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A New Computational Approach for Maximum
Link Activation in Wireless Networks under the

SINR Model
Antonio Capone, Senior Member, IEEE, Lei Chen, Stefano Gualandi, and Di Yuan, Member, IEEE

Abstract—A fundamental and computationally challenging
optimization task in wireless networks is to maximize the number
of simultaneous transmissions, subject to signal-to-noise-and-
interference ratio (SINR) requirements at the receivers. The
conventional approach guaranteeing global optimality is to solve
an integer programming model with explicit SINR constraints.
These constraints are however numerically very difficult. We
develop a new integer programming algorithm based on a
much more effective representation of the SINR constraints.
Computational experiments demonstrate that the new approach
performs significantly better in proving optimality.

Index Terms—wireless networks, optimization, link activation,
SINR, integer programming.

I. INTRODUCTION

We consider the optimization problem of maximizing the
number of parallel transmissions in a wireless network.
Transmission on a link is subject to a signal-to-noise-and-
interference ratio (SINR) threshold required for successful
reception according to the physical model [1]. Differently than
in asymptotic analysis where random networks are considered
[1], this problem is commonly considered in performance
engineering of wireless networks with arbitrary topology and
propagation coefficients [2]. Notably, a weighted version of
this problem is the key subproblem in many radio resource
management aspects, such as link scheduling [3], [4], where
different sets of compatible parallel transmissions need to
be selected, and routing [6], [7], where transmissions over
multiple links are required.

The problem we consider has its root in link admis-
sion/activation and Spacial Time Division Multiple Access
(STDMA) [8]. It has attracted a significant amount of research
attention (see e.g. [9], [10] and the references therein). Its
relevance within the theory of wireless networks is related
to benchmarking and performance analysis of protocols and
systems, but it also has practical validity in static all-wireless
networks (like Wireless Mesh Networks) where propagation
conditions are almost constant and a centralized management
of radio resources is applicable [7], [11].

The problem is NP-hard with nodes distributed in Euclidean
space even under uniform node power [9], and even if the
background noise is neglected [10]. Approximation algorithms
with ratio dependent on the number of connections [11], or on
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geometric characteristics [9], [10] are available. Algorithms
with constant approximation guarantee have been proposed
[2], [12] under the uniform power assumption. Recently, a
constant-factor approximation algorithm for the general case
of variable power has been developed [5].

In contrast, very little work has been done for approach-
ing global optimality [7]. Yet, exact algorithms are of great
interest for performance evaluation and designing resource
optimization strategies in order to assess the actual potential
improvement of heuristic schemes. Moreover, solving the
problem to optimum allows for making fair comparisons of
transmission, medium access, and routing schemes exploiting
parallel transmissions and cooperation among nodes.

To our knowledge, the conventional approach in previous
works for guaranteeing global optimality is to solve an integer
linear model with explicit SINR constraints. These constraints
are however numerically very difficult, mainly because prop-
agation gains vary significantly in magnitude. In this letter,
we propose a new integer programming algorithm based on a
numerically equivalent but much more effective representation
of the SINR constraints. We show that the new approach
performs significantly better in proving optimality or confining
the optimum within a tight interval.

II. PRELIMINARIES

Let V denote the node set of a wireless network. The nodes
use fixed transmit power. The algorithm we present does not
assume uniform power, although the networks used in the
experiments have this characteristic. We use the following
notation: Pi is the power of i ∈ V , gij is the gain between
nodes i and j, η is the noise effect, and γ is the SINR
threshold. Simultaneous transmissions are subject to several
constraints: 1) a node can be a sender or receiver, but not
both simultaneously, 2) a node can send to at most one
receiver or receive from at most one sender, and 3) all links
in transmission (i.e., activated links) must have the SINR
threshold satisfied. Clearly, i can send to j, only if the signal-
to-noise ratio (without any interference) satisfies Pigij

η ≥ γ.
Let arc set A denote the resulting collection of links. When
multiple links are activated, the SINR requirement of (i, j)
reads Pigij∑

k∈I\{i} Pkgkj+η
≥ γ, where I is the set of active

senders.
The optimization problem is to admit as many links as

possible, i.e., to find a subset of A with maximum car-
dinality, such that the SINR threshold of all links in the
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subset are simultaneously fulfilled. Denote by L∗ the optimal
value, and LB and UB lower and upper bounds of L∗, i.e.,
L∗ ∈ [LB, UB]. An exact algorithm always guarantees global
optimum L∗. Heuristics give LB of unknown quality. An
approximation algorithm with a constant approximation ratio k
produces, for any instance, LB such that L∗ ≤ UB = k ·LB.
Thus the ratio k has to be derived for the theoretically worst
case.

Obviously, heuristics and approximation algorithms can deal
with much larger networks than exact algorithms. To accu-
rately assess the numerical performance limit of maximum
link activation, as well as to evaluate heuristics, however,
finding L∗ or obtaining a numerically tighter interval than
that of an approximation algorithm, is of great importance.
Our contribution is a new exact algorithm that significantly
improves the scalability of the current one in delivering
global optimum L∗, or numerically computing a tight interval
[LB, UB].

III. THE CONVENTIONAL APPROACH

Let binary variables xij and yi denote, respectively, if link
(i, j) is activated and if node i is transmitting. Solving the
following integer linear model is the conventional approach
for obtaining global optimum of link activation.

[M1] L∗ = max
∑

(i,j)∈A

xij (1)

s. t.
∑

j∈V :(i,j)∈A

xij +
∑

j∈V :(j,i)∈A

xji ≤ 1, i ∈ V (2)

∑

j∈V :(i,j)∈A

xij = yi, i ∈ V, (3)

Pigijxij + Mij(1− xij) ≥
γ(

∑

k 6=i

Pkgkjyk + η), (i, j) ∈ A, (4)

xij ∈ {0, 1}, (i, j) ∈ A, (5)
yi ∈ {0, 1}, i ∈ V. (6)

The objective (1) maximizes the number of admitted links.
Inequalities (2) state that, among the incoming and outgoing
links of a node, at most one can be activated. This corresponds
to the first two constraints in Section II. The y-variables,
although can be eliminated by (3), are kept for the sake of
clarity. Inequalities (4) formulate the SINR requirement. If
xij = 1, (4) constrains SINR to be at least γ. For xij = 0, the
constraint is always satisfied for a sufficiently large number
Mij ; this is the case if Mij equals the right-hand side of (4),
with all y-variables set equal to one.

The difficulty of solving M1 stems from (4). Solving an
integer linear model relies heavily on the bound from the
continuous relaxation. The big number Mij , known as big-
M in integer programming, makes the continuous relaxation
very weak. Moreover, the gain values in (4) vary significantly
in magnitude and cause numerical difficulties in problem
solution.

IV. A NEW EXACT ALGORITHM

A. A Reformulation

If link (i, j) is active, (4) reduces to a knapsack constraint:∑
k 6=i bkjyk ≤ rij , where bkj = Pkgkj and rij = Pigij

γ −
η. We reformulate this knapsack constraint by using cover
inequality-type cutting planes. A set C ⊆ V \ {i} is called
a cover, if

∑
k∈C bkj > rij . The SINR of (i, j) threshold

requires that at most |C| − 1 nodes in C may transmit.
We obtain the most basic form of SINR cover inequality:∑

k∈C yk ≤ |C| − xij . Note that the inclusion of xij in the
right-hand side restricts the activation of links in C to at most
|C| − 1, only if link (i, j) itself is active.

Using the cover-type inequality to reformulate the SINR
requirements yields the following new integer model.

[M2] max
∑

(i,j)∈A

xij

s. t. (2), (3), (5), (6)∑

k∈C

yk ≤ |C| − xij ,

(i, j) ∈ A,C ⊆ V :
∑

k∈C

bkj > rij . (7)

Note that the explicit SINR constraints (4) are completely
eliminated in M2. What’s more, unlike (4) with big-M and
gain values, (7) does not contain any numerically difficult
coefficient.

Theorem 1: The integer formulation M2 is correct, that is,
its optimal point represents a feasible activation solution of L∗

links.
Proof: Consider any link activation solution that is infea-

sible due to SINR requirement, and let the set of transmitters
be T . The solution contains at least one link (i, j), for which
the total interference

∑
k∈T\{i} Pkgkj exceeds the budget

Pigij

γ − η. The set T \ {i} forms an inequality of (7) in M2.
Therefore the optimum of M2 must be feasible. Moreover,
since (7) is derived for SINR violation, the inequalities do not
cut off any feasible solution. Hence the correctness.

A special case of (7) is a set C with cardinality one, i.e.,
knapsack violation due to one interfering sender:

yk ≤ 1− xij , (i, j) ∈ A, k 6= i, j : bkj > rij . (8)

We remark that the SINR requirement can be rep-
resented using a linearization of the bi-linear constraint∑

k 6=i bkjykxij ≤ rij . The linearization uses an auxiliary
binary variable zk

ij to replace the bi-linear product. Variable
zk
ij takes value one only if both link (i, j) and node k

are active. This effect can be achieved by linear inequality
zk
ij ≥ yk + xij − 1. Computational experiments indicate,

however, that the linearization does not perform better than
M1. We therefore do not discuss the linearization further in
the rest of the paper.

B. Stronger Inequalities

We can not solve M2 in its complete form, as the number
of constraints of type (7), in general, grows exponentially
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in |V |. On the other hand, optimum to knapsack problems
can typically be reached by introducing a handful of cover
inequalities. Thus the task is to identify those inequalities that
are necessary to define the global optimum point. To this end,
our algorithm integrates the following notions.

1) An iterative approach solving first a model containing
a small number of constraints of type (7), such as (8),
followed by repeatedly introducing new inequalities that
are violated by the solution, which will then be cut off,
and re-solving the model.

2) Identification of as strong inequalities as possible in each
iteration.

Let (x̄, ȳ) denote an integer solution satisfying (2), (3), and
any subset of (7). Verifying whether or not (x̄, ȳ) violates the
SINR of any link (i, j) with x̄ij = 1 is straightforward. If
the SINR threshold is exceeded, the nodes with value one in
ȳ lead to a violated inequality of (7). However, (7) generated
in this way is weak. To get substantially stronger inequalities,
we generate (7) having a minimum number of elements in the
left-hand side, corresponding to so called minimum cover for
knapsack problems. Suppose

∑
k 6=i bkj ȳk > rij . We minimize

the number of interfering nodes we pick before the sum
exceeds rij . Doing so amounts to sorting the elements in
{bkj : ȳk = 1} in descending order, and following the
sorted sequence until the accumulated sum goes above rij .
Denoting the resulting index set by K. We obtain inequality∑

k∈K yk ≤ |K|−xij . We strengthen it further by subtracting
additional x-variables in the right-hand side, as described
below. The procedure is called lifting in integer programming.
An illustration of the links involved in the lifting procedure is
shown in Figure 1.

i j

Node in set K

Link with violated SINR

Interference 
Additional links for lifting

Fig. 1. An illustration of cut generation.

Consider link (i, h) with h 6= j, and assume first h /∈ K.
If link (i, h) can tolerate interference from at most m nodes
in K and m < |K|, we can strengthen the inequality to∑

k∈K yk ≤ |K| − xij − aK
ihxih, where aK

ih = |K| − m. To
see the validity of the new inequality, note that xij and xih

can not be one simultaneously, which is ensured by constraints
(2). Thus, if xij = 1, then xih = 0, and the inequality reduces
to

∑
k∈K yk ≤ |K| − xij . If xih = 1, then xij = 0, and the

inequality allows at most m transmitters in K to be active.
To find out m, we sort the nodes in K in ascending order
in their signal strengths at h, and determine how many nodes
in the sorted sequence can be active before the accumulated
interference exceeds rih. The discussion so far applies to
h /∈ K. If h ∈ K, the calculation of m is adjusted for K\{h},
and the coefficient aK

ih = |K|−1−m if m < |K|−1. A similar
lifting procedure applies to any incoming link (h, i) having i

1: (Status, UB, (x̄, ȳ)) ← Solve((1), (2), (3), (5), (6), (8))
2: LB ← LinkRemoval(x̄, ȳ); L = LB + 1; Q ← ∅
3: repeat
4: Q ← Q ∪Generate(x̄, ȳ)
5: (Status, L̄, (x̄, ȳ)) ← Solve((1), (2), (3), (5), (6), (8), Q, L)
6: while Status = Solution exists and (x̄, ȳ) feasible do
7: LB ← LB + 1; L ← LB + 1
8: (Status, L̄, (x̄, ȳ)) ←

Solve((1), (2), (3), (5), (6), (8), Q, L)
9: end while

10: if Status = Solution exists then
11: LB ← max{LB, LinkRemoval(x̄, ȳ)}; UB ←

min{UB, L̄}
12: end if
13: until Status = No feasible solution
Fig. 2. Algorithm description.

as the receiver. Next, we make the observation that at most
one of the outgoing and incoming links of i can be active.
Hence the strengthening terms of all links of i, except (i, j),
can all be part of the new inequality. The lifted inequality has
the following general form.

∑

k∈K

yk ≤ |K| − xij −
∑

h6=j:(i,h)∈A

aK
ihxih −

∑

h:(h,i)∈A

aK
hixhi.

(9)
Inspecting Figure 1, one can derive a second inequality

based on (i, j) and the links of j. The inequality is given
below, and the calculation of its coefficients is analogous to
(9).

∑

k∈K

yk ≤ |K| − xij −
∑

h:(j,h)∈A

aK
jhxjh −

∑

h6=i:(h,j)∈A

aK
hjxhj .

(10)

C. Algorithm Summary

Figure 2 summarizes the algorithm. The first line solves
the model defined by maximizing (1), subject to (2), (3), and
(8), to optimality by a solver. The last set of constraints are
the cover-type inequalities having one interfering transmitter.
The optimum initializes UB. Assume the solution is not
SINR-feasible (otherwise L∗ = UB). A link-removal heuristic
(LinkRemoval) is used to derive a feasible set of active links.
Link removal considers the subset of links having infeasible
SINR. Among them, the one causing largest total interference
to all remaining links with violated SINR is removed first, and
the SINR of the other links are updated. This is repeated until
feasibility is reached. The LinkRemoval procedure results in
the initial value of LB (line 2). Also, the pool of inequalities
of (9) and (10), denote by Q, is initialized.

The bulk of the algorithm alternates between generating (9)
and (10) to augment Q, of which the procedure is described in
the previous section and denoted by Generate in line 4 of the
figure, and optimizing the augmented model (line 5). For better
efficiency, we do not require optimality in every iteration, but
use a target value L = LB+1. The solution process is halted,
once the solver finds (x̄, ȳ) with L active links, or proves that
no such solution exists (Status = no solution). We use L̄ to
denote the best upper estimation of optimum, originated from
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the branch and bound process in the solver. As long as (x̄, ȳ)
happens to satisfy the SINR threshold, we update LB and
the target value L (line 7), and resume the solution process
(line 8). If (x̄, ȳ) is not feasible, the link-removal procedure is
applied, and LB and UB are updated in case of improvement
as shown in line 11. This is followed by the next round of
generating inequalities.

Theorem 2: The algorithm in Figure 2 converges to L∗

within a finite number of iterations.
Proof: The algorithm terminates only if no solution with

L = LB+1 exists. At this stage, clearly LB = L∗. When this
condition is not met, either LB increases, or new inequalities
cutting off the current solution (x̄, ȳ) are added. In the former
case, the bounding interval becomes strictly tighter. In the
latter case, at least one infeasible solution is excluded and
will never be returned. These, together with the fact that L∗

is integral, establish the result.

V. PERFORMANCE EVALUATION

We have used six network groups ranging from 50 to 100
nodes for performance comparison between the conventional
but so far state-of-the-art approach of solving M1 directly by a
solver, and the presented approach based on reformulation and
mathematical programming concepts. Each network group has
five instances1. The nodes are randomly placed on a square
area of 100 m2. The gain parameter gij = d−3

ij , where dij is the
distance between i and j. The noise effect η = 10−10 mW, and
the SINR threshold γ = 10. The transmit power is uniformly
set to 0.01 W. The link set A is defined by node pairs having a
signal-to-noise ratio satisfying γ. On the algorithmic side, we
have used the CPLEX (version 10.1, [13]) integer solver with
its default options in implementing both solution approaches.
Thus in the experiments, the solver generates its standard,
built-in cutting planes, and applies branch-and-cut.

TABLE I
COMPUTING TIME (SECONDS) REQUIRED FOR REACHING GLOBAL

OPTIMUM.

Netw. Links Convent. New Netw. Links Convent. New
model algorithm model algorithm

50-1 276 43 26 70-1 588 4161 126
50-2 280 43 13 70-2 630 10071 63
50-3 266 39 7 70-3 610 16333 196
50-4 288 37 3 70-4 560 6682 136
50-5 306 37 5 70-5 644 2751 546
60-1 404 502 55 80-1 732 À 10 hours 815
60-2 412 758 24 80-2 826 À 10 hours 11252
60-3 408 947 13 80-3 800 26163 4268
60-4 442 318 1 80-4 708 À 10 hours 420
60-5 408 112 10 80-5 736 À 10 hours 1763

In Table I, we compare the time required for reaching
optimality (i.e., finding and proving L∗) for networks of up to
80 nodes. The time values are specified in seconds. The table
also contains the number of links of each network. From the
table, it is evident that the new algorithm based on inequalities
from SINR cover substantially outperforms the conventional
approach in proving and approaching global optimum. For
smallest-sized networks of 50 nodes, the time difference is
significant, even if not dramatic. For networks of 60 and 70

1The data sets can be downloaded from http://www.itn.liu.se/∼diyua
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Fig. 3. A comparison of the bounding interval.

nodes, the speed-up becomes of one or even two magnitudes.
For 80 nodes, optimum can no longer be found and proved by
the conventional model after 10 hours of computation, except
one case where the computing time is about 7 hours. (The
notation “À 10 hours” indicates that reaching optimality will
most likely take days, provided that memory requirement is
not the limiting factor.) The new algorithm is able to reach
optimality, with a computing time ranging from minutes to at
most two hours. These results demonstrate the benefit of the
reformulation of the numerically-difficult SINR constraints.

For networks of 90 and 100 nodes, proving global optimum
becomes time-consuming. For these networks, we illustrate
and compare in Figure 3 the bounding interval [LB,UB]
after 5 hours of computation. The numbers of links are shown
within parentheses. The results show that the new algorithm
delivers significantly tighter interval, and is also able to prove
optimality in two cases. Note that the two approaches find
identical LB (i.e., feasible link activation) in all cases, and
the tightening is due to better UB.

We remark that our algorithmic construction of repeatedly
generating violated constraints/cuts not only applies to M2,
but also generalizes to the conventional model M1. In the
latter case, the generation of cover-type inequality is replaced
by adding successively violated SINR constraints (4). Exper-
iments show that, although this approach leads sometimes to
improvement in computing time of M1, the performance of
M2 remains far more superior. Thus the huge gain in solution
time is mostly due to our new way of modeling the SINR
requirement.

VI. CONCLUSIONS

We have presented a new exact algorithm for maximum
link activation. Our notion is to reformulate the SINR con-
straint using more effective inequalities. The new algorithm
substantially outperforms the approach of solving the conven-
tional formulation. A future work is to develop an algorithm
extension to the more general form of the objective, where
each link is associated with a non-negative weight. For this
problem generalization, the current algorithm can be applied
by skipping the use of the target value L. A refined approach is
to, in the branch-and-cut tree, add violated cover-type cutting
planes each time an integer solution with better objective value
is found. Further investigations include the extension of our
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exact (and numerically stable) approach to adjustable transmit
power, and the study of its potential benefit in link scheduling.
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