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Abstract
Control and diagnosis of complex systems demand accurate information of the system
state to enable e�cient control and to detect system malfunction. Physical sensors are
expensive and some quantities are hard or even impossible to measure with physical
sensors.�is has made model-based estimation an attractive alternative.
Model based observers are sensitive to errors in the model and since the model

complexity has to be kept low to enable use in real-time applications, the accuracy of
the models becomes limited. Further, modeling is di�cult and expensive with large
e�orts on model parametrization, calibration, and validation, and it is desirable to design
robust observers based on existing models. An experimental investigation of an engine
application shows that the model have stationary errors while the dynamics of the engine
is well described by the model equations. �is together with frequent appearance of
sensor o�sets have led to a demand for systematic ways of handling operating point
dependent stationary errors, also called biases, in both models and sensors.
Systematic design methods for reducing bias in model based observers are devel-

oped.�e methods utilize a default model, described by systems of ordinary di�erential
equations (ODE) or di�erential algebraic equations (DAE), and measurement data. A
low order description of the model de�ciencies is estimated from the default model and
measurement data, which results in an automatic model augmentation.�e idea is then
to use the augmented model in observer design, yielding reduced stationary estimation
errors compared to an observer based on the default model.�ree main results are: a
characterization of possible model augmentations from observability perspectives, a
characterization of augmentations possible to estimate from measurement data, and a
robustness analysis with respect to noise and model uncertainty.
An important step is how the bias is modeled, and two ways of describing the bias

are analyzed.�e �rst is a random walk and the second is a parameterization of the bias.
�e latter can be viewed as an extension of the �rst and utilizes a parameterized function
that describes the bias as a function of the operating point of the system. By utilizing
a parameterized function, a memory is introduced that enables separate tracking of
aging and operating point dependence. �is eliminates the trade-o� between noise
suppression in the parameter convergence and rapid change of the o�set in transients.
Direct applications for the parameterized bias are online adaptation and o�ine calibration
of maps commonly used in engine control systems.

�e methods are evaluated on measurement data from heavy duty diesel engines. A
�rst order model augmentation is found for an ODE of an engine with EGR and VGT.
By modeling the bias as a random walk, the estimation error is reduced by 50% for a
certi�cation cycle. By instead letting a parameterized function describe the bias, better
estimation accuracy and increased robustness is achieved. For an engine with intake
manifold throttle, EGR, and VGT and a corresponding sti� ODE, experiments show
that it is computationally bene�cial to approximate the fast dynamics with instantaneous
relations, transforming the ODE into a DAE. A main advantage is the possibility to
use more than 10 times longer step lengths for the DAE based observer, without loss of
estimation accuracy. By augmenting the DAE, an observer that achieves a 55 % reduction
of the estimation error during a certi�cation cycle is designed.
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Populärvetenskaplig Sammanfattning
I dagens samhälle har transporter av olika slag en betydande roll och på land står den
tunga lastbilen för en majoritet av dessa. Samtidigt som transportbehovet ständigt ökar
ställer både emissionslagsti�ning och kunder allt högre krav påminskade utsläpp och
minskad bränsleförbrukning. För dieselmotorer är det utsläpp av partiklar, det vill säga
oförbränt bränsle och smörjoljerester, samt utsläpp av kväveoxider och koldioxid som
omfattas. Kraven innebär både att hålla förbränningsemissionerna nere under normal
dri� och att fel som medför risk för förhöjda emissioner måste kunna upptäckas, vilket
driver den tekniska utvecklingen framåt. Med introduktionen av nya tekniska lösningar
samt hårdare emissionskrav följer behovet av tillförlitlig information ommotorns interna
tillstånd för att möjliggöra robust och säker dri�. Till exempel behöver information om
tryck, temperatur och syre/bränsle-förhållande tas fram.
Dock är det inte ekonomiskt eller praktiskt möjligt att använda fysiska sensorer för

att mäta alla dessa parametrar. Det här har medfört introduktionen av matematiska
modeller över motorn, vilka tillsammans med tillgängliga sensorer används för att ta
fram information om motorns tillstånd. Modellerna baseras o�a på fysikaliska samband
för exempelvis energi- och massbevarande. De är dyra att utveckla då det tar tid att
ta fram de matematiska samband som krävs. Dessutom tillkommer aktiviteter såsom
parametrisering, kalibrering och validering. Oavsett hur mycket tid som läggs på att
ta fram modellen kommer den aldrig att bli perfekt. I de fall där kraven påmodellens
beräkningskomplexitet är höga blir detta extra tydligt, vilket är fallet i de �esta realtidsap-
plikationer. Resultatet från modellen kommer alltså att avvika från de verkliga värdena,
och det blir viktigt att reducera fel i skattningar som uppkommit till följd av fel i modellen.
Det har därför vuxit fram ett intresse för metoder som möjliggör användning av

modeller behä�ade med fel för att beräkna motorers interna tillstånd med hög nog-
grannhet. Sy�et med forskningen som presenteras i avhandlingen är därför att utveckla
systematiska metoder som, utan att involvera extra modellering, höjer noggrannheten
i skattningar baserade påmodeller som innehåller fel. Metoderna hjälper ingenjören,
som har god kännedom om systemet, modellen och dess brister, att svara på frågan om
kompensation för ett visst fel är möjlig, samtidigt som metoderna kan peka ut andra
potentiella felkällor. Ur metoderna fås en felbeskrivning som används för att utöka mod-
ellen. Genom att nyttja denna modell, utökad med felbeskrivning, kan information om
motorns tillstånd beräknas med högre noggrannhet. I motorstyrenheter är dessutom
uppslagstabeller för att beskriva komplicerade fenomen där fysikaliska modeller saknas
vanligt förekommande. Dessa är o�a i behov av kontinuerlig anpassning för att kom-
pensera för dri�, åldrande och slitage av motorns fysiska komponenter och de framtagna
metoderna lämpar sig väl även för detta ändamål.
Sammanfattningsvis förenar metoderna teori, som garanterar tillförlitliga och sta-

bila skattningar, med industriella tillämpningar såsom anpassning av uppslagstabeller.
Metoderna är utvärderade med hjälp av mätdata från standardiserade certi�eringscykler
insamlade i motorprovceller på Scania i Södertälje. I dessa cykler uppvisas minskningar
av skattningsfel på i medel omkring 50%. Reduktionen av skattningsfel möjliggör nog-
grann reglering, med minskade emissioner och bränsleförbrukning, samt förbättrar
möjligheterna att upptäcka små fel.
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Chapter 1

Introduction

Transportation is of vital importance in the modern economy and a major part of these
transportations are carried out by trucks, e.g., in Europe and United States road vehicles
account for more than 70% of the inland freight transport (Noreland, 2008; Bradley,
2000). As a consequence, a major part of the emissions from the vehicular tra�c is from
trucks. It is therefore necessary to reduce the emissions and fuel consumption.
Stricter emission legislations and customer demands on low fuel consumption drive

the technical development of engines and force new solutions to be introduced. To cope
with reduced emission limits on diesel engines, for example intake manifold throttle,
exhaust gas recirculation (EGR), and variable geometry turbine (VGT) are introduced, see
Figure 1.1.�is technical development, with increased system complexity and tightened
requirements from customers and legislators, increase the demands on the control
and diagnosis systems. Two examples of important quantities that signi�cantly a�ect
the emissions from diesel engines are: air to fuel ratio (λ) and EGR-fraction (xegr).
�e increased demands on the control and diagnosis systems, increase the required
information quality of λ and xegr. At the same time it is desirable to have as few and
cheap sensors in the system as possible to keep the cost down.�is has made estimation
an important and active research area, see e.g. Colin et al. (2009); Lino et al. (2008);
García-Nieto et al. (2008); Andersson and Eriksson (2004).
Model based estimators are o�en used to achieve cost-e�ective estimation with

high accuracy. �is has driven the development of new models that are suitable for
estimator design.�ese models have to be simple enough to be evaluated in real time,
by for example an engine control unit (ECU), and at the same time describe the system
behavior accurately enough for the estimation task. Development of these models is a
delicate balance between computational complexity of themodel and howwell it manages
to describe the true system. Typically, a large engineering e�ort is spent on modeling,
o�en combining �rst law physics and system identi�cation techniques.
In all model based control or diagnosis systems, the performance of the system is

directly dependent on the accuracy of the model. In addition, as stated above, modeling

1



2 Chapter 1. Introduction

(a) Exhaust gas recirculation (EGR) system (b) Variable geometry turbine (VGT)

Figure 1.1: Technical solutions introduced on modern diesel engines to be able to ful�ll
the stricter emission legislations. Courtesy Scania CV AB.

is time consuming and even if much time is spent on physical modeling, there will
always be errors in the model.�e causes of these model errors can be quite varying;
the model accuracy can depend on the operating point (Zimmerschied and Isermann,
2010), changes in ambient conditions (Won et al., 1998), the aging of components (Rupp
and Guzzella, 2010), etc., all of which a�ect the system properties and hence the model
errors. Model de�ciencies are especially common if there are constraints on the model
complexity, as is the case in most real time applications. Another scenario is that a model
developed for some purpose, for example control, exists but needs improvement before it
can be used for other purposes, for example diagnosis.�at is, there exists a lot of models,
on which much modeling time is spent, that needs improvement before they can be used
in an estimation application. A common situation is that, while the dynamics is well
captured by the model, there are stationary errors, possibly operating point dependent
(Höckerdal et al., 2008). Herea�er, these already available models will be called default
models. Since modeling is time consuming, and hence expensive, methods that enable
use of these default models in estimation without involving extensive modeling e�orts
are needed.
In engine control and diagnosis, it is crucial to have good and unbiased estimates.

In model based diagnosis (Ceccarelli et al., 2009) the true system is monitored using
residuals, formed as the di�erence between estimated and measured signals. If the
residual exceeds a threshold, it is concluded that something is wrong (Blanke et al., 2003;
Isermann, 2011). In engine control (Stefanopoulou et al., 2000; Ortner and del Re, 2007;
Plianos and Stobart, 2011), one objective is to control torque output while keeping the
emissions below legislated levels and the fuel consumption as low as possible (Guzzella
and Amstutz, 1998). Here, unbiased estimates are crucial since fuel consumption and
emissions are o�en in con�ict with each other.�e hard constraints on the emissions
force the engine operation away from the most fuel e�cient operating point. With
reduced stationary estimation errors the control system can balance closer to the fuel
optimal operating point without the risk of violating the emission limits. For diesel
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engines this is especially di�cult since the control system normally does not have any
feedback information from a λ or nitrogen oxides (NOx) sensor and have to rely on
estimated signals instead (Wang, 2008). In both cases, biased estimates impair the
performance.
Finally, the development of engines and engine control systems involves extensive

testing, both during the development of the control strategies and the engine calibration.
Data is collected in engine test cells as well as in laboratory vehicles.�is means that
it is fairly easy to obtain system measurements. �e sensors available are o�en both
production sensors, that will be available on the commercial product, and high grade
laboratory sensors added to enable extra monitoring.�ese laboratory sensors provide
valuable information that can be used during the development phase, allowing estimation
of model errors not possible to �nd with only production sensors.

1.1 Problem Statement
�e objective is to develop systematic methods for reducing estimation errors given a
default model and measurement data, without involving extensive modeling e�orts.

�e starting point is a default model and measurement data from the true system.
From this it can be determined if the model describes the system su�ciently well or if it
has to be modi�ed to be applicable to the intended estimation application.�e focus is
on adjustments with respect to operating point dependent stationary estimation errors.
If it is concluded that the model su�ers from too large stationary errors and cannot

be used for estimation in its current state, then the methods developed for reducing
stationary estimation errors can be applied.�e ideas in the developed methods are to
augment the defaultmodel with bias states that compensate for operating point dependent
stationary errors. �is augmented model can then be used in any suitable estimator
design to get an adaptive estimator with reduced stationary errors compared to using
the default model directly.

1.2 Thesis Outline
�e theme throughout the thesis is the successive development of methods for compen-
sating operating point dependent stationary model errors in the design of estimators.
�e studied topics originate from estimation of gas �ows in heavy duty diesel engines
using existing mean value engine models (MVEM) (Hendricks, 1986; Jensen et al., 1991;
Hendricks, 2001; Eriksson et al., 2002), referred to as default models.
Chapter 2 is based on Höckerdal et al. (2008) and describes an important estimation

problem from the automotive industry. It gives an overview of the heavy duty diesel
engine andmodel used for evaluation throughout the dissertation.�is particular system
is used to analyze how the quality of a sensor signal can be improved as well as how the
quality can be assessed.�e chapter illustrates the e�ect that a model with stationary
errors has on the estimates when used in estimator design. Chapter 2 ends with a
compilation of the contributions and their relation to other scienti�c work.



4 Chapter 1. Introduction

Papers A and E, based on Höckerdal et al. (2009) and Höckerdal et al. (Submitted),
present systematic methods for bias compensation in model based estimator design for
ordinary di�erential equation (ODE) and di�erential algebraic equation (DAE) models
respectively.�emethods apply the idea of introducing extra states, q ∈ Rnq , for adjusting
the stationary operating point of the model, i.e. x○ → (x○ − Aqq), according to

ẋ = f (x − Aqq, u) (1.1a)
q̇ = 0 (1.1b)
y = h(x), (1.1c)

where x ∈ Rnx are the states, u ∈ Rnu the inputs, and y ∈ Rny the outputs. In (1.1a), q
represent the underlying cause of the bias, Aq its a�ection of the original states, x, and
Aqq shi�s the stationary point of the model. Automatized methods for estimating low
order augmentations, Aq , from measurement data are developed.
An operating point dependent bias can exhibit both fast and slow dynamics, arising

from, for example, operating point dependent bias (Zimmerschied and Isermann, 2010)
and aging (Rupp and Guzzella, 2010). Papers B and C address this problem in an
integrated way by modeling the bias as a parameterized function,

qfcn(x , u, θ), (1.2)

of known states and/or inputs instead of as an extra state

ẋ = f (x , u, qfcn(x , u, θ))
θ̇ = 0
y = h(x).

(1.3)

�e idea with a construction like (1.3) is to capture the operating point dependence of
the bias by the parametrization (1.2), and use the parameters, θ ∈ Rnθ , introduced as
new states, to track the aging. Paper B presents a solution and establishes necessary
conditions for observability in the case the parameterized function is described by 1-D
linear interpolation and an interpolation variable that is measured. Paper C extends the
results with a simulation example using a 2-D cubic spline interpolation.
Paper D analyzes computational issues that arise when designing an observer for a

sti� ODE system, containing both slow and fast dynamics, and especially what can be
gained by approximating the fast dynamics with instantaneous relations resulting in a
DAE system, i.e.

ẋslow = f (xslow, xfast , u)
ẋfast = g(xslow, xfast , u)

⇒
ẋslow = f (xslow, xfast , u)
0 = g(xslow, xfast , u)

.

In an observer, e�cient and accurate solution of these continuous-time models is neces-
sary and has to be done in discrete-time.�e properties of forward and backward Euler
for discretization of the continuous-time model are also analyzed.
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1.3 Contributions
�e main contributions are:

⋆ �e experimental analysis of model and sensor errors of heavy duty diesel engines
[Chapter 2].

⋆ Methods for estimating a low order bias compensating model augmentation using
a default ODE or DAE model and measurements from the true system [Papers A
and E].

⋆ Necessary and su�cient conditions for model augmentations that maintain sys-
tem observability for ODE:s and DAE:s [Paper A,�eorem 4.2, and Paper E,
�eorem 4.2].

⋆ Parametrization of all model augmentations that are possible to obtain with the
proposed estimation algorithms [Paper A,�eorem 5.1].

⋆ An algorithm for engine map adaptation with variable parameter update rate
[Paper B], with an additional 2-D cubic spline application example [Paper C].

⋆ An analysis of the bene�ts of approximating fast dynamics with instantaneous
relations, transforming an ODE model into a DAE model, for EKF:s [Paper D].

1.4 Publications
�e dissertation is based on the work presented in the following publications.

Journal Papers
Erik Höckerdal, Erik Frisk, and Lars Eriksson. EKF-based Adaptation of Look-Up
Tables with an Air Mass-Flow Sensor Application. In: Control Engineering Practice,
19(5):442–453, 2011. [Paper B]

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation With a Truck Engine Application. In: Control
Engineering Practice, 17(3):408–417, 2009. [Paper A]

Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air mass-�ow measurement and
estimation in diesel engines equipped with EGR and VGT. In: SAE Int. J. Passeng.
Cars – Electron. Electr. Syst., 1(1):393–402, 2008.

Submitted

Erik Höckerdal, Erik Frisk, and Lars Eriksson. DAE and ODE Based EKF:s and
their Real-Time Performance Evaluated on a Diesel Engine. In: IEEE Transactions
on Industrial Electronics, 2011. [Paper D]
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Book Chapter
Erik Höckerdal, Lars Eriksson, and Erik Frisk. O�- and On-Line Identi�cation of
Maps Applied to the Gas Path in Diesel Engines. In: Identi�cation for Automotive
Systems, Linz, Accepted for Publication, 2010. [Paper C]

Conference Papers
Erik Höckerdal, Erik Frisk, and Lars Eriksson. Model Based Engine Map Adap-
tation Using EKF. In: 6th IFAC Symposium on Advances in Automotive Control.
Munich, Germany, 2010.

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation Applied to an Engine. IFAC World Congress.
Seoul, Korea, 2008.

Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air mass-�ow measurement and
estimation in diesel engines equipped with EGR and VGT. In: Electronic Engine
Controls. SAE Technical Paper 2008-01-0992. SAE World Congress, Detroit, USA,
2008.

Submitted

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Bias Reduction in DAE Estimators
by Model Augmentation: Observability Analysis and Experimental Evaluation. In:
50th IEEE Conference on Decision and Control and European Control Conference,
Orlando, Florida, 2011. [Paper E]



Chapter 2

Model Error Compensation

As a prelude to the publications, some additional background is given with the purpose of
putting the contributions into context. Even though the developed methods are general
and applies to non-linear ODE andDAEmodels they are evaluated on automotive engine
examples. A main challenge in engine control and diagnosis is accurate estimation of
the internal state of the engine and was brie�y described in Chapter 1 together with the
contributions.�is chapter elaborates on this, pointing out the necessity of unbiased
estimates in engine control, and presenting some common properties of ordinary engine
models. An overview of the heavy duty diesel engine with intake manifold throttle, EGR,
and VGT is given in Section 2.1. Section 2.2 presents important control variables, the
necessity of unbiased estimates, and the need for continuous adaptation in engine control
and diagnosis, while Section 2.3 brie�y describes the e�ect of biased models in model
based estimation. Section 2.4 presents the publications with focus on the contributions
and their relation to other scienti�c work.

2.1 Application Example
�is section serves as an overview of the system and the default models that are used
for evaluation of the developed methods throughout the thesis. It also introduces the
nomenclature, and presents important control quantities used in the control of diesel
engines. Even though the methods developed are not specially devoted to engine appli-
cations, they are all applied and evaluated on the gas �ow system of a Scania heavy duty
diesel engine, like the one presented in Figure 2.1.

�e defaultmodels used in the evaluations of themethods are developed inWahlström
and Eriksson (Accepted for publication), and Wahlström and Eriksson (2010).�e main
di�erence between the models are that the latter includes an intake manifold throttle,
accompanied by an extra state for the intercooler pressure, and a state for the exhaust
manifold temperature.

7
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Figure 2.1: Cutaway view of the Scania inline six cylinder engine with VGT and EGR
used for evaluation. Courtesy Scania CV AB.

Schematics of the more complex model from Wahlström and Eriksson (2010) is
presented in Figure 2.2, where most of the modeled variables are presented. Control
inputs to the model are injected amount of fuel uδ and the positions of EGR, VGT, and
throttle valves; uegr, uvgt, and uth. �e engine speed ne is used as a parameterization
input beside the control inputs, and thus the engine model can be expressed in state
space form as

ẋ = f (x , u, ne)
y = h(x).

In these applications ne is an input to themodel which is due to the fact that themodeling
is focused on the gas �ows and does not include modeling of the produced torque
and drive line. States are pressures in the intercooler, intake manifold and exhaust
manifold, pic, pim and pem, turbine speed ωt, and exhaust manifold temperature, Tem.
Also presented are modeled signals for the, compressor mass-�owWc, throttle mass-�ow
Wth, EGR mass-�owWegr, mass-�ow into the engineWei, mass-�ow out of the engine
Weo, and turbine mass-�owWt. Outputs from the model are the states, pim, pem, pic,
and ωt, and the compressor mass-�owWc. Equations (2.1) and (2.2) presents a summary
of the model and measurement equations and more details are presented in Appendix A.

ṗim = fpim(pim, pem, pic , Tem, uδ , uegr , uth , ne)
ṗem = fpem(pim, pem, ωt , Tem, uδ , uegr , uvgt , ne)
ṗic = fpic (pim, pic , ωt , uth )
ω̇t = fωt ( pem, pic , ωt , Tem, uvgt )

Ṫem = fTem(pim, pem, ωt , Tem, uδ , uegr , uvgt , ne)

(2.1)
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Figure 2.2: Schematic of the diesel engine model (Wahlström and Eriksson, 2010) with
intake manifold throttle, EGR, and VGT, showing model states (pim, pem, pic, ωt, and
Tem), control inputs (uegr, uvgt, uδ , and uth), parametrization input (ne), and �ows
between the di�erent components (Wc,Wth,Wegr ,Wei,Weo, andWt). Rectangles with
rounded corners represent control volumes.

y1 = pim (2.2a)
y2 = pem (2.2b)
y3 = pic (2.2c)
y4 = ωt (2.2d)
y5 =Wc (pic , ωt) (2.2e)

�e data used is collected in engine test cells at Scania CV AB in Södertälje, Sweden,
and a detailed sensor setup that includes accuracy and placement of the sensors used is
presented in Appendix B.

2.2 Gas FlowMeasurement
�e air mass-�ow into the engine is a central quantity in the engine control systems and
is hence o�en measured. It is used for many purposes and in�uences both the engine
performance and emissions, and it is therefore essential to have an air mass-�ow signal of
good quality. One important issue with the air mass-�ow sensor is its characteristics and
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Figure 2.3: Air mass-�ow sensor calibration curve with 12 grid points.

long term stability. To analyze this, two questions are addressed: how does the sensor
characteristic evolve over time, and how does it vary between engine con�gurations?
To answer these questions, systematic engine test cell measurements have been

conducted on a limited range of air mass-�ow sensors over the span of several weeks.
A central piece of information is a sensor calibration curve that has been recorded and
stored for all days and tests.�e data is analyzed with respect to day-to-day variations,
aging, and changes between con�gurations.�e calibration curve r(Wraw) is de�ned by

r(Wraw) =
Wref
Wraw

− 1, (2.3)

whereWref is a reference sensor mass-�ow sensor andWraw is the raw engine air mass-
�ow measurement. �e calibration curve is found by comparing the production air
mass-�ow sensorWraw to a reference mass-�ow sensorWref, for a long series of engine
measurements.�e reference sensorWref is available only in the engine test cell for the
purpose of accurately being able to measure the air mass-�ow into the engine, and has an
uncertainty of less than 1 % and a response time of 12ms. It is mounted on a straight pipe
in the test cell, where the air mass-�ow over the cross section of the pipe is orthogonal to
the sensor and cylindrically symmetric, and is considered to give accurate measurements
of the air mass-�ow.�e calibration curve is implemented as a lookup-table consisting
of 12 grid points, see Figure 2.3 for an example. Using this calibration curve to adjust the
raw sensor measurement an adapted sensor signal can be computed

Wadapt = (1 + r(Wraw))Wraw, (2.4)

which gives a more accurate estimate of the true air mass-�ow into the engine.
�e air mass-�ow signal is needed for computations of air to fuel ratio, λ, and EGR-

fraction, xegr. Both are important quantities that signi�cantly a�ect the emissions.�e
air to fuel ratio is de�ned as

λ = Wair
Wfuel (A/F)s

,
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whereWair is the air mass-�ow into the engine,Wfuel the fuel mass-�ow, and (A/F)s the
stoichiometric air to fuel ratio. In diesel engine control it is important to keep λ above
a certain limit, λsmoke lim, to avoid generating smoke. Normally, when λ is greater than
λsmoke lim,Wfuel is determined by the desired torque. However when the desired torque
forces λ to λsmoke lim, the control law enters a mode whereWfuel is proportional toWair,
(Wahlström, 2006).�is is particularly important during transients where the torque
demand is high, e.g. during acceleration. In these cases, an error in the air mass-�ow
signal results in either creation of smoke or reduced torque output.�e other important
quantity, is the EGR-fraction de�ned as

xegr =
Wtot −Wair

Wtot
,

whereWtot is the total gas mass-�ow into the engine, i.e.Wair +Wegr.�e xegr is used in
the engine control to reduce the NOx emissions, and is governed by the EGR-valve and
the VGT position.�e following small example gives a rough estimate of the consequence
of an incorrect air mass-�ow measurement for the control of xegr.

Example 1 Assume that the engine control system controls xegr to 30% based on the air
mass-�ow sensor and that the air mass-�ow sensor signal is incorrect and readsWair⋅0.9.
�at is,

xegr =
Wtot −Wair ⋅ 0.9

Wtot
= 30%.

�en the true fresh air-fraction would become

(1 − 0.3) ⋅Wtot =Wair ⋅ 0.9 ⇒ Wair =
1
0.9

⋅ (1 − 0.3) ⋅Wtot ≈ 0.78 ⋅Wtot,

and thereby the true xegr ≈ 22%, which would have a signi�cant e�ect on the NOx
emissions (Heywood, 1988). �at is, in this example the control system controls the
engine to run with less EGR than needed to ful�ll the legislated NOx levels. ◇

An analogous analysis can be made for λ close to λsmoke lim which further supports the
statement that an accurate estimate of the air mass-�ow is important.
Both λ and xegr are important for the emissions and the air mass-�owWair is central

in their control. Hence, it is important to have a high quality measurement or estimation
of the air mass-�ow. Note that the xegr estimate also depends onWtot, which is computed
using the volumetric e�ciency of the engine and is, by experience, considered to be
accurate.

2.2.1 AirMass-Flow Sensor Variations
Calibration curves from two diesel engines, one inline 6 cylinder and oneV8, are gathered
from test runs in an engine test cell. 13 calibration curves are collected over a total time
of about two weeks for the 6 cylinder engine and 21 calibration curves over four weeks
for the V8 engine. Figure 2.4 presents the typical appearance of a calibration curve, the
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upper for a 6 cylinder engine and the lower for a V8 engine.�ese calibration curves are
used to analyze the quality of the air mass-�ow sensor.

�e di�erence between engine con�gurations can be seen by comparing the upper
and lower plot in Figure 2.4 and Figure 2.5, where Figure 2.4 presents the day-to-day
variations of the calibration curve and Figure 2.5 presents the trend of the four grid
points, θ2, θ5, θ8, and θ11, in the calibration curves, see Figure 2.3.
Figure 2.4 shows that the day-to-day variations are quite large, especially for the V8

engine where the standard deviation varies between 2 – 3%-units. For the 6 cylinder
engine the variations are smaller. Further, the di�erence between the minimum and
maximum values for each parameter in the calibration curve varies between approx-
imately 1.5 – 4%-units for the inline six cylinder engine and 3 – 12%-units for the V8
engine. Another di�erence between the two engine con�gurations is the appearance
of the calibration curve. For the 6 cylinder engine the line starts at approximately 5%,
has a slightly positive slope, and ends at approximately 10%, which corresponds to the
computations in Example 1. For the V8 engine the line is quite di�erent, it starts at about
1 %, varies quite a bit, and ends at -1 %.�ese investigations indicate that the air mass-�ow
sensor has to be continuously monitored and adapted, to ensure safe and clean engine
operation over time.

�e large spread among the calibration curves for the V8 engine plot, of about 10%-
units from min to max, indicates that an ad hoc approach for compensating the sensor
signal using only a calibration curve (2.4) might not be enough, see Example 1. �e
quality has to be improved in a way that the spread is reduced as well.�ese observations
together with the importance of the estimates of λ and xegr necessitate an accurate
estimate of the air mass-�ow.
As Figure 2.5 shows there are no obvious trends in the data over time. However, due

to the relatively short time span over which the data is collected, it is hard to draw any
conclusions regarding long term aging of the air mass-�ow sensors.

2.3 Gas Flow Estimation
In the previous section it was shown that a sensor is not su�cient for acquiring an accurate
airmass-�ow signal, and themain two reasons were; i) the sensor needs to be calibrated to
compensate for its positioning in the intake system, ii) it needs continuous adaptation to
compensate for system aging and di�erent operating conditions caused by geographical
location, for example pressure, temperature, and humidity of the surrounding air.�is
section presents some basic approaches to cope with sensor adaptation and include ad
hoc mapping, according to (2.4), and Kalman �ltering (Kalman, 1960).�e investigation
analyzes the e�ect model quality has on the estimates from a model based estimator, and
is the topic of Section 2.3.1.

2.3.1 Methods for Improving Sensor Signals
�ere exist several ways of acquiring accurate estimates of these control and diagnosis
variables, e.g., direct measurement via physical sensors and model based estimation, and
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Figure 2.4: Min, max, mean, and standard deviation over all collected calibration curves
are presented for a 6 cylinder engine (upper plot) and a V8 engine (lower plot). It can be
seen that the variations are quite large for both engine con�gurations, especially for the
V8 engine.

all model based estimators are highly dependent on the accuracy of the model used.�is
becomes especially apparent if the assumptions in the design method do not hold. If
for example an EKF (Jazwinski, 1970) is used, the measurement and model errors are
assumed to be described by zero mean white noise processes, i.e. biased measurements is
not handled. Figure 2.6 presents estimates of the air mass-�ow from �ve di�erent sources;
raw measurement from the production sensor, adapted production sensor (2.4), model
output, EKF, i.e. combing the model and the adapted measurement, and a cell installed
reference sensor. All representing means of acquiring estimates of the air mass-�ow into
the intake system of an engine.
One observation from Figure 2.6 is that the model output Ŵmodel, computed us-

ing (2.1) and (2.2e), does not agree well withWref. It has an obvious o�set that is di�erent
for low and high air mass-�ows, but it manages to capture the system dynamics. From
this observation it is clear that the model does not fully describe the engine and these
model errors violate the assumptions made when utilizing the model to design an EKF,
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Figure 2.5:�e trend of four support points for a 6 cylinder engine (upper plot) and a
V8 engine (lower plot). It shows that there is no particular trend in either of the engine
con�gurations. Note that the samples are not equidistant.

i.e. zero mean Gaussian system and measurement errors. Another observation is that
also the raw measurement has an error that depends on the mass-�ow. In this case a
simple adaptation according to the calibration curve (2.3) in Section 2.2.1 signi�cantly
improves the estimation accuracy, see Ŵadapt.

Obviously the model output and the raw measurement performs poorly, and by
applying an adaptation scheme to the measurement much better estimates are acquired.
Similarly, by combining the model with the adapted measurement in an EKF, even better
estimates are achieved, see ŴEKF.

�ese estimators, the adapted mass-�ow sensor and the EKF, compile the essence
of the problems addressed in this thesis, i.e. the need for a systematic way of reducing
operating point dependent stationary estimation errors in model based estimators, and
the online adaptation of engine maps, or lookup-tables.
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Figure 2.6: Typical example of model output from a biasedmodel (Höckerdal et al., 2008),
whereWref is the air mass-�ow measured by a reference sensor. As o�en is the case, the
model captures the dynamics well but su�ers from operating point dependent stationary
errors. As comparison, the raw and adapted air mass-�ow sensor measurements are
presented, and an EKF using feedback from the adapted measurement is included as
well.

2.4 Publications and Contributions

�e overall goal with the work is the development of systematic methods that allow use
of models with errors, referred to as default models, for estimator design.�e focus is
on models based on �rst principles physics and a primary condition on the methods is
the preservation of the physical structure, or properties, of the models.
In system identi�cation, model error modeling (MEM) is treated in for example

Ljung et al. (1991); Stenman and Tjärnström (2000). However, since the focus here is on
default models that have biases, or other stationary errors, and aims at preserving the
physical structure of the model, the MEM path is not pursued. Methods that address
the issue of biased default models for estimation exist in e.g. model augmentation using
physical knowledge (Andersson and Eriksson, 2001) and proportional-integral (PI)
observers (Sö�ker et al., 1995; Koenig and Mammar, 2002).�e methods developed in
this thesis unify these ideas with the idea of estimating a minimal description of the
model bias.
In estimation, observability of the system is central to ensure consistent state and

parameter estimates.�is have made preservation of the default models’ observability
properties, in the developed methods, central. One method to check global observability
is for example Ljung and Glad (1994) which is applied to an engine example in Sokolov
and Glad (1999). However, this method applies to polynomial models and is not appli-
cable to the models addressed in this dissertation. Hence, local analyses using model
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linearizations, such as the Popov-Belevitch-Hautus (PBH)-test for ODE models (Kailath,
1980) and its DAE analogues (Dai, 1989), are used throughout the publications. An
important observation is that the system (2.1) is coupled, meaning that several states
have dependencies on both intake and exhaust states, which makes the default system
locally observable from any output.

2.4.1 Paper A – Model Augmentation for ODE:s
�e principal idea in the model augmentation is that local errors in the model may a�ect
several model states. Consider for example an observer based on the engine model (2.1)
consisting of three coupled volumes with one pressure state for each volume. �en
an error in one of the mass-�ow equations would, possibly, a�ect all three pressures.
Some possibilities are then to, introduce a model augmentation using physical intuition
(Andersson and Eriksson, 2001), or apply a PI-observer (Sö�ker et al., 1995).�e �rst
requires deep understanding of the modeled system while the latter only compensates
for bias in measured states used for feedback and does not bother about the origin
of the bias.�e developed method applies a separate step in the observer design that
estimates a low ordermodel error description, which is used formodel augmentation.�e
main contributions are a characterization of possible augmentations from observability
perspectives, a parameterization of the augmentations from themethod, and a robustness
analysis of the proposed augmentation estimation method.
An advantage of the developed method, compared to e.g. PI observers, is its ability

to incorporate information from extra sensors during the bias estimation. In this way
compensation of states not available for feedback in the �nal application is made possible.
It is also worth to note that both the model augmentation using physical knowledge and
the PI-observer �ts into the framework of the developed method.

2.4.2 Papers B and C – Map Adaptation
�e ideas above address the bias compensation through model augmentation, by describ-
ing the bias as a random walk, and thus does not store any information about the bias in
di�erent operating points. A common technique to handle operating point dependencies
in automotive applications is to introduce maps or look-up tables, (Guzzella and Am-
stutz, 1998; Peyton Jones and Muske, 2009).�ese maps are frequently used to describe
relations when physical models are unavailable, e.g., sensor and actuator characteristics,
cooler e�ciency, injector characteristics, and a�ertreatment systems. Common for these
maps is that they bene�t from continuous online adaptation to prevent undesired sys-
tem behavior. Routines for online map adaptation have been considered in Wu (2006);
Peyton Jones and Muske (2009), and a primary contribution in Paper B and Paper C is
simultaneous bias compensation and online map adaptation.

2.4.3 Paper D – ODE vs. DAE in Estimation
Using models with both fast and slow dynamics, i.e. sti� models, in real time estimation
may be numerically problematic.�e problem of sti� models, described by ordinary
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di�erential equations (ODE), for engine control is closely connected to the embedded
system in which it is implemented and its computational limitations. In engine control
units (ECU), a main di�culty with sti� models is that the model execution is scheduled
in loops with �xed frequencies, that limits the ECU:s capability of satisfactory solving the
di�erential equations. A possible solution (Hairer andWanner, 2000, Chapter 6), used in
for example electrochemical and reactive distillation processes (Mandela et al., 2010), is
to approximate fast dynamics with instantaneous relations, i.e. algebraic conditions. With
this approach a sti� ODE would be transformed into a system of di�erential algebraic
equations (DAE), while keeping the overall model structure.�is is exploited for a diesel
engine model with intake manifold throttle, EGR, and VGT in Paper D.�e stability and
estimation accuracy of an EKF based on the default sti� ODE is compared to that of an
EKF based on the corresponding DAE. It is shown that even though the ODE, for each
time-update, is less computational demanding than the resulting DAE, an EKF based
on the DAE achieves better estimation performance with less computational e�ort.�e
main gain with the DAE based EKF is that it allows signi�cantly increased step lengths
without degrading the estimation performance compared to the ODE based EKF.

2.4.4 Paper E – Model Augmentation for DAE:s
�e number of models described by DAE:s have increased, partly due to modern model-
ing tools such as Dymola, or similar tools using the Modelica®modeling language, and
Simscape that o�en deliver DAEmodels and since DAE:s are a way of describing systems
with both slow and fast dynamics. As more and more DAE models are available, it is
natural to use them for observer or estimator design. Also these models may su�er from
de�ciencies that make them unsuitable for direct use in estimation and Paper E extends
the model augmentation results for ODE:s from Paper A to DAE:s.�e main contribu-
tions are necessary and su�cient conditions for the preservation of the observability
properties of the default model during the augmentation.
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Appendix A

Model Details

Below follows a summary of themodel equations using the symbols and indices presented
in Tables A.1 and A.2.�e model states, inputs, and outputs are presented in Table A.3
and more details about the model is found in Wahlström and Eriksson (2010).

Manifolds

Intake manifold

d
dt

pim =Ra Tim
Vim

(Wth +Wegr −Wei)

Exhaust manifold

d
dt

pem =Re Tem
Vem

(Weo −Wegr −Wt) +
pem
Tem

d
dt

Tem

d
dt

Tem = Re Tem
pem Vem cve

((Weo −Wegr −Wt) cve(Tem,in − Tem)+

Re(Tem,in (Weo −Wegr −Wt) − Tem (−Weo +Wegr +Wt)))

Intercooler

d
dt

pic =
Ra Tim
Vic

(Wc −Wth)
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Intake Throttle

Wth =
pic Ψth(Πth)Ath,max fth(uth)√

Tim Ra

Ψth(Πth) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ψ∗th(Πth) if Πth ≤ Πth,lin

Ψ∗th(Πth,lin)
1−Πth
1−Πth,lin

if Πth,lin < Πth

Ψ∗th(Πth) =
√
2 γth

γth − 1
(Π2/γthth −Π1+1/γthth )

Πth =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 2
γth+1

)
γth

γth−1 if pim
pic

< ( 2
γth+1

)
γth

γth−1

pim
pic

if ( 2
γth+1

)
γth

γth−1 ≤ pim
pic

≤ 1

1 if 1 < pim
pic

fth(uth) = bth1(1 − cos(min(ath1 uth + ath2 , π))) + bth2

Cylinder
Cylinder Flow

Wei =
ηvol pim ne Vd
120Ra Tim

ηvol = cvol1
rc − ( pem

pim
)
1/γe

rc − 1
+ cvol2W2

f + cvol3Wf + cvol4

Wf =
10−6

120
uδ ne ncyl

Weo =Wf +Wei

ExhaustManifold Temperature
Cylinder out temperature

Te = Tim +
qHV fTe(Wf , ne)

cpeWeo

fTe(Wf , ne) = fTeWf(Wf) ⋅ fTene(ne)
fTeWf(Wf) =cfTeWf1W3

f,norm + cfTeWf2W2
f,norm + cfTeWf3Wf,norm + cfTeWf4

fTene(ne) =cfTene1 n2e,norm + cfTene2 ne,norm + 1

Wf,norm =Wf ⋅ 100, ne,norm = ne
1000
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Heat losses in the exhaust pipe

Tem,in = Tamb + (Te − Tamb) e−
htot π dpipe lpipe npipe

Weo cpe

EGR-Valve

Wegr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Aegr pem Ψegr(
pim
pem
)

√
Tem Re

if pem ≥ pim

− Aegr pim Ψegr( pem
pim
)

√
Tegr,cool Ra

if pem < pim

Ψegr(Πegr) = 1 − (
1 −Πegrlim(Πegr)
1 −Πegropt

− 1)
2

Πegrlim(Πegr) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Πegropt if Πegr < Πegropt

Πegr if Πegr ≥ Πegropt
Aegr = Aegrmax fegr(uegr)

fegr(uegr) = begr1(1 − cos(min(aegr1uegr + aegr2 , π))) − begr1(1 − cos(min(aegr2 , π)))

Turbocharger
Turbo Inertia

d
dt

ωt =
Pt ηm − Pc

Jt ωt

Turbine Efficiency
Pt ηm = ηtm Pt,s = ηtmWt cpe Tem (1 −Π1−1/γet )

ηtm = ηtm,BSR(BSR) ⋅ ηtm,ωt(ωt) ⋅ ηtm,uvgt(uvgt)

ηtm,BSR(BSR) = 1 − bBSR (BSR2 − BSR2opt)2

BSR = Rt ωt√
2 cpe Tem (1 −Π1−1/γet )

ηtm,ωt(ωt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − bωt1 ωt if ωt ≤ ωt,lim

1 − bωt1 ωt,lim − bωt2(ωt − ωt,lim) if ωt > ωt,lim

ηtm,uvgt(uvgt) = bvgt1 u3vgt + bvgt2 u2vgt + bvgt3 uvgt + bvgt4

Πt =
pt
pem
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TurbineMass-Flow

Wt =
Avgtmax pem fΠt(Πt) fωt(ωt,corr) fvgt(uvgt)√

Tem Re

fΠt(Πt) =
√
1 −ΠKt

t

fωt(ωt,corr) = 1 − cωt (ωt,corr − ωt,corropt)2

ωt,corr =
ωt

100
√
Tem

fvgt(uvgt) = cf2 + cf1

¿
ÁÁÁÀmax

⎛
⎝
0, 1 − (

uvgt − cvgt2
cvgt1

)
2⎞
⎠

Compressor Efficiency

Pc =
Pc,s
ηc

= Wc cpa Tamb
ηc

(Π1−1/γac − 1)

Πc =
pic
pamb

ηc(Wc,corr , Πc) = ηc,W(Wc,corr , Πc) ⋅ ηc,Π(Πc)
ηc,W(Wc,corr , Πc) = 1 − aW3(Wc,corr − (aW1 + aW2 Πc))2

ηc,Π(Πc) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

aΠ1 Π2c + aΠ2 Πc + aΠ3 if Πc < Πc,lim

aΠ4 Π2c + aΠ5 Πc + aΠ6 if Πc ≥ Πc,lim

aΠ6 = Π2c,lim(aΠ1 − aΠ4) +Πc,lim(aΠ2 − aΠ5) + aΠ3

Wc,corr =
Wc

√
(Tamb/Tref)

(pamb/pref)

CompressorMass-Flow

Wc =
pamb π R3c ωt
Ra Tamb

Φc

Ψc =
2 cpa Tamb (Π1−1/γac − 1)

R2c ω2t

Φc =
kc1 − kc3 Ψc
kc2 −Ψc

kci = kci1 (min(Ma,Mamax))2 + kci2 min(Ma,Mamax) + kci3 , i = 1, . . . , 3

Ma = Rc ωt√
γa Ra Tamb
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Table A.1: Symbols used in the plant model.

Symbol Description Unit

A Area m2
BSR Blade speed ratio –
cp Spec. heat capacity, constant pressure J/(kg⋅K)
cv Spec. heat capacity, constant volume J/(kg⋅K)
J Inertia kg⋅m2
ncyl Number of cylinders –
ne Rotational engine speed rpm
p Pressure Pa
P Power W
qHV Heating value of fuel J/kg
rc Compression ratio –
R Gas constant J/(kg⋅K)
R Radius m
T Temperature K
uegr EGR control signal† %
uth �rottle control signal† %
uvgt VGT control signal† %
uδ Injected amount of fuel mg/cycle
V Volume m3
W Mass �ow kg/s
γ Speci�c heat capacity ratio –
η E�ciency –
Π Pressure quotient –
ρ Density kg/m3
Φc Volumetric �ow coe�cient –
Ψc Energy transfer coe�cient –
ω Rotational speed rad/s
† 0 – closed, 100 – open
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Table A.2: Indices used in the
plant model.

Index Description

a air
amb ambient
c compressor
d displaced
e exhaust
egr EGR
ei engine cylinder in
em exhaust manifold
eo engine cylinder out
ic intercooler
f fuel
im intake manifold
t turbine
th throttle
vgt VGT
vol volumetric
δ fuel injection

Table A.3: States, inputs, and
outputs of the plant model.

States Inputs Outputs

pim uδ pim
pem uth pem
pic uegr pic
ωt uvgt ωt
Tem ne Wc



Appendix B

Experimental Setup and Data

�e data are collected in engine test cells at Scania CV AB in Södertälje, Sweden and are
from two inline six cylinder Scania diesel engines with EGR and VGT. One of the engines
was also equipped with an intake manifold throttle.�e data were collected during a
European transient cycle (ETC) (Council of European Parliament, 2005) for the engine
without throttle, and a World harmonized transient cycle (Economic Commission for
Europe – Inland Transport Committee, 2010) for the engine with throttle.�e sensor
signals used in all experimental evaluations are; intake and exhaust manifold pressures,
turbine speed, and engine speed. Actuator signals used are; VGT and EGR positions,
and injected amount of fuel. All these signals are available on a standard engine, i.e. no
extra laboratory sensors were used, and collected at a sampling rate of 100Hz.
An extra air mass-�ow sensor, Wref, is used as a reference for the experimental

evaluation in Chapter 2. �is signal is logged using a di�erent measurement system
at a sampling frequency of 10Hz.�e measurements from the di�erent measurement
systems are synchronized for the evaluation.�e synchronization is made by comparing
measurements of the engine speed which is logged with both systems, and performing a
time shi�.

Sensor Dynamics
To justify that it is the system dynamics that is captured in the measurements, i.e. the
sensors are fast enough to be able to track the system dynamics, a brief presentation of
the sensor data is presented.�e sensor speci�cations are provided by Scania.

�e pressure sensors are capacitive pressure sensors and have a �rst order step
response time constant of approximately 15ms for the intake manifold pressure, and
20ms for the exhaust manifold pressure.�e intake manifold and intercooler pressure
sensors are mounted directly in the intake manifold and right before the throttle, while
the exhaust manifold sensor is mounted on an 0.4m long pipe to avoid heat and soot.

29
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�e mass-�ow sensor measuring the air mass-�ow through the compressor is a hot-
wire sensor also with a �rst order response and a time constant of 20ms.�e closed-loop
control circuit maintains a constant temperature di�erential between the passing air
stream and a platinum wire.�e current required to heat the platinum wire provides an
index of the air mass-�ow.

�e rotational speed sensors are inductive and measure the periodic variation in
the magnetic �ux generated by ferromagnetic ring gears passing induction coils. For
the engine speed a cog passes the coil every sixth cranksha� degree and the signal used
throughout this thesis is the mean value of 20 consecutive cog passes.�is gives a time
constant of approximately 20⋅(1-e−1) ≈ 13 samples. For the turbo speed there is only one
cog on the ring gear and the signal used throughout the thesis is the median of three
consecutive coil passes. �at is, the maximum lag is roughly 13 times six cranksha�
degrees and 2 times 360 turbo sha� degrees respectively. For the engine idle speed of
500 rpm, this gives a maximal time constant of approximately 13⋅(500/60⋅(360/6))−1
= 26ms, and for turbo speeds over 20 000 rpm, which is the minimum revolution
speed for which the sensor works, this gives a maximum time delay of approximately
2⋅(20 000/60)−1 = 6ms. Since these sensor responses are signi�cantly faster than the
dynamics seen in measurements they are neglected throughout the thesis.

Reference Signal –Wref

�e measured reference outputWref is a cell sensor measuring the air mass �ow into
the engine. It is a Sensy�ow P-Tube hot-wire sensor with type no. 14241-7962638 and
a measuring range of 0.055-1.111 kg/s. �e uncertainty is less than 1% of reading and
the sensor has a response time of 12ms.�is sensor is placed approximately 4meters in
front of the engine air mass-�ow sensor on a straight pipe with a diameter of 0.28m.�e
sensor reading is assumed to be without errors, due to the almost ideal sensor placement.
�e volume and distance between the two sensors give rise to unwanted dynamics.
Calculations show that the �lling and emptying dynamics from this volume has a time
constant of approximately 10ms and the e�ect from wave propagation has approximately
the same traveling time, which is small in comparison to the time constants of the system.




