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ABSTRACT

Control and diagnosis of complex systems demand accurate information of the system
state to enable efficient control and to detect system malfunction. Physical sensors are
expensive and some quantities are hard or even impossible to measure with physical
sensors. This has made model-based estimation an attractive alternative.

Model based observers are sensitive to errors in the model and since the model
complexity has to be kept low to enable use in real-time applications, the accuracy of
the models becomes limited. Further, modeling is difficult and expensive with large
efforts on model parametrization, calibration, and validation, and it is desirable to design
robust observers based on existing models. An experimental investigation of an engine
application shows that the model have stationary errors while the dynamics of the engine
is well described by the model equations. This together with frequent appearance of
sensor offsets have led to a demand for systematic ways of handling operating point
dependent stationary errors, also called biases, in both models and sensors.

Systematic design methods for reducing bias in model based observers are devel-
oped. The methods utilize a default model, described by systems of ordinary differential
equations (ODE) or differential algebraic equations (DAE), and measurement data. A
low order description of the model deficiencies is estimated from the default model and
measurement data, which results in an automatic model augmentation. The idea is then
to use the augmented model in observer design, yielding reduced stationary estimation
errors compared to an observer based on the default model. Three main results are: a
characterization of possible model augmentations from observability perspectives, a
characterization of augmentations possible to estimate from measurement data, and a
robustness analysis with respect to noise and model uncertainty.

An important step is how the bias is modeled, and two ways of describing the bias
are analyzed. The first is a random walk and the second is a parameterization of the bias.
The latter can be viewed as an extension of the first and utilizes a parameterized function
that describes the bias as a function of the operating point of the system. By utilizing
a parameterized function, a memory is introduced that enables separate tracking of
aging and operating point dependence. This eliminates the trade-off between noise
suppression in the parameter convergence and rapid change of the offset in transients.
Direct applications for the parameterized bias are online adaptation and offline calibration
of maps commonly used in engine control systems.

The methods are evaluated on measurement data from heavy duty diesel engines. A
first order model augmentation is found for an ODE of an engine with EGR and VGT.
By modeling the bias as a random walk, the estimation error is reduced by 50 % for a
certification cycle. By instead letting a parameterized function describe the bias, better
estimation accuracy and increased robustness is achieved. For an engine with intake
manifold throttle, EGR, and VGT and a corresponding stiff ODE, experiments show
that it is computationally beneficial to approximate the fast dynamics with instantaneous
relations, transforming the ODE into a DAE. A main advantage is the possibility to
use more than 10 times longer step lengths for the DAE based observer, without loss of
estimation accuracy. By augmenting the DAE, an observer that achieves a 55 % reduction
of the estimation error during a certification cycle is designed.
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POPULARVETENSKAPLIG SAMMANFATTNING

I dagens sambhille har transporter av olika slag en betydande roll och pé land star den
tunga lastbilen f6r en majoritet av dessa. Samtidigt som transportbehovet stindigt 6kar
staller bade emissionslagstiftning och kunder allt hogre krav pa minskade utslapp och
minskad bransleférbrukning. For dieselmotorer &r det utslapp av partiklar, det vill sdga
oforbrint bransle och smoérjoljerester, samt utslapp av kvéaveoxider och koldioxid som
omfattas. Kraven innebdr bade att hélla forbranningsemissionerna nere under normal
drift och att fel som medfor risk for forhojda emissioner méste kunna upptickas, vilket
driver den tekniska utvecklingen framat. Med introduktionen av nya tekniska losningar
samt hardare emissionskrav foljer behovet av tillférlitlig information om motorns interna
tillstand for att mojliggora robust och séker drift. Till exempel behover information om
tryck, temperatur och syre/bransle-forhéllande tas fram.

Dock ar det inte ekonomiskt eller praktiskt mojligt att anvénda fysiska sensorer for
att méta alla dessa parametrar. Det hir har medfort introduktionen av matematiska
modeller 6ver motorn, vilka tillsammans med tillgédngliga sensorer anvands for att ta
fram information om motorns tillstind. Modellerna baseras ofta pé fysikaliska samband
for exempelvis energi- och massbevarande. De ér dyra att utveckla dé det tar tid att
ta fram de matematiska samband som krévs. Dessutom tillkommer aktiviteter sasom
parametrisering, kalibrering och validering. Oavsett hur mycket tid som laggs pa att
ta fram modellen kommer den aldrig att bli perfekt. I de fall dar kraven pa modellens
berikningskomplexitet dr hoga blir detta extra tydligt, vilket ér fallet i de flesta realtidsap-
plikationer. Resultatet frin modellen kommer alltsd att avvika fran de verkliga virdena,
och det blir viktigt att reducera fel i skattningar som uppkommit till f6ljd av fel i modellen.

Det har darfor vuxit fram ett intresse f6r metoder som mojliggér anvindning av
modeller behiftade med fel for att berdkna motorers interna tillstind med hog nog-
grannhet. Syftet med forskningen som presenteras i avhandlingen ar dérfér att utveckla
systematiska metoder som, utan att involvera extra modellering, héjer noggrannheten
i skattningar baserade pd modeller som innehaller fel. Metoderna hjdlper ingenjoren,
som har god kinnedom om systemet, modellen och dess brister, att svara pa fragan om
kompensation for ett visst fel 4&r mojlig, samtidigt som metoderna kan peka ut andra
potentiella felkéllor. Ur metoderna fas en felbeskrivning som anvénds for att utdka mod-
ellen. Genom att nyttja denna modell, utokad med felbeskrivning, kan information om
motorns tillstdnd berdknas med hogre noggrannhet. I motorstyrenheter 4r dessutom
uppslagstabeller for att beskriva komplicerade fenomen dar fysikaliska modeller saknas
vanligt forekommande. Dessa ar ofta i behov av kontinuerlig anpassning for att kom-
pensera for drift, aldrande och slitage av motorns fysiska komponenter och de framtagna
metoderna lampar sig vl dven for detta andamal.

Sammanfattningsvis forenar metoderna teori, som garanterar tillforlitliga och sta-
bila skattningar, med industriella tillimpningar sdsom anpassning av uppslagstabeller.
Metoderna ér utvarderade med hjélp av métdata fran standardiserade certifieringscykler
insamlade i motorprovceller pa Scania i Sodertilje. I dessa cykler uppvisas minskningar
av skattningsfel pa i medel omkring 50 %. Reduktionen av skattningsfel mojliggér nog-
grann reglering, med minskade emissioner och bréansleférbrukning, samt forbattrar
mojligheterna att upptacka sma fel.
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Chapter 1

Introduction

Transportation is of vital importance in the modern economy and a major part of these
transportations are carried out by trucks, e.g., in Europe and United States road vehicles
account for more than 70 % of the inland freight transport (Noreland, 2008; Bradley,
2000). As a consequence, a major part of the emissions from the vehicular traffic is from
trucks. It is therefore necessary to reduce the emissions and fuel consumption.

Stricter emission legislations and customer demands on low fuel consumption drive
the technical development of engines and force new solutions to be introduced. To cope
with reduced emission limits on diesel engines, for example intake manifold throttle,
exhaust gas recirculation (EGR), and variable geometry turbine (VGT) are introduced, see
Figure 1.1. This technical development, with increased system complexity and tightened
requirements from customers and legislators, increase the demands on the control
and diagnosis systems. Two examples of important quantities that significantly affect
the emissions from diesel engines are: air to fuel ratio (1) and EGR-fraction (xcg).
The increased demands on the control and diagnosis systems, increase the required
information quality of A and x.g. At the same time it is desirable to have as few and
cheap sensors in the system as possible to keep the cost down. This has made estimation
an important and active research area, see e.g. Colin et al. (2009); Lino et al. (2008);
Garcia-Nieto et al. (2008); Andersson and Eriksson (2004).

Model based estimators are often used to achieve cost-effective estimation with
high accuracy. This has driven the development of new models that are suitable for
estimator design. These models have to be simple enough to be evaluated in real time,
by for example an engine control unit (ECU), and at the same time describe the system
behavior accurately enough for the estimation task. Development of these models is a
delicate balance between computational complexity of the model and how well it manages
to describe the true system. Typically, a large engineering effort is spent on modeling,
often combining first law physics and system identification techniques.

In all model based control or diagnosis systems, the performance of the system is
directly dependent on the accuracy of the model. In addition, as stated above, modeling
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(a) Exhaust gas recirculation (EGR) system (b) Variable geometry turbine (VGT)

Figure 1.1: Technical solutions introduced on modern diesel engines to be able to fulfill
the stricter emission legislations. Courtesy Scania CV AB.

is time consuming and even if much time is spent on physical modeling, there will
always be errors in the model. The causes of these model errors can be quite varying;
the model accuracy can depend on the operating point (Zimmerschied and Isermann,
2010), changes in ambient conditions (Won et al., 1998), the aging of components (Rupp
and Guzzella, 2010), etc., all of which affect the system properties and hence the model
errors. Model deficiencies are especially common if there are constraints on the model
complexity, as is the case in most real time applications. Another scenario is that a model
developed for some purpose, for example control, exists but needs improvement before it
can be used for other purposes, for example diagnosis. That is, there exists a lot of models,
on which much modeling time is spent, that needs improvement before they can be used
in an estimation application. A common situation is that, while the dynamics is well
captured by the model, there are stationary errors, possibly operating point dependent
(Hockerdal et al., 2008). Hereafter, these already available models will be called default
models. Since modeling is time consuming, and hence expensive, methods that enable
use of these default models in estimation without involving extensive modeling efforts
are needed.

In engine control and diagnosis, it is crucial to have good and unbiased estimates.
In model based diagnosis (Ceccarelli et al., 2009) the true system is monitored using
residuals, formed as the difference between estimated and measured signals. If the
residual exceeds a threshold, it is concluded that something is wrong (Blanke et al., 2003;
Isermann, 2011). In engine control (Stefanopoulou et al., 2000; Ortner and del Re, 2007;
Plianos and Stobart, 2011), one objective is to control torque output while keeping the
emissions below legislated levels and the fuel consumption as low as possible (Guzzella
and Amstutz, 1998). Here, unbiased estimates are crucial since fuel consumption and
emissions are often in conflict with each other. The hard constraints on the emissions
force the engine operation away from the most fuel efficient operating point. With
reduced stationary estimation errors the control system can balance closer to the fuel
optimal operating point without the risk of violating the emission limits. For diesel
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engines this is especially difficult since the control system normally does not have any
feedback information from a A or nitrogen oxides (NOy) sensor and have to rely on
estimated signals instead (Wang, 2008). In both cases, biased estimates impair the
performance.

Finally, the development of engines and engine control systems involves extensive
testing, both during the development of the control strategies and the engine calibration.
Data is collected in engine test cells as well as in laboratory vehicles. This means that
it is fairly easy to obtain system measurements. The sensors available are often both
production sensors, that will be available on the commercial product, and high grade
laboratory sensors added to enable extra monitoring. These laboratory sensors provide
valuable information that can be used during the development phase, allowing estimation
of model errors not possible to find with only production sensors.

1.1 PROBLEM STATEMENT

The objective is to develop systematic methods for reducing estimation errors given a
default model and measurement data, without involving extensive modeling efforts.

The starting point is a default model and measurement data from the true system.
From this it can be determined if the model describes the system sufficiently well or if it
has to be modified to be applicable to the intended estimation application. The focus is
on adjustments with respect to operating point dependent stationary estimation errors.

If it is concluded that the model suffers from too large stationary errors and cannot
be used for estimation in its current state, then the methods developed for reducing
stationary estimation errors can be applied. The ideas in the developed methods are to
augment the default model with bias states that compensate for operating point dependent
stationary errors. This augmented model can then be used in any suitable estimator
design to get an adaptive estimator with reduced stationary errors compared to using
the default model directly.

1.2 THESIS OUTLINE

The theme throughout the thesis is the successive development of methods for compen-
sating operating point dependent stationary model errors in the design of estimators.
The studied topics originate from estimation of gas flows in heavy duty diesel engines
using existing mean value engine models (MVEM) (Hendricks, 1986; Jensen et al., 1991;
Hendricks, 2001; Eriksson et al., 2002), referred to as default models.

Chapter 2 is based on Hockerdal et al. (2008) and describes an important estimation
problem from the automotive industry. It gives an overview of the heavy duty diesel
engine and model used for evaluation throughout the dissertation. This particular system
is used to analyze how the quality of a sensor signal can be improved as well as how the
quality can be assessed. The chapter illustrates the effect that a model with stationary
errors has on the estimates when used in estimator design. Chapter 2 ends with a
compilation of the contributions and their relation to other scientific work.
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Papers A and E, based on Hockerdal et al. (2009) and Hockerdal et al. (Submitted),
present systematic methods for bias compensation in model based estimator design for
ordinary differential equation (ODE) and differential algebraic equation (DAE) models
respectively. The methods apply the idea of introducing extra states, g € R", for adjusting
the stationary operating point of the model, i.e. x°* - (x° — A;q), according to

x=f(x-Aqgq,u) (112)
G=0 (1.1b)
y = h(x), (11¢)

where x € R"* are the states, u € R"* the inputs, and y € R" the outputs. In (1.12), g
represent the underlying cause of the bias, A, its affection of the original states, x, and
A, q shifts the stationary point of the model. Automatized methods for estimating low
order augmentations, A, from measurement data are developed.

An operating point dependent bias can exhibit both fast and slow dynamics, arising
from, for example, operating point dependent bias (Zimmerschied and Isermann, 2010)
and aging (Rupp and Guzzella, 2010). Papers B and C address this problem in an
integrated way by modeling the bias as a parameterized function,

chn(x, u, 0)) (1.2)

of known states and/or inputs instead of as an extra state

X = f(x, u, qfcn(x> u, 0))
6=0 (13)
y = h(x).

The idea with a construction like (1.3) is to capture the operating point dependence of
the bias by the parametrization (1.2), and use the parameters, 6 € R"?, introduced as
new states, to track the aging. Paper B presents a solution and establishes necessary
conditions for observability in the case the parameterized function is described by 1-D
linear interpolation and an interpolation variable that is measured. Paper C extends the
results with a simulation example using a 2-D cubic spline interpolation.

Paper D analyzes computational issues that arise when designing an observer for a
stiff ODE system, containing both slow and fast dynamics, and especially what can be
gained by approximating the fast dynamics with instantaneous relations resulting in a
DAE system, i.e.

Xslow = f(xslow> Xfast> u) Xslow = f(xslow; Xfast> u)

Xfast = g(xslc)W) Xfast» u) 0= g(xslow, Xfast> u)

In an observer, efficient and accurate solution of these continuous-time models is neces-
sary and has to be done in discrete-time. The properties of forward and backward Euler
for discretization of the continuous-time model are also analyzed.
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1.3

CONTRIBUTIONS

The main contributions are:

*

1.4

The experimental analysis of model and sensor errors of heavy duty diesel engines
[Chapter 2].

Methods for estimating a low order bias compensating model augmentation using
a default ODE or DAE model and measurements from the true system [Papers A
and E].

Necessary and sufficient conditions for model augmentations that maintain sys-
tem observability for ODE:s and DAE:s [Paper A, Theorem 4.2, and Paper E,
Theorem 4.2].

Parametrization of all model augmentations that are possible to obtain with the
proposed estimation algorithms [Paper A, Theorem 5.1].

An algorithm for engine map adaptation with variable parameter update rate
[Paper B], with an additional 2-D cubic spline application example [Paper C].

An analysis of the benefits of approximating fast dynamics with instantaneous
relations, transforming an ODE model into a DAE model, for EKF:s [Paper D].

PUBLICATIONS

The dissertation is based on the work presented in the following publications.

JOURNAL PAPERS

Erik Hockerdal, Erik Frisk, and Lars Eriksson. EKF-based Adaptation of Look-Up
Tables with an Air Mass-Flow Sensor Application. In: Control Engineering Practice,
19(5):442-453, 2011. [Paper B]

Erik Hockerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation With a Truck Engine Application. In: Control
Engineering Practice, 17(3):408-417, 2009. [Paper A]

Erik Hockerdal, Lars Eriksson, and Erik Frisk. Air mass-flow measurement and
estimation in diesel engines equipped with EGR and VGT. In: SAE Int. ]. Passeng.
Cars - Electron. Electr. Syst., 1(1):393-402, 2008.

SUBMITTED

Erik Hockerdal, Erik Frisk, and Lars Eriksson. DAE and ODE Based EKF:s and
their Real-Time Performance Evaluated on a Diesel Engine. In: IEEE Transactions
on Industrial Electronics, 2011. [Paper D]
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Boox CHAPTER

Erik Hockerdal, Lars Eriksson, and Erik Frisk. Off- and On-Line Identification of
Maps Applied to the Gas Path in Diesel Engines. In: Identification for Automotive
Systems, Linz, Accepted for Publication, 2010. [Paper C]

CONFERENCE PAPERS

Erik Hockerdal, Erik Frisk, and Lars Eriksson. Model Based Engine Map Adap-
tation Using EKE In: 6th IFAC Symposium on Advances in Automotive Control.
Munich, Germany, 2010.

Erik Hockerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation Applied to an Engine. IFAC World Congress.
Seoul, Korea, 2008.

Erik Hockerdal, Lars Eriksson, and Erik Frisk. Air mass-flow measurement and
estimation in diesel engines equipped with EGR and VGT. In: Electronic Engine
Controls. SAE Technical Paper 2008-01-0992. SAE World Congress, Detroit, USA,
2008.

SUBMITTED

Erik Héckerdal, Erik Frisk, and Lars Eriksson. Bias Reduction in DAE Estimators
by Model Augmentation: Observability Analysis and Experimental Evaluation. In:
soth IEEE Conference on Decision and Control and European Control Conference,
Orlando, Florida, 2011. [Paper E]



Chapter 2

Model Error Compensation

As a prelude to the publications, some additional background is given with the purpose of
putting the contributions into context. Even though the developed methods are general
and applies to non-linear ODE and DAE models they are evaluated on automotive engine
examples. A main challenge in engine control and diagnosis is accurate estimation of
the internal state of the engine and was briefly described in Chapter 1 together with the
contributions. This chapter elaborates on this, pointing out the necessity of unbiased
estimates in engine control, and presenting some common properties of ordinary engine
models. An overview of the heavy duty diesel engine with intake manifold throttle, EGR,
and VGT is given in Section 2.1. Section 2.2 presents important control variables, the
necessity of unbiased estimates, and the need for continuous adaptation in engine control
and diagnosis, while Section 2.3 briefly describes the effect of biased models in model
based estimation. Section 2.4 presents the publications with focus on the contributions
and their relation to other scientific work.

2.1 APPLICATION EXAMPLE

This section serves as an overview of the system and the default models that are used
for evaluation of the developed methods throughout the thesis. It also introduces the
nomenclature, and presents important control quantities used in the control of diesel
engines. Even though the methods developed are not specially devoted to engine appli-
cations, they are all applied and evaluated on the gas flow system of a Scania heavy duty
diesel engine, like the one presented in Figure 2.1.

The default models used in the evaluations of the methods are developed in Wahlstrom
and Eriksson (Accepted for publication), and Wahlstrém and Eriksson (2010). The main
difference between the models are that the latter includes an intake manifold throttle,
accompanied by an extra state for the intercooler pressure, and a state for the exhaust
manifold temperature.
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Figure 2.1: Cutaway view of the Scania inline six cylinder engine with VGT and EGR
used for evaluation. Courtesy Scania CV AB.

Schematics of the more complex model from Wahlstrém and Eriksson (2010) is
presented in Figure 2.2, where most of the modeled variables are presented. Control
inputs to the model are injected amount of fuel us and the positions of EGR, VGT, and
throttle valves; uegr, Uvgr, and ug,. The engine speed 7. is used as a parameterization
input beside the control inputs, and thus the engine model can be expressed in state
space form as

x=f(x,u,ne)
y = h(x).

In these applications #. is an input to the model which is due to the fact that the modeling
is focused on the gas flows and does not include modeling of the produced torque
and drive line. States are pressures in the intercooler, intake manifold and exhaust
manifold, pic, pim and pem, turbine speed wy, and exhaust manifold temperature, Tep,.
Also presented are modeled signals for the, compressor mass-flow W, throttle mass-flow
Win, EGR mass-flow Weg,, mass-flow into the engine W,;, mass-flow out of the engine
Weo» and turbine mass-flow W;. Outputs from the model are the states, pim, Pem> Pic>
and wy, and the compressor mass-flow W,. Equations (2.1) and (2.2) presents a summary
of the model and measurement equations and more details are presented in Appendix A.

:fpim(pima Pem> Pic> Tem’ Us, Uegr, Uth> ne)
fpem(ley Pem> wi, Tems Us, Uegr> Uvgts Ne
fp,c (p1m> Pic: W, Uth (2'1)

Pem> Pic> Wt» Tem, Uygt

Wt

~— — — ~—

fTem le, pema W, Tem> us, uegr) uvgts Ne
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Figure 2.2: Schematic of the diesel engine model (Wahlstrém and Eriksson, 2010) with
intake manifold throttle, EGR, and VGT, showing model states (pim, pem> Pic> @t, and
Tem) control inputs (uegr, Uvgt, Us, and uy), parametrization input (#.), and flows
between the different components (W, Win, Wegrs Wei, Weo, and W;). Rectangles with
rounded corners represent control volumes.

Y1 = Pim (2.2a)
Y2 = Pem (2.2b)
V3 = Pic (2.2¢)
Y4 = Wy (2.2d)
ys = We (picr wt) (2.2¢)

The data used is collected in engine test cells at Scania CV AB in Sodertilje, Sweden,
and a detailed sensor setup that includes accuracy and placement of the sensors used is
presented in Appendix B.

2.2 GAS FLOw MEASUREMENT

The air mass-flow into the engine is a central quantity in the engine control systems and
is hence often measured. It is used for many purposes and influences both the engine
performance and emissions, and it is therefore essential to have an air mass-flow signal of
good quality. One important issue with the air mass-flow sensor is its characteristics and
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Linearly interpolated air mass-flow calibration curve
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Figure 2.3: Air mass-flow sensor calibration curve with 12 grid points.

long term stability. To analyze this, two questions are addressed: how does the sensor
characteristic evolve over time, and how does it vary between engine configurations?
To answer these questions, systematic engine test cell measurements have been
conducted on a limited range of air mass-flow sensors over the span of several weeks.
A central piece of information is a sensor calibration curve that has been recorded and
stored for all days and tests. The data is analyzed with respect to day-to-day variations,
aging, and changes between configurations. The calibration curve r( Wy, ) is defined by

eref

r(vvraw) = W,

-1, (2.3)

where W,.s is a reference sensor mass-flow sensor and W;,, is the raw engine air mass-
flow measurement. The calibration curve is found by comparing the production air
mass-flow sensor W,y to a reference mass-flow sensor Wiy, for a long series of engine
measurements. The reference sensor W, is available only in the engine test cell for the
purpose of accurately being able to measure the air mass-flow into the engine, and has an
uncertainty of less than 1% and a response time of 12 ms. It is mounted on a straight pipe
in the test cell, where the air mass-flow over the cross section of the pipe is orthogonal to
the sensor and cylindrically symmetric, and is considered to give accurate measurements
of the air mass-flow. The calibration curve is implemented as a lookup-table consisting
of 12 grid points, see Figure 2.3 for an example. Using this calibration curve to adjust the
raw sensor measurement an adapted sensor signal can be computed

Wadapt = (1 + T( ‘/Vraw)) ‘/Vraw: (2-4)

which gives a more accurate estimate of the true air mass-flow into the engine.

The air mass-flow signal is needed for computations of air to fuel ratio, A, and EGR-
fraction, Xcg,. Both are important quantities that significantly affect the emissions. The
air to fuel ratio is defined as

_ Wair
Whyel (A/ F )s ’
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where W, is the air mass-flow into the engine, Wiyl the fuel mass-flow, and (A/F), the
stoichiometric air to fuel ratio. In diesel engine control it is important to keep A above
a certain limit, Agmoke 1im> to avoid generating smoke. Normally, when A is greater than
Asmoke lim> Wiuel i determined by the desired torque. However when the desired torque
forces A t0 Agmoke 1im> the control law enters a mode where Wy, is proportional to Wyi,,
(Wahlstrém, 2006). This is particularly important during transients where the torque
demand is high, e.g. during acceleration. In these cases, an error in the air mass-flow
signal results in either creation of smoke or reduced torque output. The other important
quantity, is the EGR-fraction defined as

Xegr = M/tot B M/air ,
Wiot
where Wi is the total gas mass-flow into the engine, i.e. Wair + Wegr. The Xeg, is used in
the engine control to reduce the NO, emissions, and is governed by the EGR-valve and
the VGT position. The following small example gives a rough estimate of the consequence
of an incorrect air mass-flow measurement for the control of xg;.

Example 1 Assume that the engine control system controls xcg, to 30 % based on the air
mass-flow sensor and that the air mass-flow sensor signal is incorrect and reads Wj;;-0.9.

That is,

Wiot = Wair - 0.9
Xegr = AL S W, a:r =30%.
(o)

Then the true fresh air-fraction would become
1
(1 - 03) *Wiot = Woir - 0.9 = Wair = ﬁ : (1 - 03) * Wiot # 0.78 - Wiot,

and thereby the true x4 ~ 22 %, which would have a significant effect on the NOy
emissions (Heywood, 1988). That is, in this example the control system controls the
engine to run with less EGR than needed to fulfill the legislated NOy levels. o

An analogous analysis can be made for A close to Asmoke 1im Which further supports the
statement that an accurate estimate of the air mass-flow is important.

Both A and x.,; are important for the emissions and the air mass-flow W;;; is central
in their control. Hence, it is important to have a high quality measurement or estimation
of the air mass-flow. Note that the x., estimate also depends on Wi, which is computed
using the volumetric efficiency of the engine and is, by experience, considered to be
accurate.

2.2.1  AIR MASS-FLOW SENSOR VARIATIONS

Calibration curves from two diesel engines, one inline 6 cylinder and one V8, are gathered
from test runs in an engine test cell. 13 calibration curves are collected over a total time
of about two weeks for the 6 cylinder engine and 21 calibration curves over four weeks
for the V8 engine. Figure 2.4 presents the typical appearance of a calibration curve, the
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upper for a 6 cylinder engine and the lower for a V8 engine. These calibration curves are
used to analyze the quality of the air mass-flow sensor.

The difference between engine configurations can be seen by comparing the upper
and lower plot in Figure 2.4 and Figure 2.5, where Figure 2.4 presents the day-to-day
variations of the calibration curve and Figure 2.5 presents the trend of the four grid
points, 62, 6°, 0%, and 6, in the calibration curves, see Figure 2.3.

Figure 2.4 shows that the day-to-day variations are quite large, especially for the V8
engine where the standard deviation varies between 2 - 3 %-units. For the 6 cylinder
engine the variations are smaller. Further, the difference between the minimum and
maximum values for each parameter in the calibration curve varies between approx-
imately 1.5 - 4 %-units for the inline six cylinder engine and 3 - 12 %-units for the V8
engine. Another difference between the two engine configurations is the appearance
of the calibration curve. For the 6 cylinder engine the line starts at approximately 5 %,
has a slightly positive slope, and ends at approximately 10 %, which corresponds to the
computations in Example 1. For the V8 engine the line is quite different, it starts at about
1%, varies quite a bit, and ends at -1 %. These investigations indicate that the air mass-flow
sensor has to be continuously monitored and adapted, to ensure safe and clean engine
operation over time.

The large spread among the calibration curves for the V8 engine plot, of about 10 %-
units from min to max, indicates that an ad hoc approach for compensating the sensor
signal using only a calibration curve (2.4) might not be enough, see Example 1. The
quality has to be improved in a way that the spread is reduced as well. These observations
together with the importance of the estimates of A and x4 necessitate an accurate
estimate of the air mass-flow.

As Figure 2.5 shows there are no obvious trends in the data over time. However, due
to the relatively short time span over which the data is collected, it is hard to draw any
conclusions regarding long term aging of the air mass-flow sensors.

2.3 GAs FLow EsTIMATION

In the previous section it was shown that a sensor is not sufficient for acquiring an accurate
air mass-flow signal, and the main two reasons were; i) the sensor needs to be calibrated to
compensate for its positioning in the intake system, ii) it needs continuous adaptation to
compensate for system aging and different operating conditions caused by geographical
location, for example pressure, temperature, and humidity of the surrounding air. This
section presents some basic approaches to cope with sensor adaptation and include ad
hoc mapping, according to (2.4), and Kalman filtering (Kalman, 1960). The investigation
analyzes the effect model quality has on the estimates from a model based estimator, and
is the topic of Section 2.3.1.

2.3.1 METHODS FOR IMPROVING SENSOR SIGNALS

There exist several ways of acquiring accurate estimates of these control and diagnosis
variables, e.g., direct measurement via physical sensors and model based estimation, and
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Figure 2.4: Min, max, mean, and standard deviation over all collected calibration curves
are presented for a 6 cylinder engine (upper plot) and a V8 engine (lower plot). It can be
seen that the variations are quite large for both engine configurations, especially for the
V38 engine.

all model based estimators are highly dependent on the accuracy of the model used. This
becomes especially apparent if the assumptions in the design method do not hold. If
for example an EKF (Jazwinski, 1970) is used, the measurement and model errors are
assumed to be described by zero mean white noise processes, i.e. biased measurements is
not handled. Figure 2.6 presents estimates of the air mass-flow from five different sources;
raw measurement from the production sensor, adapted production sensor (2.4), model
output, EKE i.e. combing the model and the adapted measurement, and a cell installed
reference sensor. All representing means of acquiring estimates of the air mass-flow into
the intake system of an engine.

One observation from Figure 2.6 is that the model output Winodels computed us-
ing (2.1) and (2.2e), does not agree well with W,.y. It has an obvious offset that is different
for low and high air mass-flows, but it manages to capture the system dynamics. From
this observation it is clear that the model does not fully describe the engine and these
model errors violate the assumptions made when utilizing the model to design an EKF,
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Trend for 6 cyl 2006-10-25 — 2006-11-09
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Figure 2.5: The trend of four support points for a 6 cylinder engine (upper plot) and a
V8 engine (lower plot). It shows that there is no particular trend in either of the engine
configurations. Note that the samples are not equidistant.

i.e. zero mean Gaussian system and measurement errors. Another observation is that
also the raw measurement has an error that depends on the mass-flow. In this case a
simple adaptation according to the calibration curve (2.3) in Section 2.2.1 significantly
improves the estimation accuracy, see Wadapt.

Obviously the model output and the raw measurement performs poorly, and by
applying an adaptation scheme to the measurement much better estimates are acquired.
Similarly, by combining the model with the adapted measurement in an EKF, even better
estimates are achieved, see Wikr.

These estimators, the adapted mass-flow sensor and the EKF, compile the essence
of the problems addressed in this thesis, i.e. the need for a systematic way of reducing
operating point dependent stationary estimation errors in model based estimators, and
the online adaptation of engine maps, or lookup-tables.
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Figure 2.6: Typical example of model output from a biased model (Hockerdal et al., 2008),
where W, is the air mass-flow measured by a reference sensor. As often is the case, the
model captures the dynamics well but suffers from operating point dependent stationary
errors. As comparison, the raw and adapted air mass-flow sensor measurements are
presented, and an EKF using feedback from the adapted measurement is included as
well.

2.4 PUBLICATIONS AND CONTRIBUTIONS

The overall goal with the work is the development of systematic methods that allow use
of models with errors, referred to as default models, for estimator design. The focus is
on models based on first principles physics and a primary condition on the methods is
the preservation of the physical structure, or properties, of the models.

In system identification, model error modeling (MEM) is treated in for example
Ljung et al. (1991); Stenman and Tjarnstrom (2000). However, since the focus here is on
default models that have biases, or other stationary errors, and aims at preserving the
physical structure of the model, the MEM path is not pursued. Methods that address
the issue of biased default models for estimation exist in e.g. model augmentation using
physical knowledge (Andersson and Eriksson, 2001) and proportional-integral (PI)
observers (Soffker et al., 1995; Koenig and Mammar, 2002). The methods developed in
this thesis unify these ideas with the idea of estimating a minimal description of the
model bias.

In estimation, observability of the system is central to ensure consistent state and
parameter estimates. This have made preservation of the default models’ observability
properties, in the developed methods, central. One method to check global observability
is for example Ljung and Glad (1994) which is applied to an engine example in Sokolov
and Glad (1999). However, this method applies to polynomial models and is not appli-
cable to the models addressed in this dissertation. Hence, local analyses using model
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linearizations, such as the Popov-Belevitch-Hautus (PBH)-test for ODE models (Kailath,
1980) and its DAE analogues (Dai, 1989), are used throughout the publications. An
important observation is that the system (2.1) is coupled, meaning that several states
have dependencies on both intake and exhaust states, which makes the default system
locally observable from any output.

2.4.1 PAPER A — MODEL AUGMENTATION FOR ODE:s

The principal idea in the model augmentation is that local errors in the model may affect
several model states. Consider for example an observer based on the engine model (2.1)
consisting of three coupled volumes with one pressure state for each volume. Then
an error in one of the mass-flow equations would, possibly, affect all three pressures.
Some possibilities are then to, introduce a model augmentation using physical intuition
(Andersson and Eriksson, 2001), or apply a PI-observer (Softker et al., 1995). The first
requires deep understanding of the modeled system while the latter only compensates
for bias in measured states used for feedback and does not bother about the origin
of the bias. The developed method applies a separate step in the observer design that
estimates alow order model error description, which is used for model augmentation. The
main contributions are a characterization of possible augmentations from observability
perspectives, a parameterization of the augmentations from the method, and a robustness
analysis of the proposed augmentation estimation method.

An advantage of the developed method, compared to e.g. PI observers, is its ability
to incorporate information from extra sensors during the bias estimation. In this way
compensation of states not available for feedback in the final application is made possible.
It is also worth to note that both the model augmentation using physical knowledge and
the PI-observer fits into the framework of the developed method.

2.4.2 PAPERS B AND C — MAP ADAPTATION

The ideas above address the bias compensation through model augmentation, by describ-
ing the bias as a random walk, and thus does not store any information about the bias in
different operating points. A common technique to handle operating point dependencies
in automotive applications is to introduce maps or look-up tables, (Guzzella and Am-
stutz, 1998; Peyton Jones and Muske, 2009). These maps are frequently used to describe
relations when physical models are unavailable, e.g., sensor and actuator characteristics,
cooler efficiency, injector characteristics, and aftertreatment systems. Common for these
maps is that they benefit from continuous online adaptation to prevent undesired sys-
tem behavior. Routines for online map adaptation have been considered in Wu (2006);
Peyton Jones and Muske (2009), and a primary contribution in Paper B and Paper C is
simultaneous bias compensation and online map adaptation.

2.4.3 PAPER D - ODE vs. DAE IN ESTIMATION

Using models with both fast and slow dynamics, i.e. stiff models, in real time estimation
may be numerically problematic. The problem of stiff models, described by ordinary
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differential equations (ODE), for engine control is closely connected to the embedded
system in which it is implemented and its computational limitations. In engine control
units (ECU), a main difficulty with stiff models is that the model execution is scheduled
in loops with fixed frequencies, that limits the ECU:s capability of satisfactory solving the
differential equations. A possible solution (Hairer and Wanner, 2000, Chapter 6), used in
for example electrochemical and reactive distillation processes (Mandela et al., 2010), is
to approximate fast dynamics with instantaneous relations, i.e. algebraic conditions. With
this approach a stiff ODE would be transformed into a system of differential algebraic
equations (DAE), while keeping the overall model structure. This is exploited for a diesel
engine model with intake manifold throttle, EGR, and VGT in Paper D. The stability and
estimation accuracy of an EKF based on the default stiff ODE is compared to that of an
EKF based on the corresponding DAE. It is shown that even though the ODE, for each
time-update, is less computational demanding than the resulting DAE, an EKF based
on the DAE achieves better estimation performance with less computational effort. The
main gain with the DAE based EKF is that it allows significantly increased step lengths
without degrading the estimation performance compared to the ODE based EKE

2.4.4 PAPER E - MODEL AUGMENTATION FOR DAE:s

The number of models described by DAE:s have increased, partly due to modern model-
ing tools such as DYMoLa, or similar tools using the Modelica®modeling language, and
SimscAPE that often deliver DAE models and since DAE:s are a way of describing systems
with both slow and fast dynamics. As more and more DAE models are available, it is
natural to use them for observer or estimator design. Also these models may suffer from
deficiencies that make them unsuitable for direct use in estimation and Paper E extends
the model augmentation results for ODE:s from Paper A to DAE:s. The main contribu-
tions are necessary and sufficient conditions for the preservation of the observability
properties of the default model during the augmentation.
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Appendix A

Model Details

Below follows a summary of the model equations using the symbols and indices presented
in Tables A.1 and A.2. The model states, inputs, and outputs are presented in Table A.3
and more details about the model is found in Wahlstrom and Eriksson (2010).

MANIFOLDS

INTAKE MANIFOLD

d R, Tim

&pim =T (‘/Vth + Wegr - VVei)

EXHAUST MANIFOLD
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d Re Tem Pem d
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dt Vo ( 8 v Top dt
d RC Tem
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Re(Tem,in (M/eo - M/egr - VVt) - Tem (_Weo + Wegr + vvt)))
INTERCOOLER
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HEAT LOSSES IN THE EXHAUST PIPE
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Table A.1: Symbols used in the plant model.

Symbol  Description Unit

A Area m?
BSR Blade speed ratio -

cp Spec. heat capacity, constant pressure J/(kgK)
Cy Spec. heat capacity, constant volume J/(kg'K)
] Inertia kg m?
Myl Number of cylinders -

Ne Rotational engine speed rpm

p Pressure Pa

P Power w

quv Heating value of fuel Jikg

re Compression ratio -

R Gas constant J/(kg-K)
R Radius m

T Temperature K

Uegr EGR control signal” %

Uh Throttle control signal” %

Uygt VGT control signal’ %

us Injected amount of fuel mg/cycle
1% Volume m®

w Mass flow kg/s

y Specific heat capacity ratio -

n Efficiency -

II Pressure quotient -

p Density kg/m’
D, Volumetric flow coefficient -

W, Energy transfer coeflicient -

w Rotational speed rad/s

-+

o - closed, 100 - open
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Table A.2: Indices used in the

plant model.
Index Description
a air
amb ambient
C compressor
d displaced
e exhaust
egr EGR
ei engine cylinder in
em exhaust manifold
eo engine cylinder out
ic intercooler
f fuel
im intake manifold
t turbine
th throttle
vgt VGT
vol volumetric
0 fuel injection

Table A.3: States, inputs, and
outputs of the plant model.

States

Inputs  Outputs

pim
Pem
pic
Wt
Tem

Us pim
Uth pem
Uegr Pic
Uygt W
Me We
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Appendix B

Experimental Setup and Data

The data are collected in engine test cells at Scania CV AB in Sodertilje, Sweden and are
from two inline six cylinder Scania diesel engines with EGR and VGT. One of the engines
was also equipped with an intake manifold throttle. The data were collected during a
European transient cycle (ETC) (Council of European Parliament, 2005) for the engine
without throttle, and a World harmonized transient cycle (Economic Commission for
Europe - Inland Transport Committee, 2010) for the engine with throttle. The sensor
signals used in all experimental evaluations are; intake and exhaust manifold pressures,
turbine speed, and engine speed. Actuator signals used are; VGT and EGR positions,
and injected amount of fuel. All these signals are available on a standard engine, i.e. no
extra laboratory sensors were used, and collected at a sampling rate of 100 Hz.

An extra air mass-flow sensor, W, is used as a reference for the experimental
evaluation in Chapter 2. This signal is logged using a different measurement system
at a sampling frequency of 10 Hz. The measurements from the different measurement
systems are synchronized for the evaluation. The synchronization is made by comparing
measurements of the engine speed which is logged with both systems, and performing a
time shift.

SENSOR DYNAMICS

To justify that it is the system dynamics that is captured in the measurements, i.e. the
sensors are fast enough to be able to track the system dynamics, a brief presentation of
the sensor data is presented. The sensor specifications are provided by Scania.

The pressure sensors are capacitive pressure sensors and have a first order step
response time constant of approximately 15 ms for the intake manifold pressure, and
20 ms for the exhaust manifold pressure. The intake manifold and intercooler pressure
sensors are mounted directly in the intake manifold and right before the throttle, while
the exhaust manifold sensor is mounted on an 0.4 m long pipe to avoid heat and soot.

29
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The mass-flow sensor measuring the air mass-flow through the compressor is a hot-
wire sensor also with a first order response and a time constant of 20 ms. The closed-loop
control circuit maintains a constant temperature differential between the passing air
stream and a platinum wire. The current required to heat the platinum wire provides an
index of the air mass-flow.

The rotational speed sensors are inductive and measure the periodic variation in
the magnetic flux generated by ferromagnetic ring gears passing induction coils. For
the engine speed a cog passes the coil every sixth crankshaft degree and the signal used
throughout this thesis is the mean value of 20 consecutive cog passes. This gives a time
constant of approximately 20-(1-e™*) ~ 13 samples. For the turbo speed there is only one
cog on the ring gear and the signal used throughout the thesis is the median of three
consecutive coil passes. That is, the maximum lag is roughly 13 times six crankshaft
degrees and 2 times 360 turbo shaft degrees respectively. For the engine idle speed of
500 rpm, this gives a maximal time constant of approximately 13-(500/60-(360/6)) ™"
= 26 ms, and for turbo speeds over 20 0oo rpm, which is the minimum revolution
speed for which the sensor works, this gives a maximum time delay of approximately
2:(20000/60)" = 6 ms. Since these sensor responses are significantly faster than the
dynamics seen in measurements they are neglected throughout the thesis.

REFERENCE SIGNAL — Wygy

The measured reference output Wi, is a cell sensor measuring the air mass flow into
the engine. It is a Sensyflow P-Tube hot-wire sensor with type no. 14241-7962638 and
a measuring range of 0.055-1.111 kg/s. The uncertainty is less than 1% of reading and
the sensor has a response time of 12 ms. This sensor is placed approximately 4 meters in
front of the engine air mass-flow sensor on a straight pipe with a diameter of 0.28 m. The
sensor reading is assumed to be without errors, due to the almost ideal sensor placement.
The volume and distance between the two sensors give rise to unwanted dynamics.
Calculations show that the filling and emptying dynamics from this volume has a time
constant of approximately 10 ms and the effect from wave propagation has approximately
the same traveling time, which is small in comparison to the time constants of the system.





