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Target Tracking with Particle Filters under
Signal Propagation Delays

Umut Orguner, Member, IEEE, and Fredrik Gustafsson, Senior Member, IEEE

Abstract—Signal propagation delays are hardly a problem for
target tracking with standard sensors such as radar and vision
due to the fact that the speed of light is much higher than the
speed of the target. This contribution studies the case where the
ratio of the target and the propagation speed is not negligible,
as in the case of sensor networks with microphones, geophones
or sonars for instance, where the signal speed in air, ground
and water causes a state dependent and stochastic delay of the
observations. The proposed approach utilizes an augmentation of
the state vector with the propagation delay in a particle filtering
framework to compensate for the negative effects of the delays.
The model of the physics rules governing the propagation delays
is used in interaction with the target motion model to yield an
iterative prediction update step in the particle filter which is
called the propagation delayed measurement particle filter (PDM-
PF). The performance of PDM-PF is illustrated in a challenging
target tracking scenario by making comparisons to alternative
particle filters that can be used in similar cases.

Index Terms—Propagation delay, state estimation, target track-
ing, constrained estimation, implicit constraints, stochastic sam-
pling, sequential Monte Carlo, particle filter.

I. INTRODUCTION

THE conventional sensors such as radar, vision (EOR,
IR) etc. used in target tracking [1–3] generally observe

emitted (passive sensors) or reflected (active sensors) energy
from the target. The observation delay in these sensors is
negligible since the speed of light (electromagnetic waves)
is much larger than the speed of the target. However, one
trend in sensor networks is to use standard low cost sensors as
microphones and geophones on land, and sonar in water. The
assumption of negligible target speed compared to the speed of
the media cannot always be made here. In a general scenario
where the target moves swiftly, even if the sensor is stationary
and collects uniformly sampled (in time) measurements of the
target, the actual time instants that the target is observed are in
fact non-uniform (in time) due to the propagation delays and
this leads to unexpected errors in the estimation algorithms.

The physics rules governing the propagation delays are
generally well known and hence a model for the propagation
delays is usually available for target tracking applications.
However, since the actual target state at the delayed time
instant is also uncertain, the propagation delay model must
be used in interaction with the target state model to form an
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implicit equation characterizing the propagation delay (which
we call “the implicit delay constraint” or simply “the delay
constraint” below) which is difficult to handle. This type of
problem has been investigated in a novel framework in the
authors’ series of earlier work [4–6] and the current work can
be considered as an improved version of [6]. The solution
presented originally in [4] is a Bayesian algorithm that adds the
involved propagation delay into the state vector of the target.
The idea of using the delay constraint as an information source
was hence first proposed in [4] which utilizes an iterative
procedure in a deterministic sampling (such as unscented
Kalman filter (UKF) [7]) based framework. Later, the single
sensor algorithm presented in [4] was generalized to multiple
sensors in [5] using the largest ellipsoid algorithm (LEA) [8, 9]
in a distributed scenario.

The studies [4] and [5] both used UKF-type algorithms
(which was called propagation delayed measurement (PDM)
filter (or PDMF) in [5]) to include the information of the
implicit delay constraint into the estimation process, which
limits their applicability to only linear or slightly nonlinear
models with reasonably high signal to noise ratio. In fact, it
was empirically observed already in [6] that PDMF of [4]
based on UKF is sensitive to a high level of measurement
noise. The work in this paper is instead concerned with using
the implicit delay constraints along with particle filters (PFs)
[10–12] enabling the use of almost any nonlinear model in the
estimation even in low signal to noise ratio environments.

As mentioned above, an earlier version of this work was
presented in [6] and the current work presents a more general
convergence proof and simple specific sufficient statistics
for (the main recursion involved in) the algorithm along
with improved simulation results. We use the same Bayesian
methodology as [4–6] to include the time delays into the
state vector of the target. Then, each particle in the particle
filter keeps a different hypothesis about the propagation delay
together with its corresponding kinematic state vector. The
implicit constraint information is incorporated into the parti-
cles in the prediction update using recursions that combine
the physics rules governing the propagation delays and the
target state dynamics. The measurement update of the particle
filter is a standard one. Due to the fact that the time stamp
of the kinematic state component of the augmented state is
stochastic, an additional non-conventional prediction step has
to be utilized for the output purposes. In this paper, for the
sake of simplicity, we consider only the single sensor case
leaving the multiple sensor generalization as a future work.

Consideration of implicit delay constraints in the estima-
tion process makes this work highly related to the area of
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constrained state estimation. The existing solutions which can
handle equality constraints in the estimation cycles consist
of two main approaches. One and possibly the more popular
of these is the use of constraints as fictitious (pseudo) mea-
surements where the constraint equation is considered as a
(possibly noisy) information source about the state [13–15].
A conceptually similar method which uses the so called three
block Kalman filter of [16] is given in [17]. The second ap-
proach of handling constraints is the projection type methods
in which the unconstrained estimates are projected onto the
constraint surface (manifold) at the end of each estimation
cycle [18]. Another more useful form of projection based
method has been proposed in [19]. In [20], a comparison of
these two types of algorithms is presented along with some
cases which yield equivalent results. A conceptually different
method which can be related to both approaches is to search
for optimal filter gains that yield estimates satisfying the
constraints. An application of this is presented for estimation
problems using quaternions (vectors with unity norm) in [21].

This study, although being closer to projection type ap-
proaches, is different from these existing methodology in two
aspects. The first one is that implicit constraints can be handled
with our methodology whereas the existing ones are more
suitable for explicit constraints. The second and the more
important aspect that differentiates our study from the existing
ones is that we consider the inclusion of the constraints in the
prediction update of the estimation process. This alleviates the
performance reducing effects of unconstrained prediction. In
order to observe this, we make a comparison of our method
with other particle filters that compensate for the propagation
delays in output calculation or measurement update steps (both
of which are quite late in the estimation cycle) in Section V.

Although this work can be counted as a continuation of
the previous conference papers [4–6], it is self-contained. The
remaining parts are organized as follows. We illustrate the
state estimation problem involved in this paper via a simplified
example in Section II. Section III makes a formal problem
definition. Section IV gives the main result of the paper,
a PF algorithm that compensates for the propagation delay
effects. We call the resulting algorithm as the propagation
delayed measurement particle filter (PDM-PF). In Section V,
we present the results of a simulation study on a single
sensor target tracking scenario along with some comparisons
to alternative particle filters that can be used with propagation
delays. Conclusions are drawn in Section VI.

II. SIMPLIFIED EXAMPLE

Leaving the general and formal problem formulation to
Section III, we here make a simplified introduction to the
problem. Consider a case where we have perfect knowledge
of the state vector xtk−1

of a target at time tk−1 and that
the target position ptk−1

is a subset of the state vector. One
sensor shown as s in Figure 1 gets an observation related to
xtk−∆k

at time tk. The unknown delay ∆k can be described
as a function of the unknown position (and hence the state)
of the target at the (unknown) time tk−∆k using the physics

xtk−1
xtk

vsound∆k

xtk−∆k

vT

φtk sys

x

y

Fig. 1. Simplified example where a constant speed target on the x-axis is
observed with a microphone array acquiring bearing information.

rules of signal propagation in the medium as

∆k = dtk(xtk−∆k
). (1)

On the other hand, using an assumed or known target dy-
namics, we can obtain a prediction of xtk−∆k

from perfectly
known xtk−1

as

xtk−∆k
= ftk−∆k,tk−1

(xtk−1
). (2)

Consider, for instance, the case in Figure 1 where we observe
a target whose scalar state xt , pt is the position on the x-
axis. The target has the known state x0 = 0 at time tk−1 = 0
and moves with a known constant speed vT along the x-axis.
Notice that in a practical application, the velocity vT would
actually be unknown and a part of the state, however, in this
example, we treat it as a known parameter in the scalar state
dynamics for the sake of simplicity. At time tk, a sound sensor
s (microphone array) positioned on the y-axis value ys collects
the bearing φtk of the target (corresponding to time tk−∆k).
Then, the specific models corresponding to (1) and (2) would
be

∆k =dtk(xtk−∆k
) ,

1

vsound

√
y2
s + x2

tk−∆k
, (3)

xtk−∆k
=xtk−1︸ ︷︷ ︸

,0

+vT (tk −∆k) = vT (tk −∆k) (4)

respectively, where vsound is the speed of sound. These two
equations, substituting xtk−∆k

of (4) into (3) and then squar-
ing both sides of (3), have a solution ∆k > 0 satisfying

v2
T (tk −∆k)2 + y2

s = (vsound∆k)2 (5)

as shown in Figure 1. Now, instead of solving the parabolic
equation for ∆k, one can define a recursion for ∆k with the
initial value e.g. ∆k(0) = 0 by just substituting (4) into (3) to
get

∆k(m+ 1) =
1

vsound

√
y2
s + [vT (tk −∆k(m))]

2 (6)
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which can be shown to converge to the positive root of (5)
if vT < vsound. The case vT ≥ vsound can also be handled by
simply running the recursion (6) backwards but since this case
causes difficulties in the general case, it will not be considered
in this work.

Just as in the case of this simple example, in a more general
setting, (1) and (2) together define an implicit equation for
∆k (like (5)) whose solution can be obtained with iterative
techniques similar to (6). This type of implicit and in general
nonlinear constraints and their inclusion into the estimation
process is the main subject of this work. In this simplified
scenario, we have neglected three sources of uncertainty:
• The initial state xtk−1

is actually random.
• A process noise term must be added into the simplified

description (2).
• The propagation time itself through (1) might be un-

certain due to possible reasons such as the unmodeled
non-line-of-sight (NLOS) effects or the uncertain (own)
position of the sensor (ys in the simplified example
above).

In this work we propose a solution that covers all the un-
certainties mentioned above for the single sensor case and is
based on including the delay ∆k in the state vector while
processing the observation taken at time tk. Since the measure-
ments observe the delayed state values xtk−∆k

, the augmented
state is formed as [xT

tk−∆k
,∆k]T. While making estimation,

the form of the states [xT
tk−∆k

,∆k]T forces one to design a
special output estimate generation mechanism. This is because
the state element xtk−∆k

in the estimate has an ambiguous
time stamp that depends on the ∆k component of the state.

III. PROBLEM DEFINITION

We consider the following discrete-time nonlinear state space
model

xtk+1
=ftk+1,tk(xtk) + wtk+1,tk (7)

where {xtk ∈ Rnx} is the state sequence with initial distri-
bution xt0 ∼ p0(xt0). We here adopt an implicit simplified
notation such that the system state dynamics given by (7)
is a discretized version of a corresponding continuous time
dynamics

ẋt = f(xt) + wt. (8)

In (7), tk ∈ R is an arbitrary time value and ftk+1,tk(·) is the
state transition function transforming xtk to xtk+1

according
to continuous time dynamics f(·). We also assume that the
time sequence {tk}∞k=0 is non-decreasing and therefore the
transformation involved in (7) is not necessarily invertible.
{wtk+1,tk ∈ Rnx} is a white process noise sequence with
distribution wtk,tk−1

∼ pwtk,tk−1
(·). Here it is important to

emphasize that wtk+1,tk models the lumped effects of a
continuous independent increment process noise wt between
the time instants tk and tk+1.

The discrete delayed measurements {yk ∈ Rny} of this
system are collected by a sensor s as

yk =hk(xtk−∆k
) + vk (9)

where hk(·) is in general a nonlinear function of the state; ∆k

is the amount of delay in the measurement yk and {vk ∈ Rny}
is a white measurement noise sequence independent from the
process noise with distribution vk ∼ pvk(·). We here assume
that we have knowledge about the time delay ∆k in the form
of an implicit equation (which we call ck) as follows

ck : ∆k = dtk(xtk−∆k
) + τk (10)

where dtk(·) is in general a nonlinear function of the delayed
state value xtk−∆k

and {τk ∈ R} is a white noise sequence
independent from the process and measurement noise with
distribution τk ∼ pτk(·). Our main motivation for selecting
such an expression for the time delay sequence ∆k is the case
of a sound sensor whose delay expression is given as

∆k =
‖ptk−∆k

− psensor
tk
‖

2

vsound
+ τk (11)

where ptk−∆k
is the position of the target at time tk − ∆k

(which is a function of the delayed state xtk−∆k
and hence

the form of (10)), psensor
tk

is the position of the sensor s at time
tk and vsound is the speed of sound. The noise term τk then
represents unmodeled effects in the transmission of the sound
(pressure) wave in the environmental conditions such as NLOS
and multipath effects or the possible uncertainty in the position
of the sensor. In this work, we consider each constraint ck of
(10) as a piece of information to include into the estimation
process and we show the cumulative information of constraints
up to and including time n as c0:n , {ck}nk=0. Although
the constraints themselves are not random variables, in the
following, we are going to use them as the arguments of the
probability density functions in given conditions and Bayes
rules and these must be interpreted information-wise. Note that
this type of notation is unconventional in the literature and here
adopted for ease of notation. Throughout the study, we assume
that all measurement acquisition times {tk}∞k=0 and auxiliary
variables (like sensor positions etc.) used in the constraint
evaluation (of course, other than the state component xtk−∆k

in (10)) are known. Therefore, the constraints c0:∞ are known
beforehand but their availability to the estimators is limited
for the purpose of recursive estimation.
Problem Definition: Given the state dynamics (7) and mea-
surement relation (9), find (possibly approximately) the density
p(xtk |y0:k, c0:k).

IV. PROPAGATION DELAYED MEASUREMENT PARTICLE
FILTER (PDM-PF)

This section is divided into three subsections the first of
which gives the derivation of PDM-PF where a theorem plays
the key role and ends with a summary of the main algorithm.
The second subsection examines a special case of the theorem
that facilitates the use in practical applications. The third sub-
section mentions shortly about possible alternative approaches.

A. PDM-PF Derivation

As mentioned in Section I, we keep the summary statistics
of the propagation delayed measurement filter in terms of the
augmented state vector ξk , [xT

tk−∆k
,∆k]T. There are two
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merits and one difficulty involved with this. The two merits
are

1) This selection makes the measurement update of the
required filters quite easy.

2) Delay constraint information can be incorporated into
the filter in a structured way.

On the other hand, there is one important difficulty in working
with such an augmented vector and that is the fact that the
state component of the augmented vector has a stochastic
time stamp (whose uncertainty is determined by the delay
components of the augmented state) that has to be taken
care of before a meaningful output (an estimate that has a
deterministic time stamp) can be produced.

Making this augmented state definition, a recursive
Bayesian filter needs to calculate the posterior density
p(xtk−∆k

,∆k|y0:k, c0:k). In a particle filtering framework,
we are going to approximate this posterior density shown
equivalently as p(ξk|y0:k, c0:k) as follows

p(ξk|y0:k, c0:k) ≈
N∑
i=1

π
(i)
k δ

ξ
(i)
k

(ξk) (12)

where {ξ(i)
k }Ni=1 is the set of particles; {π(i)

k }Ni=1 is the set
of corresponding weights and the notation δξ(·) denotes the
Dirac delta function positioned at ξ.

Having such a particle based density approximation at time
k−1, we are going to define the classical updates in a Bayesian
filter as follows.
• Prediction Update: Obtain the predicted density
p(ξk|y0:k−1, c0:k) from the previous sufficient statistics
p(ξk−1|y0:k−1, c0:k−1) by using the process model (7)
and the current delay constraint information ck (10).

• Measurement Update: Obtain the measurement up-
dated density p(ξk|y0:k, c0:k) from the predicted density
p(ξk|y0:k−1, c0:k) by using the current measurement yk
that has the model (9).

As can be easily seen above, once one has the predicted
particles {ξ(i)

k|k−1}
N
i=1 and corresponding weights {π(i)

k|k−1}
N
i=1

that represent the predicted density p(ξk|y0:k−1, c0:k), obtain-
ing the measurement updated density is a matter of computing
the weights as

π
(i)
k ∝ p(yk|ξ

(i)
k|k−1)π

(i)
k|k−1 (13)

for i = 1, . . . , N which should be normalized to get∑N
i=1 π

(i)
k = 1. The measurement updated particles are just

set to the predicted particles, i.e., ξ(i)
k = ξ

(i)
k|k−1. Note that

the term p(yk|ξ(i)
k|k−1) in (13) is readily available because the

measurement yk is actually a direct function of ξk. This is a
direct manifestation of the augmented state definition above
on the measurement update.

In the prediction update, however, the process
model and the constraint information have to be
used at the same time to obtain the predicted density
p(xtk−∆k

,∆k|y0:k−1, c0:k) from the previous updated density
p(xtk−1−∆k−1

,∆k−1|y0:k−1, c0:k−1). There is actually a
vicious circle inherent in this problem in that in order to
predict xtk−∆k

from xtk−1−∆k−1
and ∆k−1 using the system

model (7), we would need ∆k; on the other hand, in order to
calculate ∆k from the delay constraint (10), we need xtk−∆k

.
Such a circular dependence of augmented state elements is
what makes the prediction update difficult. However, if we
remember the recursion (6) that we set up in Section II,
we can possibly use the system model (7) and the delay
constraint (6) iteratively by starting with a reasonable initial
condition to actually converge to a meaningful prediction
solution. In other words, we can actually exploit the vicious
circle described above to our advantage. The main building
block of such an approach is provided by the following
theorem whose earlier versions were first stated in [4–6]. The
version in this work is the most general of the earlier versions
and contains also a much more rigorous proof which does not
need heuristic assumptions involved in the earlier versions.
For the sake of keeping generality in the state variables,
we first define the operators pos(·), vel(·) and acc(·) of the
target state xt which give the Cartesian position, velocity and
acceleration of the target in the Euclidean space at time t
respectively. Expressed mathematically

pos(xt) ,

[
pxt
pyt

]
vel(xt) ,

[
vxt
vyt

]
acc(xt) ,

[
axt
ayt

]
(14)

where {pxt , p
y
t}, {vxt , v

y
t} and {axt , a

y
t} are Cartesian position,

velocity and acceleration variables of the target with state xt
defined over the 2D Euclidean x − y plane. Notice that the
state variable xt might be defined in any other coordinates
(like polar, spherical etc.) and the operators pos(·), vel(·) and
acc(·) represent the corresponding transformations from the
state vectors to Cartesian position, velocity and acceleration
spaces respectively. Extensions to 3D are straightforward. Note
that the acceleration operator is not needed for the theorem but
will be necessary for a corollary of it.

Theorem 1. Let dtk(·) be a function of the target position
ptk−∆k

, pos(xtk−∆k
) only and let it be a Lipschitz contin-

uous function i.e.,

|dtk(x)− dtk(x′)| ≤ Kd‖pos(x)− pos(x′)‖2 (15)

for all x and x′ where Kd ≥ 0 is the corresponding Lipschitz
constant. Let x̆, w̆ ∈ Rnx and ∆̆, τ ∈ R be constants.

Consider the recursion1

∆k(m+ 1) = dtk(xtk−∆k(m)) + τ (16)

where xtk−∆k(m) is calculated using

xtk−∆k(m) = ftk−∆k(m),tk−1−∆̆(x̆) + w̆. (17)

The initialization is done with

∆k(0) = dtk(x̆) + τ. (18)

The sequence ∆k(m) converges exponentially to a fixed point
∆k(∞) satisfying

∆k(∞) = dtk(xtk−∆k(∞)) + τ (19)

1See Figure 2 for a Matlab® pseudo-code of the recursion.
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1 function ∆=Recursion(x̆,∆̆,w̆,τ,tk,tk−1,Threshold)
2 Nmax=100; %maximum number of iterations
3 ∆=zeros(1,Nmax);%delay array
4 ∆(1)=dtk (x̆)+τ;%equation (18)
5 m=1;
6 difference=inf;
7 while (difference>Threshold)&&(m<Nmax)
8 m=m+1;
9 x=ftk−∆(m−1),tk−1−∆̆(x̆)+w̆;%equation (17)

10 ∆(m)=dtk (x)+τ;%equation (16)
11 difference=∆(m)-∆(m− 1);
12 end

Fig. 2. A Matlab® pseudo-code of the recursion of Theorem 1. Notice that
in order to be able to give an always stable function, we here included a
constraint on the maximum number of iterations.

if Kdvmax(tk−1−∆̆, tk, x̆) < 1 where the function vmax(·, ·, ·)
is defined as

vmax(t′, t′′, x) , max
t′≤t≤t′′

‖vel (ft,t′(x))‖2. (20)

for all x ∈ Rnx , and t′, t′′ ∈ R with t′′ ≥ t′. �

Proof: Proof is given in Appendix A for the sake of
clarity. �

In simple words, Theorem 1 states that finding the solution
of the implicit delay constraint is possible using a recursion
which converges to the solution exponentially. The condition
for the convergence is dependent on the delay and state models
along with the quantities x̆ and ∆̆. The Lipschitz condition
(15) on dtk(·) assumes that according to the propagation delay
model, the propagation delay values for close target positions
are similar which is natural and can be considered to be a
fairly weak assumption. It is still important to note that this
condition would be difficult to satisfy with multi-path and non-
line-of-sight propagation models.

We are going to use Theorem 1 in updating the particles
ξ

(i)
k−1 , [(x

(i)
tk−1−∆k−1

)T,∆
(i)
k−1]T to their predicted versions

ξ
(i)
k|k−1 , [(x

(i)
tk−∆k|k−1)T,∆

(i)
k|k−1]T. For this purpose, one

can initiate the recursion in Theorem 1 with the selection

x̆ = x
(i)
tk−1−∆k−1

∆̆ = ∆
(i)
k−1 w̆ = w(i) τ = 0

(21)

in the case that the noise term τk in (10) is identically zero
i.e., τk ≡ 0. Here, we sample w(i) from the density pwtk,tk−1

(·),
which is equivalent to making the approximation

pw
tk−∆

(i)
k ,tk−1−∆

(i)
k−1

(·) ≈ pwtk,tk−1
(·). (22)

After running the recursion for several iterations (until a
convergence criterion is satisfied), the resulting predicted delay
∆

(i)
k|k−1 is selected as the converged fixed point ∆

(i)
k (∞) and

the predicted delayed state is found by

x
(i)
tk−∆k|k−1 = f

tk−∆
(i)
k (∞),tk−1−∆̆

(x̆) + w̆. (23)

In the more general case where τk ∼ pτk(·), one should sim-
ply replace the above selection of the quadruple (x̆, ∆̆, w̆, τ)

with

x̆ = x
(i)
tk−1−∆k−1

∆̆ = ∆
(i)
k−1 w̆ = w(i) τ = τ (i)

(24)

where τ (i) ∼ pτk(·) is a sample from the density of τk.
Once the predicted particles are obtained, the measurement

update step follows:

x
(i)
tk−∆k

=x
(i)
tk−∆k|k−1 (25)

∆
(i)
k =∆

(i)
k|k−1 (26)

for i = 1, . . . , N . The updated weights are given by

π
(i)
k ∝ p(yk|x

(i)
tk−∆k

), (27)

normalized such that
∑N
i=1 π

(i)
k = 1. This is simply because

of the fact that we use the bootstrap version [10] of the
PF, i.e., the proposal density is the augmented system model
p(ξk|ξk−1, ck).

It is interesting to see in the PF described above that each
particle ξ(i)

k actually holds a state component x(i)
tk−∆k

whose
time stamp tk −∆k is different from the other particles. The
time stamp of each such component is determined by the delay
component ∆

(i)
k of the corresponding particle. Hence forming

the classical mean point estimate using the formula

ξ̂k|k =

N∑
i=1

π
(i)
k ξ

(i)
k (28)

would actually average the state components that belong to
different time instants of the target which would make the
estimate meaningless. Hence, before obtaining the mean esti-
mates, one has to predict the state components to a common
deterministic time instant. Suppose that common time instant
is selected to be the last measurement time tk. Then the
mean estimate x̂tk and covariance Ptk of the PDM-PF can
be calculated as follows.

x̂tk =

N∑
i=1

π
(i)
k f

tk,tk−∆
(i)
k

(x
(i)
tk−∆k

) (29)

Ptk =

N∑
i=1

π
(i)
k

[(
x

(i)
tk
− x̂tk

)(
x

(i)
tk
− x̂tk

)T

+Q
tk,tk−∆

(i)
k

]
(30)

where Q
tk,tk−∆

(i)
k

is the covariance of w
tk,tk−∆

(i)
k

∼
pw
tk,tk−∆

(i)
k

(·). This is the specific output calculation step
required by the PDM-PF filter.

We give a summarized description of one step of the PDM-
PF filter in the algorithm below.

Algorithm 1. PDM-PF
Suppose we have the summary statistics {ξ(i)

k−1 ,

[(x
(i)
tk−1−∆k−1

)T,∆
(i)
k−1]T}Ni=1 and {π(i)

k−1}Ni=1, below we give

the steps to obtain the new summary statistics {ξ(i)
k ,

[(x
(i)
tk−∆k

)T,∆
(i)
k ]T}Ni=1 and {π(i)

k }Ni=1.
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• Resampling: Obtain the resampled particles {ξ̄(i)
k−1 ,

[(x̄
(i)
tk−1−∆k−1

)T, ∆̄
(i)
k−1]T}Ni=1 such that

P (ξ̄
(i)
k−1 = ξ

(j)
k−1) = π

(j)
k−1 (31)

for j = 1, . . . , N .
• Prediction Update: For i = 1, . . . , N

– Set x̆, ∆̆ and w̆ as

x̆ = x̄
(i)
tk−1−∆k−1

∆̆ = ∆̄
(i)
k−1 w̆ = w(i)

(32)

where w(i) ∼ pwtk,tk−1
(·).

– Set τ as

τ =

{
0, if τk ≡ 0

τ (i), otherwise
(33)

where τ (i) ∼ pτk(·).
– Run the recursion of Theorem 1 with the above selec-

tion of the quadruple (x̆, ∆̆, w̆, τ) until convergence
to obtain the fixed point ∆

(i)
k (∞).

– Set the predicted delayed state x(i)
tk−∆k|k−1 and pre-

dicted delay ∆
(i)
k|k−1 as

x
(i)
tk−∆k|k−1 =f

tk−∆
(i)
k (∞),tk−1−∆̆

(x̆) + w̆ (34)

∆
(i)
k|k−1 =∆

(i)
k (∞). (35)

• Measurement Update:
– Set the updated particles as

x
(i)
tk−∆k

=x
(i)
tk−∆k|k−1 (36)

∆
(i)
k =∆

(i)
k|k−1 (37)

for i = 1, . . . , N .
– Set the updated weights as

π
(i)
k ∝ p(yk|x

(i)
tk−∆k

) (38)

such that
∑N
i=1 π

(i)
k = 1.

• Output Calculation:
– Calculate the output state estimate x̂tk and covari-

ance Ptk as

x̂tk =

N∑
i=1

π
(i)
k f

tk,tk−∆
(i)
k

(x
(i)
tk−∆k

) (39)

Ptk =

N∑
i=1

π
(i)
k

[(
x

(i)
tk
− x̂tk

)(
x

(i)
tk
− x̂tk

)T

+Q
tk,tk−∆

(i)
k

]
. (40)

�

B. Constant Propagation Speed Case

A common case in target tracking is the case of constant
speed of signal propagation where simple sufficient conditions
for the convergence of the recursion of Theorem 1 can be
found. We give such conditions in the following corollary
which enables the easy and fast use of the theorem in practical
applications.

Corollary 1. With a propagation model that assumes a
constant speed of signal propagation, the condition for the
exponential convergence of the recursion in Theorem 1 be-
comes

vmax(tk−1 − ∆̆, tk, x̆) < vpropagation (41)

where vpropagation is the speed of signal propagation. Further-
more, if in addition a (nearly) constant velocity (speed) model
is used for target tracking, the condition becomes

‖ vel(x̆)‖2 < vpropagation. (42)

If instead a (nearly) constant acceleration model is used, the
condition becomes

max
(
‖ vel(x̆)‖2, ‖ vel(x̆) + (tk − tk−1 + ∆̆) acc(x̆)‖2

)
< vpropagation. (43)

�

Proof: Proof is given in Appendix B for the sake of clarity.�

The specific sufficient conditions of Corollary 1 are much
simpler than the one in Theorem 1 and one can quite efficiently
check that the exponential convergence of the recursion of
Theorem 1 is guaranteed. The conditions are fairly weak in
that they require the range of predicted target speeds to be
smaller than the speed of signal propagation in the medium.
This is a reasonable assumption because if the target of
interest moves with a speed larger than the speed of signal
propagation, doing the estimation based on such a signal is
not a good idea in the first place. Considering for example a
target moving directly towards the sensor with a larger speed
than the signal propagation speed, the target would arrive at
the sensor location even before its signal reaches the sensor
hence there is practically no way of tracking the target with a
good performance.

C. Alternative Ideas

Another idea for handling the implicit delay constraints
is to run a numerical root-finding algorithm [22, Section
5.1] in order to obtain the solution such as Newton-Raphson
or modified Newton [22, Section 5.4] algorithms, see [22,
Chapter 5] for many other alternatives. In the case of the
simplified example in Section II, Newton-Raphson method, for
example, would yield the solution in a single iteration thanks
to the quadratic cost function. In the general case treated in
this section, we might not have such attractive properties that
can be associated to the related cost functions. Nevertheless,
one can still use a numerical root-finding algorithm on each
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particle if the solutions can be obtained more quickly. An
advantage of our method compared to some others like the
modified Newton method [22, Section 5.4] is that it does not
require a step-size selection mechanism.

V. SIMULATIONS

In this section, the performance of the PDM-PF is going
to be compared on a simulated target tracking scenario with
other possible approaches which are

• A PF which totally neglects that there is a delay in
sensing.

• The deterministic sampling approach of [4].
• An alternative PF which tries to compensate for the delay

by using its last estimate (particles).
• Another particle filter which uses a random walk model

for the delays and incorporates the information of delay
constraint using pseudo-measurements in the measure-
ment update.

For this purpose, we choose to consider an exaggerated two-
dimensional bearing only tracking problem with a single
maneuvering sensor to clearly illustrate the detrimental effects
of the signal propagation delays. The single target in the
scenario makes a clockwise coordinated turn of radius 500m
with a speed about 200km/h beginning in y-direction with the
initial position [−500m, 800m] for 45 seconds. The tracking
sensor called S1 acquires bearing data of the target corrupted
by a Gaussian measurement noise with zero mean and standard
deviation of 0.01 radians with sampling period T = 1s
beginning at t0 = 4 seconds. The difference of this scenario
from the one that was used in [4] is that the measurement
noise standard deviation used here is more realistic than that
of [4] which was 0.001 radians. The sensor gets a total number
of 42 measurements in the interval [4secs,45secs]. The sensor
trajectory is selected to lie on the curve y = 100 sin( 2π

200x)
when x ranges in the interval [−200m, 200m] beginning at
x = −200 meters at time t0 = 4 seconds with constant x-
speed. The true target trajectory and the sensor positions used
in the example are illustrated in Figure 3.

The target motion is modeled with a discretized coordi-
nated turn model with an unknown constant turn rate (i.e.,
the turn rate is also a state variable) and with Cartesian
velocity. Therefore, the state of the target is given as xk =
[pxk, p

y
k, v

x
k, v

y
k, ωk]T where p, v and ω variables denote the

position, velocity and turn rate respectively and the motion
model is

xk+1 =


1 0 sin(ωkTk+1)

ωk
− 1−cos(ωkTk+1)

ωk
0

0 1 1−cos(ωkTk+1)
ωk

sin(ωkTk+1)
ωk

0

0 0 cos(ωkTk+1) − sin(ωkTk+1) 0
0 0 sin(ωkTk+1) cos(ωkTk+1) 0
0 0 0 0 1

xk
+ wk+1 (44)

where Tk+1 = tk+1 − tk is the length of the time period
between xk and xk+1 and wk is a Gaussian noise with zero

−800 −600 −400 −200 0 200 400 600
−200
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200

400

600

800

1000

1200

1400

t = 4s

t = 0

t = 45s

10s

20s

30s

40s

p4

t = 4s

t = 45s

x (m)

y
(m

)

Σp
4

Fig. 3. The target and sensor trajectory used in the example. The target
and sensor positions at measurement times tk = 4, 5, . . . 45s are emphasized
with black dots. The filter initialization parameters p4 and Σp

4 are explained
the main text.

mean and covariance Qk given as

Qk =


σ2
v̇T

3
k /3 0 σ2

v̇T
2
k /2 0 0

0 σ2
v̇T

3
k /3 0 σ2

v̇T
2
k /2 0

σ2
v̇T

2
k /2 0 σ2

v̇Tk 0 0
0 σ2

v̇T
2
k /2 0 σ2

v̇Tk 0
0 0 0 0 σ2

ω̇Tk

 .
(45)

In all simulations, we selected the standard deviations for the
turn rate and speed as σω̇ = 0.01rad/s2 and σv̇ = 1m/s2

respectively. The measurement model is given as

yk = arctan
pyk − py,S1

k

pxk − px,S1

k

+ νSk (46)

where the superscript S1 denotes the sensor related quantities.
The delay expression used in the simulations is given by

(11) with vsound ≈ 344m/s and pτk(τ) , δ0(τ), i.e., τk ≡ 0.
Five different algorithms are tested with the following brief

descriptions (and abbreviations).
• PF: A standard particle filter which does not compensate

for the propagation delay at all. In other words, it just uses
the measurement equation

yk = hk(xtk) + vk. (47)

• PDMF: The deterministic sampling based propagation
delay compensator proposed in [4].

• PDM-PF: The propagation delayed measurement com-
pensating particle filter proposed in this work. In the
prediction step, the recursions of Theorem 1 are applied
to particles with a stopping rule∣∣∆(i)

k (m)−∆
(i)
k (m− 1)

∣∣ < 10−10s. (48)

Since the target model used in the filter (coordinated turn)
is a nearly constant speed model the convergence of the
recursion on the ith particle is guaranteed by the condition
‖ vel(x

(i)
k )‖ < vsound according to Corollary 1. The
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recursion is carried out only on the particles satisfying
this condition and if there are any particles not satisfying
the condition their weight is set to zero and hence they
are completely disregarded in the estimation.

• PFD: This algorithm uses the same measurement equa-
tion (47) as PF and hence does not take care of the delay
in the prediction or measurement updates. However, it
knows that what it estimates is xtk−∆k

. Therefore, for
each of its particles it calculates a delay estimate ∆

(i)
k

from (11). Then, it extrapolates its particles as PDM-PF
does to calculate an output estimate. This is the most
straightforward estimation solution that comes to mind
but it ignores the dynamics of ∆k and therefore its esti-
mate of xtk−∆k

is wrong which can cause unpredictable
errors.

• PFD-RW: An algorithm that assumes that the delays ∆k

satisfy a random walk (represented by the abbreviation
RW) model given as follows

∆k = ∆k−1 + γk (49)

where the standard deviation of the zero-mean Gaussian
noise γk has been taken to be 0.13s which was calculated
from the true delays in the example. This algorithm runs
a particle filter that keeps the same number of states
x

(i)
tk−∆k

and delays ∆
(i)
k as PDM-PF. In each prediction

step (suppose we are at time k − 1), first the delays
{∆(i)

k−1}Ni=1 are predicted using the model (49) to obtain
{∆(i)

k }Ni=1. Then, the states x(i)
tk−1−∆k−1

are predicted as

xtk =f
tk−∆

(i)
k ,tk−1−∆

(i)
k−1

(xtk−1−∆k−1
) + w(i) (50)

where w(i) ∼ pwtk,tk−1
(·) as in PDM-PF. If the mea-

surement update was done in exactly the same way as
PDM-PF, such an algorithm would not use the delay
constraint. Instead, we here use the delay constraint in
the measurement update as a pseudo measurement [13–
15] by defining the augmented measurement vector ȳk
as

ȳk ,

[
yk
0

]
=

[
hk(xtk−∆k

) + vk
dtk(xtk−∆k

)−∆k + v∆
k

]
(51)

where the distribution of v∆
k has been selected to

be N (v∆
k ; 0, 0.22). The measurement update is done

similarly to PDM-PF after replacing the likelihood
p(yk|x(i)

tk−∆k
) in (38) with p(ȳk|x(i)

tk−∆k
,∆

(i)
k ). The out-

put calculation step is the same as PDM-PF. Note that this
type of methodology was also described in [4, Section IV]
for deterministic sampling based implementations.

All the particle filters to be run have been initialized with
randomly generated particles x(i)

4 ∼ N (µ4,Σ4) where Σ4 =
diag(1002, 1002, 102, 102, 0.052) and the mean µ4 of the
initial particles is also selected randomly such that µ4 ∼
N (x4,Σ4) where x4 is the true target state. Notice here that
it is not the initial particles x

(i)
4 but their mean µ4 which

is distributed around the true target state. The initial state
estimate and covariance of PDMF are set to the random
mean µ4 and the covariance Σ4 respectively. The position
component p4 , pos(x4) of x4 and the 99 percent confidence
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Fig. 4. RMS-position errors of the algorithms. The clairvoyant parametric
Cramer-Rao lower bound (PCRLB) (calculated with known delays) is also
illustrated.

ellipse of the position partition Σp
4 of the covariance Σ4 are

also illustrated in Figure 3. In order to be fair to alternative
particle filters, the weights of the particles not satisfying the
condition ‖ vel(x

(i)
k )‖ < vsound are also set to zero in PF, PFD

and PFD-RW. All PFs have used 10000 particles.
A total number of 10000 Monte-Carlo runs have been

made by changing the realization of the measurement noise
and the initial particles/state estimate in each one. PDMF,
as reported also in [4], turned out to be quite sensitive to
measurement noise, and it has obtained speed estimates larger
than vsound in 31 Monte-Carlo runs where the recursions of
Theorem 1 cannot be applied. In these runs, PDMF has been
declared as divergent and such runs were not included in
the averages calculated about PDMF. It has been observed
that on average approximately 9 recursions for each particle
were made to satisfy the stopping rule (48) in the prediction
update of PDM-PF. Since one more prediction is necessary
for the output calculation of PDM-PF, at each cycle of PDM-
PF, approximately 10 standard prediction updates and one
standard measurement update were performed. Compared to
the standard algorithm PF, this means an approximate extra
computation load of 9 prediction updates. RMS position and
velocity errors of the algorithms are shown along with the
clairvoyant parametric Cramer-Rao lower bounds (PCRLBs)
(calculated with known delays) in Figures 4 and 5 respectively.

In both position and velocity estimation, PDM-PF seems to
be better than all the other filters and the closest to PCRLB.
PDM-PF is outperformed only by PFD-RW during a negligible
time period which appears to be scenario dependent. In order
to explain the performance differences of the other algorithms,
we show the true propagation delay sequence for the example
along with the average estimated propagation delays for the
delay compensating algorithms in Figure 6. One standard
deviation variations over the Monte-Carlo runs are also shown
in the figure. Although PDMF diverges in some runs as
mentioned above it has considerably reasonable average propa-
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Fig. 6. The true and average estimated propagation delays for PDMF in
(a), PDM-PF in (b), PFD in (c) and PFD-RW in (d). The variations of one
standard deviation over the Monte-Carlo runs are also illustrated with grey
clouds around the estimated delays.

gation delay estimates. The average delay estimates of PDM-
PF are similar but with a smaller variation. An interesting
observation is that in the short time period where PFD-RW
outperforms PDM-PF, the average propagation delay estimate
curve of PFD-RW intersects the true delay curve which shows
that this behavior is scenario dependent as mentioned above.

In Figures 4 and 5 it is shown that PFD mostly performs
better than PF which neglects the delay. This shows that
the delay compensating strategy of PFD is effective to some
extent. On the other hand, after t = 35s, the performance of
PFD degrades to be significantly below that of PF. Note that
the delay compensated particles of PFD are just extrapolated
particles of PF with the delays calculated from the state of
each particle. Since PF does not take into account the delays,
these state values turn out to be wrong which leads to biased
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Fig. 7. RMS delay estimation errors of the delay compensating algorithms.

delay calculation of PFD as shown in Figure 6. When the true
delays are large, this bias can be thought of as negligible and
this manifests itself in the better performance of PFD in such
regions. However, towards the end of the scenario, the biases
which do not get smaller start becoming important while the
true delay shrinks. As a result, the wrong state values begin to
be extrapolated with significantly wrong delay values which
results in the worse performance of PFD than PF.

PDM-PF compensates for the delays in its prediction update.
PFD does this after the measurement update and outside the
estimation loop which can cause even worse results than PF.
PFD-RW, on the other hand, incorporates the delay constraint
information in the measurement update as a compensation. In
this measurement update, the particles with delay–state pairs
that do not satisfy the delay constraint would get very small
weights and hence disappear due to the additional pseudo-
measurement. Computation resources on such particles are
wasted and the particle depletion in the particle filter could
get worse, i.e., the number of effective particles decreases.
The advantage of PDM-PF compared to PFD-RW lies in
that it never generates a particle with a delay–state pair that
does not satisfy the delay constraint thanks to the recursion
of Theorem 1. As another point, the process noise of (49)
and pseudo-measurement noise v∆

k of (51) are artificially
imposed into the information structure of the problem to
enable the stability with a particle filter and they would cause
performance loss.

The delay compensation methodologies of PFD and PDF-
RW are still useful to some extent compared to PF when the
delays do not change much which is the case when the target
is far away and moves orthogonally to the range vector to
the sensor, but when this is not the case, as seen towards the
end of the simulation, they might cause even more (PFD) or
similar (PFD-RW) errors. When the delays change quite fast
(between 20s–35s) the PDM-PF performance is also affected,
however, the estimates can quickly recover after this period
ends. This is more clearly illustrated with the RMS delay
estimation errors of the delay compensating algorithms shown
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in Figure 7. PFD-RW and also PDMF (to a lesser extent) are
also capable of recovering a level of reasonable performance
after this challenging period which is evident also from their
propagation delay estimation performance at the end of the
scenario.

VI. CONCLUSIONS

We have proposed a particle filter called PDM-PF that
compensates for the signal propagation delays in the prediction
update of the particle filter. Compared to the earlier determin-
istic sampling based method, this filter has the capability to
work with general stochastic nonlinear models and is much
less sensitive to higher noise levels. Simulation results show
that, in a quite challenging scenario, PDM-PF can beat two
other PFs which compensate for the delays in measurement
update or output calculation steps. This shows that the early
compensation of the propagation delays is useful while work-
ing with propagation delayed measurements. Especially, the
delay compensation outside the estimation loop in PFD was
observed sometimes to potentially give worse results than
even neglecting the delays. Compensating for the delays in a
measurement update in the form of a pseudo-measurement also
appeared as a feasible stable alternative though there might
be important performance and computation resource losses
compared to PDM-PF.

Another potential application that one can consider for the
method proposed in this work might be (the fine tuning of)
tracking and/or prediction of star trajectories based on visual
bearing and azimuth information in which case the speed of
light plays the role of signal propagation speed and the order
of magnitude of the delays might be (light) years.

The assumption of target speed being smaller than the signal
propagation speed used in this work precluded the use of the
algorithm presented here in some practical applications such
as [23] where the concern is on supersonic targets (bullets)
sensed by microphones. In fact, as we hinted in Section II, it
is theoretically possible to use the recursion (16) backwards to
solve the implicit delay constraint. However, such an approach
would involve possibly problem specific and constraining
function invertibility requirements and hence excluded from
the current work.

APPENDIX A
PROOF OF THEOREM 1

The difference between two consecutive ∆k(m) values is
given as

|∆k(m+ 1)−∆k(m)|
= |dtk(xtk−∆k(m)) + τ − dtk(xtk−∆k(m−1))− τ |
= |dtk(xtk−∆k(m))− dtk(xtk−∆k(m−1))| (52)

≤ Kd‖ pos
(
xtk−∆k(m)

)
− pos

(
xtk−∆k(m−1)

)
‖

2
(53)

where we used the Lipschitz property (15) of dtk(·).
Noticing that the position difference (distance)
‖ pos

(
xtk−∆k(m)

)
− pos

(
xtk−∆k(m−1)

)
‖

2
between the

states that can be obtained via the prediction relation

xtk−∆k
= ftk−∆k,tk−1−∆̆(x̆) + w̆. (54)

for two different delay values (∆k(m) and ∆k(m − 1)) is
limited by the relation

‖ pos
(
xtk−∆k(m)

)
− pos

(
xtk−∆k(m−1)

)
‖

2

≤ vmax

(
min(tk−∆k(m−1),tk−∆k(m))

,max(tk−∆k(m−1),tk−∆k(m)), x̆
)

× |∆k(m)−∆k(m− 1)| (55)

≤ vmax

(
tk−1 − ∆̆,max(tk−∆k(m−1),tk−∆k(m)), x̆

)
× |∆k(m)−∆k(m− 1)| (56)

≤ vmax

(
tk−1 − ∆̆, tk, x̆

)
|∆k(m)−∆k(m− 1)| (57)

where the function vmax(·, ·, ·) is defined in (20) and it finds
the maximum velocity of the target that might be predicted by
the state space model when initialized with x̆ at time tk − ∆̆.

Now substituting (57) into (53), we get

|∆k(m+ 1)−∆k(m)| ≤Kdvmax

(
tk−1 − ∆̆, tk, x̆

)
× |∆k(m)−∆k(m− 1)| (58)

which proves that the overall transformation from ∆k(m) to
∆k(m+1) is a contraction if Kdvmax

(
tk−1 − ∆̆, tk, x̆

)
< 1.

The result of the theorem is then given by the famous Banach
fixed-point theorem (a.k.a. contraction mapping theorem) [24].

APPENDIX B
PROOF OF COROLLARY 1

With constant speed of propagation, we have

dtk(x) ,
‖ pos(x)− psensor

tk
‖

2

vpropagation
+ τk. (59)

Then

|dtk(x)− dtk(x′)|

=

∣∣‖pos(x)− psensor
tk
‖

2
− ‖ pos(x′)− psensor

tk
‖

2

∣∣
vpropagation

(60)

≤ 1

vpropagation
‖ pos(x)− pos(x′)‖2 (61)

where we used the reverse triangle inequality while writing
(61) from (60). Identity (61) means that a Lipschitz constant
for dtk(x) is given as Kd , 1

vpropagation
. Substituting Kd into

the condition Kdvmax(tk−1− ∆̆, tk, x̆) < 1 of Theorem 1, we
obtain the first condition (41) of Corollary (1).

The second condition (42) of the corollary can be easily
proven from the first condition (41) by noting that

vmax(tk−1 − ∆̆, tk, x̆) = vel(x̆) (62)

for all (nearly) constant velocity (speed) target state models.
Proving the third condition (43) is a little more involved.

vmax(tk−1 − ∆̆, tk, x̆) , max
tk−1−∆̆≤t≤tk

∥∥∥vel
(
ft,tk−1−∆̆(x̆)

)∥∥∥
2

(63)

=

√
max

tk−1−∆̆≤t≤tk

∥∥∥vel
(
ft,tk−1−∆̆(x̆)

)∥∥∥2

2
. (64)
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Now assume that we use a (nearly) constant acceleration
model for target tracking. Then we have

vel
(
ft,tk−1−∆̆(x̆)

)
= vel(x̆) + (t− tk−1 + ∆̆) acc(x̆). (65)

Substituting (65) into (64), we get

vmax(tk−1 − ∆̆, tk, x̆)

=

√
max

tk−1−∆̆≤t≤tk

∥∥∥vel(x̆) + (t− tk−1 + ∆̆) acc(x̆)
∥∥∥2

2
.

(66)

Now, the objective function of the max-operator on the right
hand side of (66) is a parabola in t and the coefficient of t2

is ‖ acc(x̆)‖22 ≥ 0. Hence, the maximum should be attained at
one of the boundary points t = tk−1 − ∆̆ and t = tk giving

vmax(tk−1 − ∆̆, tk, x̆)

=

√
max

(
‖ vel(x̆)‖22, ‖ vel(x̆) + (tk − tk−1 + ∆̆) acc(x̆)‖

2

2

)
= max

(
‖ vel(x̆)‖2, ‖ vel(x̆) + (tk − tk−1 + ∆̆) acc(x̆)‖2

)
(67)

Substituting the result (67) into the first condition (41), we
obtain the third condition (43). Notice also that the third
condition (43) reduces into the second condition (42) when
acc(x̆) = 0.
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