/1 14.245 2028.0 14.245× 4.0 14.047 0.0 14.061† 0.1

050-300-L/2 12.489 − 12.575× 22.7 12.297† 0.1 12.249 0.1

050-300-L/3 14.273 − 14.273× 48.9 14.150† 0.0 13.938 0.0

050-300-L/4 14.786 − 14.786× 2.5 14.537† 0.0 14.454 0.1

050-300-L/5 13.469 − 13.476× 54.8 12.756† 0.0 12.669 0.0

050-400-L/1 15.766 − 15.835× 13.2 15.700 0.0 15.742† 0.0

050-400-L/2 12.713 − 12.941× 81.5 12.303 0.2 12.518† 0.3

050-400-L/3 15.558 − 15.592× 53.9 15.281 0.0 15.428† 0.0

050-400-L/4 16.435 − 16.477× 11.5 16.177† 0.0 16.095 0.0

050-400-L/5 14.251 − 14.385× 31.0 14.247† 0.0 14.142 0.0

050-300-H/1 3.747 − 7.289× 835.2 7.204† 0.7 7.153 1.3

050-300-H/2 3.091 − 7.319× 1266.6 7.167† 0.8 7.167† 0.8

050-300-H/3 4.640 − 7.606× 300.1 7.476† 2.5 7.362 1.4

050-300-H/4 6.591 − 7.275× 485.7 7.177† 1.4 7.061 2.9

050-300-H/5 4.000 − 7.743× − 7.657† 0.2 7.579 0.3

050-400-H/1 4.709 − 8.319× 612.9 8.143† 0.8 8.050 1.1

050-400-H/2 4.151 − 8.285× 2004.2 8.242 0.9 8.268† 0.8

050-400-H/3 − 8.285× 3196.6 8.118† 0.6 8.073 0.8

050-400-H/4 5.224 − 8.456× 874.2 8.191 0.9 8.205† 0.9

050-400-H/5 − 8.191 994.8 8.091† 2.1 8.013 2.3

−: time limit exceeded ×: complete formulation

†: best solution among AMEP and MEP-G

Table 5 Results for the inclusion of a partial coverage requirement in AMEP.
AMEP β = 92% β = 94% β = 96% β = 98% AMEP-C

instance sol time cov sol time cov sol time cov sol time cov sol time cov sol time

o.f. (sec) (%) o.f. (sec) (%) o.f. (sec) (%) o.f. (sec) (%) o.f. (sec) (%) o.f. (sec)

isotropic instances

100-300-L/1 19.563 0.8 95.0 19.553 0.9 96.0 19.293 2.4 98.0 18.099 0.7

100-300-L/2 20.969 1.9 95.7 20.946 4.1 96.3 20.855 3.9 98.0 20.499 0.6

100-300-L/3 19.457 1.0 92.3 19.370 3.6 94.7 19.300 1.4 96.0 18.979 2.0 98.0 18.143 0.9

100-300-L/4 19.411 21.8 92.0 19.338 23.7 94.3 19.273 28.6 96.0 19.120 2.2 98.0 18.487 4.5

100-300-L/5 21.750 0.4 93.7 21.731 0.9 94.3 21.622 1.7 96.3 21.372 16.8 98.0 20.708 0.3

100-300-H/1 10.696 101.4 91.0 10.689 148.9 92.0 10.626 882.9 95.0 10.606 209.3 96.0 10.386 2761.8 98.0 10.092 86.3

100-300-H/2 11.328 19.4 95.3 11.281 152.5 98.0 11.281 32.2 98.0 10.696 34.2

100-300-H/3 10.893 159.4 95.0 10.880 234.0 96.0 10.817 256.3 98.0 10.476 66.7

100-300-H/4 10.591 32.4 92.3 10.560 46.0 94.0 10.396 427.6 96.0 10.245 192.3 98.0 9.758 219.4

100-300-H/5 10.846 220.8 89.0 10.842 308.3 94.0 10.842 234.1 94.0 10.747 639.5 96.0 10.630 459.6 98.0 10.211 308.8

Results for the inclusion of a partial coverage requirement in AMEP, for various values of the coverage param-
eter β. Values of β smaller than the coverage percentage obtained with AMEP are not considered.

In Table 5 we report computational results for the variant of AMEP in which a minimal coverage
percentage β is required. This formulation is obtained by including in GSSCP-P(d, t) the constraint∑

i∈I
∑

B∈Pi
ciBwiB > β|I|, where ciB = |I(B) ∩∆i| accounts for the dominated users. According

to Table 5, the time required to solve this problem is always higher than that required to solve
AMEP, although sometimes lower than that required to solve AMEP-C. The highest computing
times are observed for values of β close to the average of the coverage given by AMEP and the
complete coverage. The problem variant in which coverage is required for a specific subset of TPs
can be simply obtained by removing some local covers from AMEP. As doing so does not have
any significant impact on solution time, we do not report results of this case.

5. Concluding remarks

In this paper we investigated the problem of designing WLANs with maximum network efficiency.
We considered 0-1 hyperbolic set covering formulations accounting for relevant protocol and plan-
ning features such as direct interference and partial coverage of the service area. To find a trade-off
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between model accuracy and computational tractability, we also considered variants in which the
network efficiency is approximated by neglecting direct interference.

We proposed a Dantzig–Wolfe reformulation-based solution approach that is applicable to cov-
ering problems whose objective function is a sum of nonlinear contributions over the groundset
elements. The approach is extremely efficient for solving the problem version in which complete cov-
erage is required as well as the variants with approximated network efficiency. By applying instance
reduction rules and strengthening the formulation with appropriate valid cuts, the approach yields
optimal solutions for most of the considered instances, and very small percentage gaps for the
remaining ones. The design problem MEP, that accounts for direct interference and allows for
partial coverage, is the most challenging one. Since the above reformulation is not viable for MEP,
due to the large number of covering sets that have to be considered in evaluating each objec-
tive function contribution, we proposed a two-level enumerative ILP reformulation that provides
promising results for instances of up to moderate size. For large size instances, the approximated
problem versions yield for MEP good quality heuristic solutions, and remain the best option.

The network efficiency and the solution approach presented here can be easily extended to
account for the data rate experienced by the users, which in WLANs depends on the signal quality
of the AP to which each user communicates (rate adaptation). The most common AP selection
rule used in practice is the best-signal AP, but any selection rule based on local information can
be considered. Note that the reduction based on minimality described in Section 3.3 cannot be
applied to this case, as the inclusion-minimality property is no longer guaranteed.

Future work includes the investigation of extensions to multiple-frequency WLAN design and
the application of our approach to other nonlinear problems that admit a GSSCP formulation.
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Complexity proofs and additional information

We provide here the complexity proofs for the PTAS of AMEP and the NP-hardness of the
pricing problem GSSCP-PPi, and give additional information on the instance generation procedure.

A.1. Polynomial-time approximation scheme for AMEP

Let us recall that, in a uniform 2D Euclidean instance, coverage areas are disks with uniform
radius ρ. Given such an instance, we say that a cover has bounded AP density if the number of
installed APs inside any circular region of diameter λρ is bounded by a constant C(λ).

Proposition A.1. When restricted to uniform 2D Euclidean instances in which only covers with
bounded AP density are considered, AMEP admits a PTAS.

Proof. We prove Proposition A.1 for any objective function f(S) that can be written as a
f(S) =

∑
i∈I fi(S ∩B(i, ρ)), where each contribution only depends on the selected CSs contained

in a ball of radius ρ centered in i. We also require the fi to be monotonic with respect to subset
inclusion, i.e., fi(A)6 fi(B) for all B ⊆ A,B 6= ∅. Note that we do not impose non-negativity. It
is easy to verify that the objective function of AMEP satisfies the above properties. Indeed, in
AMEP we have fi(S) = 1/|I(S ∩ Ji)| if i ∈ I(S) and 0 otherwise, which is clearly monotonic, and
the distance between i and each CS j ∈ Ji is by definition smaller than ρ.

The result is based on the shifting lemma (see e.g. Hochbaum and Maass 1985). Given an integer
l> 3 and a uniform 2D Euclidean instance, the algorithm partitions its bounding box (the smallest
rectangle containing all TPs and CSs) with a grid of mesh size lρ, where ρ is the disk radius. Shifting
horizontally and vertically the grid by multiples of ρ, l2 different partitions Pk are obtained, with
k ∈K = {0, . . . , l2−1} (see Figure A.1(a) for an example). For each partition Pk, the local solutions
found for each lρ× lρ block of the partition are merged to obtain a global partition solution ALGk.
The solution ALG returned by the algorithm is the best among all the partition solutions.

The reduced instance for a single lρ× lρ block (see Figure A.1(b)) is obtained by removing all
users and CSs that lie outside the block, as well as all the CSs contained in the border of width
ρ inside the block. Due to the bounded AP density property, an optimal solution for this reduced
instance can be found by enumeration in polynomial time in |I| and |J |, and exponential time
in C(λ) for some λ= λ(l). Due to the border removal, the objective function value of the global
solution ALGk is simply the sum of the objective function values of the local solutions of the blocks
of partition Pk.

Let OPT be an optimal solution, and OPTk be the solution obtained by removing from OPT all
the CSs that belong to some border in the partition Pk. It is easy to see that f(OPTk)6 f(ALGk)6
f(ALG)6 f(OPT ) for every k ∈K, so that we can bound f(OPT )− f(ALG) by bounding the
loss f(OPT )− f(OPTk).

Given an arbitrary solution S ⊆ J , we evenly distribute the objective function contribution of
each user over its covering APs by defining the coefficients w(S, j) =

∑
i∈Ij

fi(S)/|Ji ∩S|, so that

∑
j∈S

w(S, j) =
∑
j∈S

∑
i∈Ij

fi(S)

|Ji ∩S|
=
∑

i∈I(S)

∑
j∈Ji∩S

fi(S)

|Ji ∩S|
=
∑

i∈I(S)

fi(S) = f(S). (A.1)

We can now bound the loss obtained by removing some CSs from a given solution.

Claim A.1. For any arbitrary S ⊆ J and R⊆ S, f(S)− f(R)6
∑

j∈S\R
w(S, j).
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Figure A.1 Example of 2D Euclidean instance.

ρ

CS
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l

(a)

ρ

(b)

Note. (a) The bounding box of the instance and two possible partitions, with l= 4, where users are points and CSs
are squares. (b) The reduced instance for one lρ× lρ block with the coverage disks for the remaining CSs.

Applying (A.1), proving Claim A.1 amounts to prove that
∑

j∈Rw(S, j)6
∑

j∈Rw(R,j), which
follows from the monotonicity of the fi. By summing the loss over all the partitions and applying
Claim A.1 we obtain∑

k∈K

[f(OPT )− f(OPTk)]6
∑
k∈K

∑
j∈OPT\OPTk

w(OPT, j) =
∑

j∈OPT

∑
k∈K:j /∈OPTk

w(OPT, j).

Since each AP j ∈OPT is removed exactly in 4l− 4 partitions (those where it falls inside one of
the 4l− 4 border squares), we have that∑

k∈K

[f(OPT )− f(OPTk)]6
∑

j∈OPT

(4l− 4)w(OPT, j) = (4l− 4)f(OPT ).

The average loss is greater than f(OPT )− f(ALG), and hence is at most 4l−4
l2
f(OPT ), so that

f(ALG)>

(
1− 4l− 4

l2

)
f(OPT ) =

(
1− 2

l

)2

f(OPT ). �

It is worth pointing out that, while the PTAS given in Amaldi et al. (2009) uses a grid with mesh
size 2ρ, the above PTAS for AMEP is based on a grid with mesh size ρ. For any given approximation
guarantee (value of the parameter l), the local instances solved by enumeration in the second PTAS
are thus four times smaller. Under the reasonable assumption that the bounding constant C(λ)
grows linearly in the area of the circular region considered, the required computing time is the 4-th
root of that needed with the first PTAS. In spite of this improvement, the geometrical enumerative
search remains unpractical for large values of the parameter l.

A.2. Complexity of the pricing problem GSSCP-PPi

Proposition A.2. Consider a given TP i∈ I. If the objective function contribution fi is bounded,
then the pricing problem GSSCP-PPi(π,γ,λ) is NP-hard, even if ∆i = ∅ (i.e., TP i does not
dominate any other TP).

Proof. Let us first remark that if fi is well defined (i.e., fi(B) is finite for each local solution
B ∈Pi) then it is bounded, as Pi is finite. In problems AMEP-C, MEP-C, and AMEP we have
indeed 06 fi(B)6 1 for every B ∈Pi. We prove that GSSCP-PPi is NP-hard by polynomial-time
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reduction from the minimum cardinality Set Covering Problem (SCP). Given a covering instance,
defined by a groundset I and a collection J = {Ij}j∈J of its subsets, in SCP one looks for a cover
of minimum cardinality. Let us recall that a cover is a subset S ⊆ J for which ∪j∈SIj = I.

Let us consider a covering instance (Ĩ , J̃ ) for which Ĩ /∈ J̃ , as otherwise the problem is trivial,
and for which there is no h,k ∈ Ĩ for which J̃h ⊆ Jk, as otherwise h can be safely removed. Note
that this implies that there is no h for which h ∈ Ĩj for every j ∈ J̃ . Given the covering instance
(Ĩ , J̃ ), we define an instance (I,J ) of GSSCP (which is also a covering instance) as follows. We
define the groundset as I = Ĩ ∪ {i}, where i is a new element with index greater than any h ∈ Ĩ.
The collection J is then defined by creating, for each j ∈ J̃ , a subset Ij ⊆ I with Ij = Ĩj ∪{i}, and
introducing in the collection the subset Ĩ, which we assumed was not contained in J̃ .

Element i clearly does not dominate any other element, as the covering set Ĩ ∈J contains every
element but i. On the other side, no element h ∈ Ĩ can dominate i, otherwise it would be covered
by all the subsets in J̃ . Therefore, there is no dominance relation in the instance, so that no
preprocessing can be performed. As a consequence, i will belong to the formulation GSSCP-P, and
we can consider the pricing problem GSSCP-PPi. It is also easy to see that Ni = Ĩ, Ji = J̃ , and
that for every h∈Ni the collection Tih contains as unique element the intersection {Ji ∩Jh}.

We do not assume Ki = Ji, and we make no assumptions on fi, apart from its boundedness.
Let therefore l, u be lower and upper bounds on fi, and let ε > 0 be a small positive constant.
We define the objective function coefficients of (20) (see Section 4.2 in the article) as follows.
We set πi = l, γij = (u− l + ε) for every j ∈ Ji, and πi = 0 for all j ∈Ki \ Ji (if any). Then we
set λhi = −(u− l + ε)(|Ji|+ 1) for every h ∈ Ni. Note that λih = 0 for all h ∈ Ni, because i > h
by construction. Any solution with yih = 1 for every h ∈Ni has objective function value at least
l+ (u− l+ ε)(|Ji|+ 1)|Ni|− (u− l+ ε)|Ji|− l, while any solution with yih = 0 for at least one h has
objective function at most

u+ (u− l+ ε)(|Ji|+ 1)(|Ni| − 1)− l= (u− l+ ε)(|Ji|+ 1)|Ni| − (u− l+ ε)|Ji| − ε.

Thus, any optimal solution (χ∗i ,y
∗
i ) of GSSCP-PPi must be such that y∗ih = 1 for every h∈Ni. As

a consequence, due to constraints (21) we have that S∗ = {j ∈ Ji : χ∗ij = 1} is a cover for Ni = Ĩ.
Let g(S) = fi(S)− |S|(u− l+ ε)− l denote the objective function (20) for an arbitrary cover S of
Ĩ (neglecting the contribution of the y variables, that is identical for all covers). Exploiting upper
and lower bounds on fi we have

l− |S|(u− l+ ε)− l6 u− |S|(u− l+ ε)− l <−(|S| − 1)(u− l+ ε).

This implies that it is possible to determine whether a cover S1 has a smaller cardinality than
another cover S2 by checking the values g(S1) and g(S2). Therefore, any optimal solution (χ∗i ,y

∗
i )

of GSSCP-PPi provides a minimum cardinality cover S∗ for Ĩ. �

A.3. Instance generator

The input parameters for the generation of an instance are the number of TPs and APs, the signal
propagation model (isotropic or anisotropic), the radius, and the minimum distance among APs.
The instances are generated in a (discretized) squared region of unit size as follows. First the APs
are randomly placed, respecting the minimum distance. Then the TPs are randomly placed. To
prevent trivial reductions, TPs are placed only in regions that are covered by at least two APs. In
a last step, the APs that do not cover any TP are removed and randomly placed so as to cover at
least one TP (still respecting the minimum distance among APs).

A TP is covered by an AP if the former falls within the coverage pattern of the latter. Similarly,
two TPs are direct interferers if they fall within the respective patterns of each other. As in
practice the patterns could be expected to be similar for close stations, the instances generated
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Table A.1 Test set description.

instance
density max

instance
density max

(%) |Ji| (%) |Ji|

isotropic instances

050-300-L/1 6.02 7 050-300-H/1 11.23 11

050-300-L/2 6.66 9 050-300-H/2 11.43 14

050-300-L/3 6.29 6 050-300-H/3 11.57 12

050-300-L/4 5.91 7 050-300-H/4 11.67 13

050-300-L/5 6.37 6 050-300-H/5 9.55 11

050-400-L/1 5.43 6 050-400-H/1 10.14 10

050-400-L/2 6.49 9 050-400-H/2 9.73 11

050-400-L/3 5.57 7 050-400-H/3 9.70 11

050-400-L/4 5.16 6 050-400-H/4 10.01 10

050-400-L/5 5.78 6 050-400-H/5 10.57 12

100-300-L/1 5.19 12 100-300-H/1 10.39 19

100-300-L/2 4.90 13 100-300-H/2 10.21 18

100-300-L/3 5.51 12 100-300-H/3 10.27 24

100-300-L/4 5.00 10 100-300-H/4 10.75 23

100-300-L/5 5.00 10 100-300-H/5 10.89 21

100-400-L/1 5.80 17 100-400-H/1 10.55 22

100-400-L/2 5.68 13 100-400-H/2 10.36 18

100-400-L/3 5.54 11 100-400-H/3 11.22 21

100-400-L/4 6.19 13 100-400-H/4 10.59 21

100-400-L/5 5.24 11 100-400-H/5 10.04 20

instance
density max

instance
density max

(%) |Ji| (%) |Ji|

anisotropic instances

050-300-L/1 5.20 5 050-300-H/1 10.07 10

050-300-L/2 5.22 7 050-300-H/2 10.20 11

050-300-L/3 5.06 5 050-300-H/3 9.07 10

050-300-L/4 4.85 6 050-300-H/4 9.97 10

050-300-L/5 5.49 7 050-300-H/5 10.51 13

050-400-L/1 5.11 6 050-400-H/1 11.07 13

050-400-L/2 5.19 6 050-400-H/2 10.93 10

050-400-L/3 5.23 5 050-400-H/3 10.38 13

050-400-L/4 5.37 7 050-400-H/4 9.82 13

050-400-L/5 5.45 6 050-400-H/5 10.62 12

100-300-L/1 5.35 11 100-300-H/1 10.28 22

100-300-L/2 5.21 12 100-300-H/2 10.08 18

100-300-L/3 5.13 12 100-300-H/3 10.40 23

100-300-L/4 5.37 12 100-300-H/4 9.87 17

100-300-L/5 5.49 12 100-300-H/5 9.60 18

100-400-L/1 5.34 12 100-400-H/1 9.90 21

100-400-L/2 5.04 11 100-400-H/2 10.04 20

100-400-L/3 5.35 14 100-400-H/3 10.60 22

100-400-L/4 5.82 13 100-400-H/4 10.22 19

100-400-L/5 5.84 16 100-400-H/5 10.18 22

This table shows the density and the maximum coverage cardinality for each instance.

in this way have less structure, and are harder to solve. To prevent instance decomposition, each
instance has to pass a connectivity test to ensure that the adjacency graph derived from the AP-TP
cover relation is connected. Table A.1 reports, for each instance, the density and the maximum
cardinality max |Ji| of the covering sets. Table A.2 reports details on the computational results for
GSSCP-P(d, t), with d= 4 and t= 350000, applied to AMEP-C, MEP-C and MEP.
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Table A.2 Computational results for GSSCP-P(d, t) on AMEP-C, MEP-C and MEP.
AMEP AMEP-C MEP-C

instance gap time tLP tIP tPR gap time tLP tIP tPR gap time tLP tIP tPR

(%) (sec) (sec) (sec) (sec) (%) (sec) (sec) (sec) (sec) (%) (sec) (sec) (sec) (sec)

isotropic instances

100-300-L/1 ∗× 0.8 0.6 0.2 ∗× 0.7 0.6 0.2 ∗× 0.6 0.4 0.1

100-300-L/2 (0.26)× 1.9 1.0 0.9 ∗× 0.6 0.5 0.2 ∗× 1.3 0.7 0.6

100-300-L/3 ∗× 1.0 0.8 0.2 ∗× 0.9 0.8 0.2 ∗× 0.8 0.6 0.2

100-300-L/4 (0.37)× 21.8 0.5 21.3 (0.38)× 4.5 0.3 4.2 ∗× 0.2 0.2 0.1

100-300-L/5 ∗× 0.4 0.3 0.1 ∗× 0.3 0.2 0.1 ∗× 0.3 0.2 0.1

100-400-L/1 ∗× 3.7 2.9 0.9 ∗× 4.2 3.5 0.7 ∗× 3.0 2.3 0.7

100-400-L/2 (0.20)× 8.8 2.3 6.5 ∗× 2.7 2.4 0.3 ∗× 1.8 1.5 0.3

100-400-L/3 (0.08)× 7.3 1.7 5.6 ∗× 1.0 0.8 0.2 ∗× 0.8 0.6 0.2

100-400-L/4 ∗× 4.2 3.5 0.7 ∗× 4.6 4.0 0.6 ∗× 5.6 4.9 0.6

100-400-L/5 ∗× 1.9 1.0 0.9 ∗× 1.6 1.4 0.2 ∗× 1.5 1.3 0.2

100-300-H/1 ∗× 101.4 94.8 6.5 ∗× 86.3 80.4 5.9 ∗× 35.2 29.4 5.8

100-300-H/2 ∗× 19.4 15.1 4.3 ∗× 34.2 30.2 4.0 ∗× 26.9 22.8 4.0

100-300-H/3 (0.13)× 159.4 47.9 111.4 ∗× 66.7 61.8 4.9 (0.14)× 161.1 38.6 122.5

100-300-H/4 ∗× 32.4 24.9 7.5 ∗× 219.4 212.5 6.9 ∗× 107.3 100.4 6.9

100-300-H/5 ∗× 220.8 207.6 13.2 ∗× 308.8 296.1 12.6 ∗× 89.6 76.9 12.7

100-400-H/1 ∗× 86.2 75.4 10.8 (0.14)× 470.4 202.8 267.5 ∗× 116.3 106.3 10.0

100-400-H/2 ∗× 46.2 39.8 6.4 ∗× 68.6 62.7 5.9 ∗× 37.0 31.0 6.0

100-400-H/3 0.13 1431.0 552.2 22.2 856.6 0.12 1326.4 864.3 22.5 439.6 ∗ 406.5 152.1 21.9 232.5

100-400-H/4 ∗× 128.2 112.2 16.1 ∗× 197.6 182.4 15.2 (0.07)× 568.9 211.4 357.5

100-400-H/5 ∗× 58.8 53.1 5.7 (0.06)× 475.8 210.0 265.8 ∗× 121.2 116.0 5.2

anisotropic instances

100-300-L/1 (0.34)× 20.6 1.8 18.7 ∗× 1.6 1.4 0.2 ∗× 1.3 1.0 0.3

100-300-L/2 (0.85)× 239.6 5.8 233.8 (0.23)× 61.7 2.7 59.0 (0.08)× 8.9 5.0 3.9

100-300-L/3 ∗× 0.8 0.6 0.2 ∗× 0.4 0.3 0.1 ∗× 0.4 0.2 0.2

100-300-L/4 ∗× 3.5 3.1 0.4 (0.72)× 63.3 2.3 61.0 ∗× 4.2 2.5 1.8

100-300-L/5 (0.38)× 140.8 4.1 136.7 ∗× 3.4 2.8 0.6 ∗× 3.4 2.8 0.6

100-400-L/1 (0.03)× 13.5 7.7 5.8 ∗× 12.0 11.3 0.7 ∗× 5.1 4.4 0.7

100-400-L/2 ∗× 3.2 2.7 0.5 ∗× 3.4 3.0 0.4 ∗× 2.3 1.9 0.4

100-400-L/3 ∗× 4.5 3.6 0.9 ∗× 4.4 3.7 0.7 ∗× 3.8 3.1 0.7

100-400-L/4 ∗× 28.5 26.7 1.9 ∗× 14.9 13.4 1.5 ∗× 7.9 6.4 1.5

100-400-L/5 (0.05)× 92.6 23.6 68.9 (0.48)× 218.4 13.8 204.5 (0.21)× 48.6 4.9 43.6

100-300-H/1 − 1835.8 − − − − − − 0.10 856.5 718.7 17.9 120.0

100-300-H/2 0.08 510.2 406.7 15.4 88.1 0.10 2663.7 2566.8 16.1 80.7 0.01 360.8 309.9 15.4 35.5

100-300-H/3 0.03 303.4 144.8 19.4 139.2 0.23 845.9 663.0 19.7 163.1 ∗ 226.0 131.5 19.1 75.4

100-300-H/4 (0.12)× 473.9 221.3 252.6 (0.47)× 1568.2 558.8 1009.4 (0.03)× 599.1 179.6 419.5

100-300-H/5 ∗× 89.1 79.8 9.4 ∗× 384.1 375.0 9.1 ∗× 111.7 102.8 8.9

100-400-H/1 0.10 545.5 345.4 22.2 177.9 0.36 1221.4 1061.3 22.6 137.5 0.08 541.8 442.1 22.6 77.1

100-400-H/2 − − − − − 3541.0 29.3 − 0.35 2178.1 1760.6 28.3 389.1

100-400-H/3 0.86 1584.9 730.8 30.4 823.7 − − − − − − − −
100-400-H/4 1.61 1976.6 1412.1 28.5 536.0 0.68 1528.0 1042.5 26.0 459.6 0.41 1288.1 1014.1 26.3 247.7

100-400-H/5 0.46 1097.9 732.8 26.4 338.7 − 2726.2 − − 0.10 837.4 635.9 25.7 175.9

gap : gap between the best lower and upper bounds found

× : complete formulation, with nonzero LP gap in parenthesis

∗ : gap equal to zero

− : time limit exceeded

Computational results for GSSCP-P(d, t) on AMEP-C, MEP-C and MEP for the largest isotropic and
anisotropic instances (100 APs). For each problem, we report the percentage gap between the best lower and upper
bounds found within the time limit, the overall computing time, and the time required by each step of the algorithm
(LP relaxation, solution of the IP, and pricing problem). A sign “×” indicates that the formulation is complete
(equivalent to GSSCP), and hence that the solution found is optimal for GSSCP independently on the upper
bound. In this case no solution time is shown for the pricing, as solving the pricing is not necessary.
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