

fMRI Analysis on the GPU - Possibilities and

Challenges

Anders Eklund, Mats Andersson and Hans Knutsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Anders Eklund, Mats Andersson and Hans Knutsson, fMRI Analysis on the GPU -

Possibilities and Challenges, 2012, Computer Methods and Programs in Biomedicine, (105),

2, 145-161.

http://dx.doi.org/10.1016/j.cmpb.2011.07.007

Copyright: Elsevier

http://www.elsevier.com/

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69677

http://dx.doi.org/10.1016/j.cmpb.2011.07.007
http://www.elsevier.com/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69677

fMRI Analysis on the GPU
-

Possibilities and Challenges

Anders Eklunda,b,∗, Mats Anderssona,b, Hans Knutssona,b

aDivision of Medical Informatics, Department of Biomedical Engineering
bCenter for Medical Image Science and Visualization (CMIV)

Linköping University, Sweden

Abstract

Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial res-
olution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs
to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion
compensation, are normally applied. The high computational power of modern graphic cards has already successfully been used for
MRI and fMRI. Going beyond the first published demonstration of GPU-based analysis of fMRI data, all the preprocessing steps
and two statistical approaches, the general linear model (GLM) and canonical correlation analysis (CCA), have been implemented
on a GPU. For an fMRI dataset of typical size (80 volumes with 64 x 64 x 22 voxels), all the preprocessing takes about 0.5 s on the
GPU, compared to 5 s with an optimized CPU implementation and 120 s with the commonly used statistical parametric mapping
(SPM) software. A random permutation test with 10 000 permutations, with smoothing in each permutation, takes about 50 s if
three GPUs are used, compared to 0.5 - 2.5 h with an optimized CPU implementation. The presented work will save time for
researchers and clinicians in their daily work and enables the use of more advanced analysis, such as non-parametric statistics, both
for conventional fMRI and for real-time fMRI.

Keywords: Functional magnetic resonance imaging (fMRI), Graphics processing unit (GPU), CUDA, General linear model
(GLM), Canonical correlation analysis (CCA), Random permutation test

1. Introduction & Motivation

Functional magnetic resonance imaging (fMRI), introduced
by Ogawa et al. [1], besides conventional MRI and diffusion
MRI [2] is a modality that is becoming more and more common
as a tool for planning brain surgery and understanding of the
brain. One problem with fMRI is the large amount of spatio-
temporal data that needs to be processed. A normal experiment
results in voxels that are of the size 2-4 mm in each dimension
and the collected volumes are for example of the resolution 64
x 64 x 32 voxels. For a typical acquisition speed of one volume
every other second, a 5 minute long fMRI experiment will result
in 150 volumes that need to be processed. Before the data can
be analyzed statistically, it has to be preprocessed in order to,
for example, compensate for head movement and to account
for the fact that the slices in a volume are collected at slightly
different time points.

Graphic processing units (GPUs) have already been applied
to a variety of fields [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] to
achieve significant speedups (2 - 100 times), compared to opti-
mized CPU implementations. Applications of GPUs in the field

∗Corresponding author at: Division of Medical Informatics, Department
of Biomedical Engineering, Linköping University, University hospital, 581 85
Linköping, Sweden, Tel: +46 (0)13 28 67 25

Email address: anders.eklund@liu.se (Anders Eklund)

of MRI have been image reconstruction [13], fiber mapping
from diffusion tensor MRI data [12], image registration [9, 11]
and visualization of brain activity [15, 16, 17]. The main advan-
tage of GPUs compared to CPUs is the much higher degree of
parallelism. As the time series are normally regarded as inde-
pendent in fMRI analysis, it is perfectly suited for parallel im-
plementations. The first work about fMRI analysis on the GPU
is the work by Gembris et al. [14] that used the GPU to speedup
the calculation of correlations between voxel time series, a tech-
nique that commonly is used in resting state fMRI [18] for iden-
tifying functional brain networks. Liu et al. [19] have also used
the GPU to speedup correlation analysis. We recently used the
GPU to create an interactive interface, with 3D visualization,
for exploratory functional connectivity analysis [6]. Another
example is the work by da Silva [10] that used the GPU to
speedup the simulation of a Bayesian multilevel model. A cor-
responding fMRI CUDA package, cudaBayesreg [20] was cre-
ated for the statistical program R. A final example is the Mat-
lab - GPU interface Jacket [21] that has been used to speedup
some parts of the commonly used statistical parametric map-
ping (SPM) software [22].

In this work the first complete fMRI GPU processing pipeline
is presented, where both the preprocessing and the statistical
analysis is performed on the GPU. The following sections fur-

Preprint submitted to Computer Methods and Programs in Biomedicine January 23, 2012

ther justify the use of GPUs for fMRI analysis.

1.1. Towards Higher Temporal and Spatial Resolution

An alternative to fMRI is electroencephalography (EEG),
which provides direct information about the electrical activ-
ity of neural ensambles compared to fMRI, which at present
depicts activation related blood flow changes. The sampling
rate can therefore be lower, which accomodates the lower speed
possible with fMRI. An aim of ongoing efforts is to achieve an
acquisition speed for volume data previously only possible for
single slice data. Approaches investigated currently are com-
pressed sensing [23], parallel imaging [24] and EEG-like MR
imaging [25].

The advantage of fMRI compared to EEG is a much higher
spatial resolution, which can be increased even further by using
stronger magnetic fields. Heidemann et al. [26] have proposed
how to obtain an isotropic voxel size of 0.65 mm with a 7T
MR scanner. With a repetition time of 3.5 seconds they obtain
volumes of the resolution 169 x 240 x 30 voxels, which are
much more demanding to process than volumes of the more
common resolution 64 x 64 x 32 voxels.

Increasing temporal and spatial resolution will put even more
stress on standard computers and is one reason to use GPUs for
future fMRI analysis.

1.2. More Advanced Real-Time Analysis

Another reason to use GPUs is to enable more advanced real-
time analysis. There are several applications of real-time fMRI,
an overview is given by deCharms [27]. One of the possible ap-
plications is interactive brain mapping where the fMRI analysis
runs in real-time. The physician then sees the result of the anal-
ysis directly and can interactively ask the subject to perform
different tasks, rather than performing a number of experiments
and then look at static activity maps.

There are only three approaches to perform the statistical
analysis faster, focusing the analysis on a region of interest in-
stead of the whole brain, calculating the same thing in a smarter
way or increasing the processing power. Cox et al. [28] in 1995
proposed a recursive algorithm to be able to run the fMRI anal-
ysis in real-time and a sliding window approach was proposed
by Gembris et al. [29] in 2000. Parallel processing of fMRI
data is not a new concept, already in 1997 Goddard et al. [30]
described parallel platforms for online analysis. Bagarinao et
al. [31] proposed in 2003 the use of PC clusters in order to get
a higher computational performance to do the analysis in real-
time, 8 PCs where used in their study.

An emerging field of real-time fMRI is the development of
brain computer interfaces (BCIs) where the subject and the
computer can work together to solve a given task. We have
demonstrated that it is possible to control a dynamical sys-
tem [32] and communicate [33] by classifying the brain activ-
ity every second; similar work has been done by LaConte et
al. [34]. deCharms et al. [35] helped subjects to suppress their
pain by letting them see their own brain activity in real-time.

1.3. High Quality Visualization

Visualization of brain activity is perhaps the most obvious
application of GPUs for fMRI data, as demonstrated by Rößler
et al. [15] and Jainek et al. [16]. In our recent work [17] the low
resolution fMRI activity volume is fused with the high resolu-
tion anatomical volume by treating the fMRI signal as a light
source, such that the brain activity glows from the inside of the
brain. The brain activity is in real-time estimated by perform-
ing canonical correlation analysis (CCA) on a sliding window
of data.

1.4. More Advanced Conventional Analysis

A higher computational power is not only needed for real-
time analysis, in 2008 Cusack et al. [36] used a PC cluster with
98 processors to analyze 1400 fMRI datasets from 330 subjects.
Woolrich et al. [37] proposed a fully Bayesian spatio-temporal
modeling of fMRI data based on Markov chain Monte Carlo
methods. The downside of their approach is the required com-
putation time. In 2004 the calculations for a single slice needed
6 h, i.e. a total of 5 days for a typical fMRI dataset with 20
slices. Nichols and Holmes [38] describe how to apply permu-
tation tests for multi-subject fMRI data, instead of parametric
tests such as the general linear model. In 2001 it took 2 hours
to perform 2000 permutations for between subject analysis.

There is thus a need of more computational power, both for
conventional fMRI and for real-time fMRI. This need is not
unique to the field of fMRI, it basically exists for any kind of
medical image analysis, since the amount of data that is col-
lected for each subject has increased tremendously during the
last decades.

1.5. Using a GPU instead of a PC Cluster

Previous and many current approaches to high performance
computing (HPC) have to a large extent been based on PC clus-
ters, which generally cause less acquisition costs than dedicated
parallel computers, but still more than single-PC solutions and
also require more efforts for administration. An application of
PC clusters for fMRI data processing has been described by
Stef-Praun et al. [39]. The parallel computational power of a
modern graphics card provides a more efficient and less expen-
sive alternative.

A research group that works with computational methods for
tomography, at the university of Antwerp, has put together a
GPU supercomputer that they call Fastra II [40]. They have
made a comparison, given in Table 1, between their supercom-
puter (GPU SC), that consists of 13 GPUs each with 240 pro-
cessor cores, and a PC cluster (PC C) called CalcUA, that con-
sists of 512 processors. This comparison should not be consid-
ered to be completely fair since, for example, the PC cluster is
a few years older than the supercomputer. The purpose of the
comparison is rather to give an indication of the differences in
cost, computational performance and power consumption.

As can be seen in the table, the ratio between computational
performance and cost for the GPU supercomputer outreaches
that of the PC cluster by three orders of magnitude. In spite of

2

Table 1: A comparison between a GPU supercomputer [40] and a PC cluster in
terms of cost, computational performance and power consumption. TFLOPS
stands for tera floating point operations per second.

Property GPU SC PC C
Cost 8000 USD 5 million USD

Computational performance 12 TFLOPS 3 TFLOPS
Power consumption 1.2 kW 90 kW

the speed gain the GPU system has a lower power consump-
tion leading to less operational costs. A better transportation
ability is a further advantage of GPU supercomputers. Another
drawback is the availability of PC clusters, that have often to be
shared between users, while a PC with one or several powerful
graphic cards can be used as an ordinary desktop. A further ad-
vantage is the reduction of space requirements, e.g. useful when
placing such systems for real-time applications in MR control
rooms, which are often small.

1.6. Programming the GPU

In the past a special programming language, such as Open
Graphics Library (OpenGL), DirectX, high level shading lan-
guage (HLSL), OpenGL shading language (GLSL), C for
graphics (Cg) etc., was the only possibility to take advantage of
the computational power of GPUs. These languages are well
suited for the implementation of calculations that are some-
how related to computer graphics, but less for others. Today
it is possible to program GPUs from Nvidia with a program-
ming language called CUDA (Compute Unified Device Archi-
tecture). CUDA is very similar to standard C programming
and allows the user to do arbitrary calculations on the GPU.
The syntax of CUDA is easy to learn and it is easy to write a
program for a certain task. In order to achieve optimal perfor-
mance, deep knowledge about the GPU architecture is required.
The CUDA programming language only works for GPUs from
Nvidia. For general computations on GPUs from ATI some-
thing called ”stream computing” exists. The Khronos group
have created a new programming language, called Open Com-
puting Language (OpenCL) [41], in order to be able to use the
same code on any type of hardware, not only different kinds of
GPUs. However, recent work by Kong et al. [42] shows that the
same code implemented using CUDA or OpenCL can give very
different performance currently.

Our implementations are based on the Matlab software
(Mathworks, Natick, Massachusetts), which is used by many
scientists for signal and image processing, and in particular for
fMRI data analysis in SPM, as this widely employed software
is programmed in Matlab. Matlab is very slow for certain cal-
culations, such as for-loops, and to remedy this defiency it is
possible to rewrite parts of the code into mex-files, which al-
low the embedding of C code in Matlab programs. It is now
also possible to include CUDA code, which is executed by the
GPU, in the mex-files functions.

1.7. Structure of the Paper

The rest of this paper is divided into six parts. The first part
describes the main architecture of the Nvidia GPU, the differ-
ent memory types and the principles of parallel calculations in
general.

The second part describes the different kinds of preprocess-
ing that is normally applied to the fMRI data, i.e. slice tim-
ing correction, motion compensation, detrending, etc. and how
they were implemented on the GPU.

In the third part the GPU implementation of two statistical
approaches, the general linear model (GLM) and canonical cor-
relation analysis (CCA), for analysis of fMRI data is described.

Performance comparisons are presented for our implemen-
tations in SPM, Matlab, Matlab OpenMP and Matlab CUDA.
The fourth part describes the general concepts of these imple-
mentations.

In the fifth part the processing times for the different imple-
mentations are given.

The paper ends with a discussion about the different imple-
mentations and the possibilities and challenges of GPU-based
fMRI analysis.

2. Parallel Calculations and the Nvidia GPU Architecture

This section gives an introduction to parallel calculations in
general and describes the hardware of the Nvidia GPU and that
of the graphics card Nvidia GTX 480, which has been used
for the implementations and testing. The interested reader is
referred to the Nvidia programming guide [43] and the book
about parallel calculations with CUDA by Kirk and Hwu [44]
for more details about CUDA programming.

A general concept that is valid for any kind of processing
on the GPU is that the data transfers between the GPU and the
CPU should be minimized. Certain calculations, like the com-
putation of the correlation between each voxel time series and
the stimulus paradigm, might not result in a significant speedup,
since it takes time to transfer the fMRI volumes to the GPU and
the activity map back from the GPU. The fMRI data should
therefore both be preprocessed and statistically analyzed on the
GPU. As it is easy to visualize something that is already on the
GPU, it is possible to visualize the activity map without copy-
ing it back to the CPU.

2.1. Parallel Calculations

While the central processing unit (CPU) of any computer is
good at serial calculations and branching, the GPU is very good
at parallel calculations. The reason for this is the evolution of
more and more complex computer games with more advanced
computer graphics, simulated physics and better artificial intel-
ligence. A modern CPU has 4-6 processor cores and can run 8
- 12 threads at the same time. The current state of the art GPU
from Nvidia has 480 processor cores and can run 23 040 threads
at the same time.

To be able to do the calculations in parallel, the processing of
each element has to be independent of the processing of other
elements. The suitability of a certain application for a GPU

3

implementation thus greatly depends on the possible degree of
parallelization. For fMRI analysis this means that the estima-
tion of activity in a voxel should not depend on the activity
result from other voxels, fortunately this is seldom the case.

When a task is performed on the GPU, a large number of
threads is used. Each thread performs a small part of the calcu-
lations, e.g. only those for a single pixel or voxel. The threads
are divided into a number of blocks, the grid, with a certain
number of threads per block. Each block and each thread has
an index that is used in order for each thread to know what data
to operate on. Functions that run on the GPU are called kernels.

2.2. The Hardware Model of the Nvidia GPU
The Nvidia GTX 480 has 480 processor cores that run at 1.4

GHz. The processor cores are divided into 15 multiprocessors
(MP) with 32 processor cores each. Each multiprocessor has
its own cache for texture memory and constant memory, L1
cache, shared memory and a set of registers. The architecture
of a multiprocessor on the GTX 480 is shown in Fig. 1. In
order to achieve high performance, each multiprocessor should
manage a large number of threads, 1536 is the maximum for the
GTX 480. It is also important that the threads have a balanced
workload, otherwise some threads will be inactive when they
wait for active threads to finish.

Figure 1: The hardware model for a multiprocessor on the Nvidia GTX 480. The
multiprocessor consists of 32 processor cores, which share registers, shared
memory / L1 cache and a cache for constant memory and texture memory.

One main difference between the CPU and the GPU is that
the GPU has a lot of different memory types with different char-
acteristics, while the CPU only has a big global memory and a
cache memory. In order to achieve optimal performance, it is
necessary to know when and how to use the different mem-
ory types. Another difference is that the memory bandwidth is
much higher for the GPU, due to the fact that a lot of concurrent
threads have to read from and write to the memory at the same
time. In Table 2 a comparison between three different consumer
graphic cards from Nvidia and ATI, from three different gener-
ations, is given.

• Global memory

The global memory on the GPU is currently of the size 256
MB to 4 GB and the GTX 480 has a memory bandwidth of
177.4 GB/s. Despite this high bandwidth the global mem-
ory is the slowest memory type and should only be used

to store variables between the execution of different ker-
nels. To make sure that memory read and write accesses
to global memory are minimized, it is important to make
sure that they are coalesced, i.e. that as many transactions
as possible are done in the same clock cycle, by taking
advantage of the wide data bus.

• Constant memory

For constants that are read by all or many of the threads,
like a filter kernel in image or volume convolution, the
constant memory should be used since it is cached and
thereby much faster than the global memory.

• Texture memory

The texture memory is a special way of using the global
memory, such that read accesses that are local are cached,
providing a good alternative when coalesced reads are hard
to achieve.

The texture memory is predestined for image registration
applications, as it has hardware support for linear interpo-
lation. This means that it does not take more time to get
the trilinearly interpolated value at the floating point po-
sition (1.1, 2.5, 3.3) than the original value at the integer
position (1, 2, 3). Operations such as rotation and trans-
lation of images and volumes are therefore extremely fast
on the GPU.

• Shared memory

The shared memory can be read from and written to by
all the threads in the same block. Applications can be
made faster by copying data from the global memory to
the shared memory first. An application well suited for
this type of memory is convolution: a block of pixels is
first read into the shared memory and then the filter re-
sponses are calculated in parallel by letting many threads
read from the shared memory at the same time. As for
example a 9 x 9 filter uses 81 pixels to calculate the filter
response for each pixel, and the fact that the filter response
at a neighbouring position is calculated by using mainly
the same pixels, the shared memory is a very efficient way
to let the threads share the data.

Due to the small size of the shared memory it is sufficient
for 2D convolution, but for 3D and 4D convolution it is
not as efficient. The reason for this is that the proportion
of valid filter responses that fit into the shared memory
decreases rapidly with every increase in the number of di-
mensions. One possible remedy to this is to use an opti-
mized kernel for 2D convolution, and then incrementally
calculate the filter response by calling the kernel once for
each sample of the remaining dimensions.

• Registers

The registers are specific for each thread and are used to
store thread specific variables. If the number of regis-
ters per multiprocessor is divided by the number of ac-
tive threads per multiprocessor, an approximate number of

4

possible registers per thread is obtained. Full occupancy
on the GTX 480 means that 1536 threads run on each mul-
tiprocessor. At full occupancy each thread can use 21 reg-
isters at most, since the GTX 480 has 32768 registers per
multiprocessor.

• L1 and L2 cache

Each multiprocessor on the GTX 480 has a L1 cache that is
used to speedup transactions to and from the global mem-
ory. The GTX 480 also has one L2 cache that helps differ-
ent multiprocessors to share data in an efficient way.

3. Data

To test our implementations, a typical fMRI dataset that con-
sists of 80 volumes of the resolution 64 x 64 x 22 voxels was
used. Each voxel has the physical size of 3.75 x 3.75 x 3.75
mm. The data was collected with a Philips Achieva 1.5 T MR
scanner. The data contains four time periods, where the subject
alternatively performed an activity and stayed passive, in peri-
ods of 20 seconds each. The repetition time (TR) was 2 s, the
echo time (TE) was 40 ms and the flip angle was 90 degrees.
The sequence used for the data collection was EPI (echo planar
imaging).

In single precision floating point format the fMRI dataset re-
quires 29 MB storage size, and it is thereby no problem to fit
it into the global memory on the GPU. The limited size of the
global memory is otherwise one disadvantage of using GPUs.

4. Preprocessing of fMRI Data on the GPU

Before the fMRI data is statistically analyzed, several prepro-
cessing steps are normally applied. A comprehensive review of
the different preprocessing steps is given by Strother [45]. A
description of the most common preprocessing steps and their
implementation on the GPU are given in this section.

4.1. Slice Timing Correction

The fMRI volumes are normally acquired by sampling one
slice at a time. This means that the slices in a volume are taken
at slightly different timepoints. If a volume consists of 20 slices
and it takes 2 seconds to acquire the volume, there is a 0.1 s
difference between each slice. In order to compensate for this,
slice timing correction is applied such that all the slices in a vol-
ume correspond to the same timepoint. Slice timing correction
is critical for event related fMRI experiments used when higher
time resolutions in the order of 100 ms are needed, which was
shown e.g. by Henson et al. [46], but not for block design exper-
iments like the one from which our data stems with an activity-
rest period of 40 seconds.

The standard way to correct for the time difference between
the slices is to use sinc interpolation, which can be applied by
alternating the phase in the frequency domain. For each voxel
time series, a forward 1D fast Fourier transform (FFT), a point-
wise multiplication and an inverse 1D FFT is required to do
perform sinc interpolation of the fMRI data. This is well suited

for the GPU since many small FFTs can run in parallel. In
our implementation a batch of forward 1D FFTs are first ex-
ecuted, then a kernel performs all the multiplications in the
frequency domain and finally a batch of inverse 1D FFTs is
applied. The CUFFT library by Nvidia includes support for
launching a batch of FFTs.

4.2. Motion Compensation

Participants of fMRI studies are usually instructed not to
move their head during the measurement, but residual motion
can occur during the individual experiments, which are sev-
eral minutes long. Therefore it is necessary to perform motion
compensation of the acquired fMRI volumes, such that they are
aligned to one reference volume. There exists a number of im-
plementations for registration of fMRI volumes. One example
is the work by Cox et al. [47] who in 1999 were able to per-
form motion compensation in real-time. Cox et al. are also
the developers of the the widely used AFNI software for fMRI
processing [48]. Motion compensation of fMRI volumes is also
implemented in the SPM software. A good comparison of fMRI
motion compensation algorithms has been presented by Oakes
et al. [49].

Image registration on the GPU has been done by several
groups, a recent overview is given by Shams et al. [9], and
all have achieved significant speedups compared to optimized
CPU implementations. The main approach that has been used
for these implementations is to find the rotation and translation
that maximize the mutual information between the volumes, by
searching for the best parameters with an optimization algo-
rithm. The mutual information approach to image registration
is very common and was first proposed by Viola et al. [50].

An algorithm has been implemented by us that is based on
optical flow of the local phase from quadrature filters [51],
rather than using the image intensity as in previous GPU im-
plementations. Phase based registration was demonstrated ear-
lier by, for example, Hemmendorff et al. [52] and Mellor and
Brady [53]. The advantage of the local phase is that it is in-
variant to the image intensity. Another difference to our imple-
mentation is that no optimization algorithm is needed to find
the best solution. Instead an equation system is solved in each
iteration and the registration parameters are incrementally up-
dated. The equation system is given by globally minimizing the
L2 norm of the phase based optical flow equation, with respect
to the parameter vector. To handle stronger movements one can
use several scales, i.e. start on a low resolution scale to find the
larger differences and continue on finer scales to improve the
registration. For fMRI volumes, it is sufficient to use one scale
and 3 iterations per volume, while mutual information based
algorithms normally require 10-50 iterations per volume.

In each iteration of the algorithm, three quadrature filters that
are oriented along x, y and z are applied. The quadrature filters
have a spatial size of 7 x 7 x 7 voxels; their elements are com-
plex valued in the spatial domain and are not Cartesian separa-
ble. From the filter responses, phase differences, phase gradi-
ents and certainties are calculated for each voxel and each filter.
An equation system is created by summing over all the voxels
and filters and is then solved to get the optimal parameter vec-

5

Table 2: A comparison between three Nvidia GPUs and three ATI GPUs, from three different generations, in terms of processor cores, memory bandwidth, size of
shared memory, cache memory and number of registers, MP stands for multiprocessor and GB/s stands for gigabytes per second. For the Nvidia GTX 480, the user
has the choice of using 48 KB of shared memory and 16 KB of L1 cache or vice versa.

Property / GPU Nvidia 9800 GT Nvidia GTX 285 Nvidia GTX 480 ATI Radeon HD 4870 ATI Radeon HD 5870 ATI Radeon HD 6970
Number of processor cores 112 240 480 160 320 384

Normal size of global memory 512 MB 1024 MB 1536 MB 512 MB 1024 MB 2048 MB
Global memory bandwidth 58 GB/s 159 GB/s 177 GB/s 115 GB/s 154 GB/s 176 GB/s

Constant memory 64 KB 64 KB 64 KB 48 KB 48 KB 48 KB
Shared memory per MP 16 KB 16 KB 48 / 16 KB None 32 KB 32 KB

Floating point registers per MP 8192 16384 32768 16384 32768 32768
L1 cache per MP None None 16 / 48 KB None 8 KB 8 KB

L2 cache None None 768 KB None 512 KB 512 KB

tor. From the parameter vector a motion vector is calculated in
each voxel and trilinear interpolation is then applied, using a
3D texture, to rotate and translate the volume. The interested
reader is referred to our recent work [11] for details about the
algorithm and the CUDA implementation.

Image registration is also needed in order to overlay the
resulting activity map onto a high resolution anatomical T1
weighted volume. This is not a preprocessing step, but since
it is done for each fMRI experiment, and is related to motion
compensation, it is mentioned here. Our registration algorithm
can be used for this step as well. Prior to the registration, the
activity map needs to be interpolated to have the same resolu-
tion as the T1 volume. This is a perfect task for the GPU due to
the hardware support for linear interpolation.

4.3. Smoothing

Some prefer to smooth each fMRI volume with a Gaussian
lowpass filter before the statistical analysis. Convolution is an
operation that is well supported by the GPU, as it is performed
the same way in each voxel, except at the borders of the data.
Gaussian lowpass filters have the property that they are Carte-
sian separable, such that the convolution in 2D or 3D can be
divided into the corresponding number of 1D convolutions. For
a GPU implementation it is important that the filter is separable,
since this results in a significant reduction of memory reads and
multiplications. For each of the 1D convolutions the fMRI data
is first loaded into the shared memory and then the filter kernel,
which is stored in constant memory, is applied. Our implemen-
tation supports filters up to the size of 9 x 9 x 9 voxels, which
is sufficient for smoothing of fMRI volumes.

4.4. Detrending

Due to scanner imperfections and physiological noise, there
are drifts and trends in the fMRI data that have to be removed
prior to the statistical analysis. This is called detrending, for
which different approaches exist, see for example the work by
Friman et al. [54]. The detrending is normally done for each
voxel time series separately, and is thereby well suited for the
GPU. In our case polynomial detrending has been implemented,
such that the best linear fit between the time series and a poly-
nomial of a certain degree is removed. Basically any kind of
detrending that works independently for each voxel time series
is suitable for the GPU.

As the best linear fit between a time series and a number of
temporal basis functions can be found by using linear regres-
sion, almost the same code is used for the GLM analysis and
for the detrending. Our GPU implementation of the GLM is
described in the next section.

5. Statistical Analysis of fMRI Data on the GPU

In this section the GPU implementation of two statistical ap-
proaches for fMRI data analysis will be described. The most
common approach for fMRI analysis, the general linear model
(GLM), and the approach preferred by us, canonical correlation
analysis (CCA), have been implemented.

One possible explanation to why there is so little work about
fMRI analysis on the GPU is that most of the statistical ap-
proaches use different kind of matrix operations, such as ma-
trix inverses and eigenvalue decompositions, and there has not
until recently been any official support for these kind of op-
erations on the GPU. The Basic Linear Algebra Subprograms
(BLAS) library has been implemented by Nvidia and is known
as CUBLAS in CUDA. The Linear Algebra Package (LA-
PACK) that provides higher order matrix operations, that are
e.g. used by Matlab, is not yet implemented by Nvidia, how-
ever. A package called CULA [55] supports some parts of LA-
PACK, one version is freely available. MAGMA [56] is another
freely available package with similar functions.

5.1. Parametric Tests

5.1.1. The General Linear Model
The most common approach for statistical analysis of fMRI

data is to apply the general linear model independently to each
voxel time series [57]. The main idea is to find the weights of
a set of temporal basis functions, that gives the best agreement
with the measured signal, and then see if there is a statistical
significant difference between the voxel values at rest and ac-
tivity. The GLM can in matrix form be written as

Y = Xβ + ε, (1)

where Y are the observations, i.e. all the samples in the voxel
time series, β are the parameters to optimize, X is the design
matrix that is given by the stimulus paradigm and ε are the er-
rors that not can be explained by the model. By minimizing the

6

squared error ||ε ||2, it is easy to show that the best parameters
are given by

β̂ = (XT X)−1XT Y. (2)

A useful property of this expression is that the term C =

(XT X)−1XT does not depend on the voxel time series and can
thus be precalculated and stored in constant memory. The only
thing that needs to be calculated for each voxel in order to get
β̂ is thus a product between the constant term C and the current
voxel time series Y. If the contrast c is defined as a column
vector (e.g. [1 0]T), the t-test value is given by

t =
cT β̂√

var(ε̂)cT(XTX)−1c
. (3)

The shared memory is used for fast calculation of the matrix
product, the error and its variance. Due to the small size of the
shared memory it is not possible to store intermediate results
in it but only data from the voxel time series. The voxel time
series Y are first loaded into the shared memory to calculate
the best parameters from the matrix product between C and Y.
The parameters are stored in registers in each thread. The voxel
time series are then loaded into shared memory a second time,
to calculate the mean of the error term ε from the expression

ε̄ =
1
N

N∑
t=1

(Y(t) − X(t)β̂), (4)

where N is the number of time points and X(t) are the val-
ues in the design matrix that correspond to time point t. Once
the mean has been calculated the voxel time series is loaded
into shared memory a third time to calculate the variance of
ε and then it is easy to calculate the t-test value. The term
cT (XT X)−1c is a scalar that is precalculated and sent to the ker-
nel. It might not sound optimal to load the same voxel time
series into shared memory three times, but there is no space
to, for example, store the error term in the shared memory. If
the error term is stored in the global memory, it is necessary to
write to and read from global memory, while a read is sufficient
if the voxel time series is loaded into shared memory again. The
shared memory is actually not necessary for the GLM, there is
no data sharing between the threads, but it is used for better cod-
ing practice and it makes it easier to get coalesced reads from
the global memory.

The GLM generally needs pre-whitening, to make the errors
temporally uncorrelated. The whitening is normally done by
first estimating an auto regressive (AR) model for each voxel
time series and then removing this model from the time series.
As the estimation of AR parameters is done independently for
each time series, it suits perfectly for a parallel implementation.
Whitening is also applied prior to a random permutation test,
which is described in the section about non-parametric tests.

5.1.2. Canonical Correlation Analysis
The main problem with the GLM is that it tests each voxel

time series separately and does thereby not take advantage of

the spatial information. To increase the signal-to-noise ratio,
and to use the spatial information to some extent, it is there-
fore common to apply an isotropic Gaussian lowpass filter to
each fMRI volume prior to the analysis. The problem is, how-
ever, that the activity map will be blurred, which can prevent
the detection of small activity areas. A better approach is to
adaptively combine neighbouring pixels, by using the technique
for fMRI analysis of our choice, canonical correlation analy-
sis (CCA). Friman et al. [58] were the first to use CCA for
fMRI analysis and the idea has also been used by Nandy and
Cordes [59]. Canonical correlation analysis [60] maximizes
the correlation between the projection of two multidimensional
variables x and y, GLM is a special case of CCA as it only han-
dles one multidimensional variable. The canonical correlation
ρ is defined as

ρ = Corr(βTx,γTy) =
βTCxyγ√

βT Cxxβ γT Cyyγ
, (5)

where Cxy is the covariance matrix between x and y, Cxx is the
covariance matrix for x and Cyy is the covariance matrix for y,
β and γ are the weight vectors with unit length that determine
the linear combinations of x and y. To calculate the canonical
correlation, the covariance matrices first need to be estimated.
This can be done using the following expressions

Cxx =
1

N − 1

N∑
t=1

x(t)x(t)T , (6)

Cyy =
1

N − 1

N∑
t=1

y(t)y(t)T , (7)

Cxy =
1

N − 1

N∑
t=1

x(t)y(t)T , (8)

where x denotes the temporal basis functions (and x(t) denotes
the function values at time point t), y denotes the spatial basis
functions (i.e. the filter responses (time courses) for the current
voxel) and N is the number of time points. This means that
the covariance matrices have to be estimated in each voxel, by
summing over all the time points. Since the summation can be
performed independently in each voxel, this operation is well
suited for parallelization. Note that Cxx is constant and only has
to be calculated once. To find the temporal and spatial weight
vectors, β and γ, that give the highest correlation it is possible
to show that the solution is given by two eigenvalue problems,
such that the weight vectors are the eigenvectors, and the cor-
relation is the square root of the corresponding eigenvalue. The
eigenvalue problems can be written as

C−1/2
xx Cxy C−1

yy Cyx C−1/2
xx a = λ2a, (9)

C−1/2
yy Cyx C−1

xx Cxy C−1/2
yy b = λ2b. (10)

To get the weight vectors from a and b it is necessary to make
a change of base, according to

β = C−1/2
xx a, (11)

7

γ = C−1/2
yy b. (12)

It is sufficient to solve one of the problems, as there are direct
relationships between the weight vectors. The relationships can
be written as

β = Cxx
−1 Cxy γ = (XT X)−1XT Y γ, (13)

γ = Cyy
−1 Cyx β. (14)

From the first relationship it is clear that the GLM is a special
case of CCA.

GPU Implementation Considerations

It is thus necessary to calculate one matrix inverse, a
number of matrix products and an eigenvalue decomposition
for each voxel, i.e. in each GPU thread. The LAPACK routines
that have been implemented in CULA [55] and MAGMA [56],
however, do not support a matrix inversion or an eigenvalue
decomposition in each thread. The standard approach to matrix
inversion is to use Gauss-Jordan elimination. One though
problem is that it is necessary to store several copies of the
current matrix, which uses a lot of registers. Another problem
is that it is an iterative method, meaning that different threads
may need different execution times for the matrix inversion,
which is far from optimal in CUDA programming. Fortunately
there are direct solutions (i.e. not algorithms such as Gauss-
Jordan elimination) that can be used to invert small matrices.
Direct solutions for eigenvalue decomposition of matrices with
dimensions up to 3 x 3 exists. For larger matrices it would be
possible to, for example, use the Power iteration method which
is very easy to implement. In our implementation the number
of dimensions is kept as low as possible, allowing us to apply a
direct solution for the eigenvalue decomposition.

Two temporal basis functions are used, one sine wave and
one cosine wave that are of the same frequency as the stimulus
paradigm. A sine and a cosine wave can be linearly combined
to any phase, in order to compensate for the unknown BOLD
(blood oxygenation level dependent) delay.

Guaranteeing Plausible Combinations of Spatial Basis
Functions

To use neighbouring pixels as spatial basis functions works
reasonably well as there are not that many possible spatial
basis functions in 2D if a 3 x 3 neighbourhood is used. If
neighbouring voxels from the surrounding 3 x 3 x 3 volume
are used directly, there will be too many spatial basis functions
such that high correlations will be found everywhere in the
brain. Friman et al. [61] therefore extended their work to
adaptive filtering, such that CCA instead combines the filter
response from a number of anisotropic lowpass filters. The
filter responses can linearly be combined to a lowpass filter
with arbitrary orientation, in order to prevent unnecessary
smoothing. All the possible linear combinations of the filter
responses are, however, not allowed. For example, filters are
excluded that are positive in one direction and negative in
another direction. Such a case would imply that the voxels

along the first direction are positively correlated with the
stimulus paradigm, while the voxels in the other direction are
negatively correlated. This form of brain activity is not very
likely to occur in the brain.

To guarantee that the resulting filters are plausible, restricted
CCA [62] (RCCA) was used, since it then can be guaranteed
that all the filter weights are positive. There are however several
problems with this approach. The first problem is that RCCA
is much more computationally demanding than CCA, as the al-
gorithm iterates the weights until they are all positive. As the
number of necessary iterations can differ between the voxels, it
is not well suited for a GPU implementation. Another problem
is that the analysis will not be rotation invariant, as the original
filters (instead of combinations of them) will be favourized by
RCCA. This problem was solved by Rydell et al. [63] who also
used RCCA, but added a structure tensor to estimate the best
orientation of the lowpass filter.

A new solution to guarantee plausible filters and rotation in-
variant analysis is therefore proposed. This solution does not
need RCCA and it is thereby much better suited for a GPU im-
plementation. The filters, that are applied to the fMRI slices,
are first redesigned, such that they only contain positive coeffi-
cients. To create the Cartesian non-separable anisotropic low-
pass filters, ALP, a small, ILPS, and a large, ILPL, isotropic
Gaussian lowpass filter is first created, shown in Fig. 2. The
ALP, shown in Fig. 3, are then calculated as

ALP = ILPL · (1 − ILPS) · cos(φ − φ0)2, (15)

where φ0 was set to 0o, 60o and 120o.
Four 2D filters are applied to each fMRI slice in each vol-

ume, the small lowpass filter and the three anisotropic filters.
Note that this makes it possible for CCA to also create filters
with different size, and not only filters with different orienta-
tion. A small lowpass filter is achieved if the weights for all the
anisotropic filters are set to zero and the weight for the small
lowpass filter is set to one. If the weights for the anisotropic
filters and the small lowpass filter are the same, the result is in-
stead a large lowpass filter. If the brain activity is located in a
single voxel, the small lowpass filter is selected by CCA and
small activity areas are thus not lost.

Figure 2: The small and the large lowpass filter. For visualization purposes,
these filters have a higher resolution than the filters that are actually used to
smooth the fMRI slices.

8

Figure 3: The three anisotropic filters that can be linearly combined to a filter
with arbitrary orientation. Note that these filters are Cartesian non-separable.
For visualization purposes, these filters have a higher resolution than the filters
that actually are used to smooth the fMRI slices.

Figure 4: The figure shows how an implausible filter (left) is adjusted to a plau-
sible filter in two steps. First, the anisotropic filter weights are adjusted such
that they all are positive (middle), and then the small lowpass filter is added
(right). If a resulting filter has two directions, the direction corresponding to
the largest absolute filter coefficients is preserved.

Non-separable 2D Convolution on the GPU

As three of the four CCA filters are Cartesian non-separable,
non-separable convolution has to be used, in contrast to the
GLM for which separable convolution can be used. Our GPU
implementation of non-separable 2D convolution uses the
shared memory, such that a 64 x 64 block of pixels is first
loaded into it (requiring 16 KB of shared memory), the four
filter kernels are stored in the constant memory. The four
filter kernels are then applied, at the same time, to the data
in the shared memory and the results are then written to the
global memory. In this case, as well as for the separable
3D convolution described earlier, the shared memory is very
useful, since there is a lot of data sharing between the threads.
Each thread block uses 512 threads and for each block 48 x
48 valid filter responses are calculated. Each thread uses 19
registers and thereby 3 blocks can run on each multiprocessor,
resulting in full occupancy. For optimal performance, the
convolution loops were completely unrolled manually, by
generating the code with a Matlab script.

The Complete CCA GPU Algorithm

Ordinary CCA (i.e. not RCCA) is first applied to get the
temporal weight vector from the 2 x 2 eigenvalue problem
given by Eq. 9 (the total matrix product is a 2 x 2 matrix as
two temporal basis functions are used). Instead of solving the
second eigenvalue problem to get the filter weights, Eq. 14 is
used to calculate the filter weights from the temporal weights.
Note that by only solving Eq. 9, the calculation of a matrix
square root (i.e. not element wise square root) is avoided. This
could otherwise be problematic to do in each GPU thread.

The anisotropic filter weights are then adjusted such that the
resulting filter is plausible. This is done by adding the abso-
lute value of the most negative anisotropic weight to all the
anisotropic filter weights. If the number of negative coefficients
in the original resulting filter (without the isotropic lowpass fil-
ter) is larger than the number of positive coefficients, the sign
of all the anisotropic filter weights are first flipped and then ad-
justed. If all the filter coefficients are negative the weights are
only flipped. If all the anisotropic filter weights are positive
from the beginning, no adjustment is done.

The weight of the small lowpass filter is always set to 1.2
times the largest anisotropic filter weight, to guarantee that the
center pixel has the highest weight. This is important, since
there otherwise can be a so-called bleeding effect in the activity
map, i.e. that the activity at voxels that are close to an active
area is overestimated. This is for example discussed by Cordes
et al. [64], instead of using RCCA they add linear constraints
to prevent CCA from creating certain voxel combinations. The
total filter weight vector is then normalized such that it has unit
length. An example of a filter adjustment is shown in Fig. 4. If
the filter weights are adjusted, the canonical correlation has to
be calculated again, using Eq. 5. For each voxel time series, i.e.
in each GPU thread, it is necessary to

• Estimate the covariance matrices Cyy and Cxy, Cyx is the
transpose of Cxy.

• Calculate the inverse of Cyy, by applying a direct solution.

• Calculate the matrix product C−1/2
xx Cxy C−1

yy Cyx C−1/2
xx in

Eq. 9, which results in a 2 x 2 matrix if two temporal basis
functions are used, C−1/2

xx is precalculated since it is the
same for all voxel time series.

• Calculate the eigenvector, a, corresponding to the largest
eigenvalue of the 2 x 2 matrix and then make a change of
base, Eq. 11, to get the temporal weight vector β. Normal-
ize the temporal weight vector to have unit length.

• Calculate the filter weights γ from the temporal weights
β, by using Eq. 14. Normalize the filter weight vector to
have unit length.

• If necessary, adjust the filter weights to guarantee a plau-
sible filter.

• Calculate the canonical correlation once again, using Eq.
5, with the new filter weights.

GPU Implementation Details

The estimation of the covariance matrices requires an
outer product for each time point and summing over all the
time points. Similarly to the GLM implementation, the shared
memory is used for these calculations. However, it is now
necessary to to read 4 voxel time series into shared memory for
each voxel, since there are 4 filter responses, but it is sufficient
to read them from global memory once. It is necessary to store
Cyy, C−1

yy , Cxy, the total matrix product, the temporal weight

9

vector β and the filter weight vector γ in each thread. Cyx does
not need to be stored since it is the transpose of Cxy. Due to
the symmetry of Cyy and its inverse C−1

yy , it is sufficient to store
10 values instead of all the 16. In total this requires a lot of
registers and for this reason the CCA kernel does not achieve
full occupancy. The temporal basis functions x, its covariance

matrix Cxx and the matrix square root of its inverse C−
1
2

xx are the
same for all voxel time series and are therefore precalculated
and stored in the constant memory.

5.2. Non-Parametric Tests

One problem with the GLM is that it is necessary to assume
that the fMRI data is normally distributed and independent. An-
other problem in fMRI analysis is the choice of the significance
threshold, that determines which voxels are regarded as acti-
vated or not activated. Even small deviations from normal-
ity can have a large impact on the maximum null distribution
of the test statistics [65], that is required to calculate p-values
that are corrected for the massive multiple testing in fMRI.
Non-parametric tests, such as random permutation tests, do not
have these problems, as they do not require an apriori distri-
bution function, instead empirically estimated distributions are
obtained. The major drawback of non-parametric tests is that
they are very computationally expensive. One subset of non-
parametric tests is that of permutation tests, where the statisti-
cal analysis is done for all the possible permutations of the data,
this is, however, not feasible if the number of possible permu-
tations is very large. For a voxel time series with 80 samples,
there exist 7.16 · 10118 possible permutations. It is therefore
common to instead do random permutation tests, also called
Monte Carlo permutation tests, where the statistical analysis is
made for a sufficiently large number of random permutations,
for example 10 000, of the data.

Brammer et al. [66] was one of the first to apply non-
parametric tests to fMRI data. If the subject in the MR scanner
follows a repeated paradigm, the voxel time series will con-
tain auto correlations, which first should be removed as first de-
scribed in [67]. This is further discussed by Friman et al. [68]
who also state that non-parametric methods will likely play
an increasingly important role for fMRI analysis when more
computational power is available. Belmonte et al. [69] de-
scribe an optimized algorithm for permutation testing of fMRI
data. Nichols and Holmes [38] also applied permutation tests
to fMRI data but only for multi subject testing, since they claim
that permutations of the fMRI time series should not be done if
they contain auto correlation.

Random permutation tests for CCA are especially needed, as
the asymptotic distribution of the canonical correlation coeffi-
cients is rather complicated. Restricted CCA has, to our knowl-
edge, no parametric distribution. Permutation testing for CCA
has, for example, been done by Yamada et al. [70] but no pro-
cessing times are stated.

Permutation testing on GPU has recently been done by
Shterev et al. [5], who in one case, were able to decrease the
processing time from 21 minutes on the CPU to 16 seconds on
the GPU. Another example is the work by Hemert and Dicker-

son [8]. We recently extended our work to random permutation
tests of single subject fMRI data on the GPU [7], in order to
be able to compare activity maps from GLM and CCA at the
same significance level. Before the time series are permuted,
an auto regressive (AR) model is estimated for each voxel time
series and each time series is then whitened. In each permu-
tation a new time series is then created by applying an inverse
whitening transform, with the permuted whitened time series as
innovations. The smoothing of the fMRI volumes has to be ap-
plied in each permutation. If the data is smoothed prior to the
whitening transform, the estimated AR parameters will change
with the amount of smoothing applied, since the temporal cor-
relations are altered by the smoothing. For our implementation
of 2D CCA, 4 different smoothing filters are applied. If the
smoothing is done prior to the permutations, 4 time series have
to be permuted for each voxel and these time series will have
different AR parameters. The smoothing will also change the
null distribution of each voxel. This is incorrect since the surro-
gate null data that is created always should have the same prop-
erties, regardless of the amount of smoothing that is used for the
analysis. If the data is smoothed after the whitening transform,
but before the permutation and the inverse whitening transform,
the time series that are given by simulating the AR model are
incorrect since the properties of the noise are altered. The only
solution to this is to apply the smoothing after the permutation
and the inverse whitening transform, i.e. in each permutation.
This is also more natural in the sense that the surrogate data
is first created and then analysed. In order to get significance
thresholds and p-values that are corrected for the multiple test-
ing, only the maximum of all the statistical test values in the
brain is saved in each permutation. This is done in order to
estimate the null distribution of the maximum test statistics.

6. The Different Implementations

In this section the general concepts of the different imple-
mentations will be described.

6.1. SPM

The SPM software [22], which is not very optimized in terms
of speed, was included in our comparison, as it is widely used
for fMRI analysis. Parts of SPM are implemented as mex-files,
but the computational performance is limited due to the time
spent on reading from and writing to files. It might seem unfair
to include this time in the comparison, but this is the time expe-
rienced by the user. As mentioned previously, the motion com-
pensation is in our case performed in another way than SPM
does. The resulting execution times for this step can therefore
not be compared directly. The other preprocessing steps, and
the GLM analysis, are done as in SPM. For all the preprocess-
ing and the statistical analysis the default settings were used.
For the motion compensation, the interpolation was changed to
trilinear interpolation, the same interpolation used by the other
implementations. All the volumes were registered to the first
volume.

10

As SPM supports GLM, but not CCA, it is not possible to
give any execution time for CCA. The detrending is done to-
gether with the model estimation, it is therefore not possible to
state its execution time separately.

6.2. Matlab
Matlab eases the development of an algorithm, as it provides

easy programming and there are a lot of functions that can be
used directly. One issue, though, is that Matlab is slow at cer-
tain operations, such as for-loops, while it is very fast as long
as the calculations are vectorized. To speedup some functions
that require for-loops, mex-files were therefore used for some
of the calculations, as described below.

• The motion compensation; the spatial 3D convolution, the
setup of the equation system and the 3D interpolation.

• The 3D smoothing; the 2D smoothing is based on the built-
in function conv2.

• The detrending and the GLM, which can be written as ma-
trix operations, such that no for-loops are used. If one
however only wants to perform the calculations for the
voxels that are inside the brain, one has to use if-statements
and then it gets more complicated. Therefore mex-files
were used for the detrending as well as for the GLM.

• The CCA algorithm, as it requires an adjustment of the
filter weights which are hard to do without for-loops.

To summarize, this implementation is very optimized for be-
ing a Matlab implementation and it can be seen as an optimized
version of SPM.

6.3. Matlab OpenMP
To get an optimized CPU implementation to compare

our CUDA implementation with, the Open Multi Processing
(OpenMP) [71] library was used, as it lets the user take advan-
tage of all the processor cores of the CPU. OpenMP is very easy
to use, as can be seen in this example which runs a for-loop in
parallel with 4 threads.

omp_set_num_threads(4);
#pragma omp parallel for
shared(shared variables)
private(private variables)

Shared variables are the variables that are shared by all the
threads, like the pointers to the input and output data, while
the private variables are the variables that differ between the
threads, like those for the convolution result.

The FFT part of the slice timing correction was done in Mat-
lab, since the implementation is multi threaded, while a mex-
file was used to do the complex valued multiplications to per-
form the phase shift.

It should be noted that OpenMP is quite easy to use with
Matlab mex-files under a Linux operating system, in contrast
to Windows. The interested reader is referred to the book
by Chapman et al. [72] for details about programming with
OpenMP.

6.4. Matlab CUDA
The Matlab CUDA implementations uses ordinary CUDA

programming, together with the mex interface such that the
functions can still be called from Matlab. One difference be-
tween Matlab and CUDA is that Matlab uses column major or-
der (i.e. y first) to store matrices, while CUDA assumes that the
data is stored in row major order (i.e. x first). In this paper it is
assumed that the data is stored in single precision in time major
order before it is sent to the mex-file (since slice timing correc-
tion is the first preprocessing step), such that no conversion is
necessary. This conversion will otherwise take additional time,
but since it is not part of the computational time it is not in-
cluded in this paper.

Before the GPU can do anything with the data, it is necessary
to allocate memory and copy the data from CPU (host) memory
to GPU (device) memory, this is done as follows,

DATA_W

is the number of columns in the data and

DATA_H

is the number of rows. The function

cudaMalloc

allocates memory on the GPU (i.e. very similar to the C-
function malloc) and the

cudaMemcpy

function copies the data between the host and the device.

float *h_Image, *d_Image, *d_Result;
cudaMalloc((void **)d_Image, DATA_W * DATA_H * sizeof(float));
cudaMalloc((void **)d_Result, DATA_W * DATA_H * sizeof(float));
cudaMemcpy(d_Image, h_Image, DATA_W * DATA_H * sizeof(float), ...
cudaMemcpyHostToDevice);

After the calculations the data is copied back from the GPU to
the CPU and the memory is deallocated by using the

cudaFree

function.

cudaMemcpy(h_Result, d_Result, DATA_W * DATA_H * sizeof(float), ...
cudaMemcpyDeviceToHost);
cudaFree(d_Image);
cudaFree(d_Result);

The CUDA programming language can easily generate 2D in-
dices for each thread, for example by using the following code
which results in 512 threads per block. The indices are required
for each thread to know which part of the data to operate on.

// Code that is executed before the kernel is launched
int threadsInX = 32;
int threadsInY = 16;

int blocksInX = DATA_W / threadsInX;
int blocksInX = DATA_H / threadsInY;

dimGrid = dim3(blocksInX, blocksInY);
dimBlock = dim3(threadsInX, threadsInY, 1);

// Code that is executed inside the kernel
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

11

To generate 3D indices is harder, as each thread block can be
three dimensional but the grid can only be two dimensional.
One approach to generate 3D indices is given below,

DATA_D

is the number of slices in the data.

// Code that is executed before the kernel is launched
int threadsInX = 32;
int threadsInY = 16;
int threadsInZ = 1;

int blocksInX = (DATA_W+threadsInX-1)/threadsInX;
int blocksInY = (DATA_H+threadsInY-1)/threadsInY;
int blocksInZ = (DATA_D+threadsInZ-1)/threadsInZ;
dim3 dimGrid = dim3(blocksInX, blocksInY*blocksInZ);
dim3 dimBlock = dim3(threadsInX, threadsInY, threadsInZ);

// Code that is executed inside the kernel
int blockIdxz = __float2uint_rd(blockIdx.y * invBlocksInY);
int blockIdxy = blockIdx.y - blockIdxz * blocksInY;
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdxy * blockDim.y + threadIdx.y;
int z = blockIdxz * blockDim.z + threadIdx.z;

As fMRI data is 4D it is normally necessary to generate 4D
indices and this is even more difficult. To solve this, a 3D index
(x,y,z) is first created and then each thread loops over the time
dimension inside the kernel. Another possibility is to call the
kernel once for each sample of the remaining dimension.

To do an element wise multiplication between two volumes,
A = B ·C, with floating point values, the following code can be
used. Each GPU thread performs the calculation for one voxel.
The (x,y,z) indices are created as previously described.

// The code for the kernel that runs on the GPU,
each thread performs one multiplication

__global__ void Multiply(float* A, float* B, float* C,
int DATA_W, int DATA_H, int DATA_D)

{
// Do not read/write outside the allocated memory
if (x >= DATA_W || y >= DATA_H || z >= DATA_D)

return;

// Calculate the linear index, row major order
int idx = x + y * DATA_W + z * DATA_W * DATA_H;

// Each thread performs one multiplication, A = B * C
A[idx] = B[idx] * C[idx];

}

// The GPU kernel is launched from the CPU by the following command
Multiply<<<dimGrid, dimBlock>>>(A, B, C, DATA_W, DATA_H, DATA_D);

7. Results

7.1. Rotation Invariant Analysis

First, it is proven that our new approach to guarantee plausi-
ble filters results in a rotation invariant analysis. The dominant
orientation of the resulting filter in each voxel was calculated
for our test dataset, in which each direction is equally likely. A
tensor T is first calculated according to

Figure 5: The figure shows the distribution of the orientation of the resulting
anisotropic lowpass filter. The orientations are approximately uniformly dis-
tributed, which means that the analysis is rotation invariant.

T =
3∑

k=1

γk n̂k n̂T
k , (16)

where n̂k is the orientation vector for anisotropic filter k and
γk is the filter weight. The eigenvector that corresponds to the
largest eigenvalue of the tensor is then calculated; the dominant
orientation of the filter is the angle of this eigenvector. The
resulting distribution of the orientation is given in Fig. 5. The
orientations are approximately uniformly distributed, meaning
that the analysis is rotation invariant.

7.2. Hardware

All of our implementations use single precision format, i.e.
32 bit floating point numbers, as they provide sufficient accu-
racy. Our computer system, running under Linux Fedora 12,
was equipped with three Nvidia GTX 480 GPUs, each equipped
with 480 processor cores and 1.5 GB of memory. The CPU of
our system was an Intel Xeon 2.4 GHz with 12 MB of L3 cache
and 4 processor cores, 12 GB of memory was used. The CPU
supports hyper threading, such that 8 threads can run in paral-
lel. Running 8 threads, instead of 4, did, however, not improve
the performance, it rather degraded it.

7.3. Processing Times

The resulting activity maps from all the implementations
were inspected in order to guarantee agreement of the results.
For each processing step, and for each implementation, 1000
runs were performed and the average processing time was cal-
culated. The processing times for the all processing steps are
given in Table 3, only one GPU was used for the CUDA im-
plementation. To save additional time, the detrending and the
statistical analysis is only performed for the voxels that are in-
side the brain. A simple thresholding technique was used for
the segmentation, about 20 000 of the 90 000 voxels were clas-
sified as brain voxels.

For the motion compensation step, the three quadrature filters
have to be applied in each iteration. This can either be done
as spatial convolution or as a multiplication in the frequency
domain (FFT based convolution). The processing times for both

12

spatial and FFT based convolution were therefore included. The
FFT routine in Matlab is multi-threaded and very fast, even for
dimensions that not are a power of two. The FFT in the CUFFT
library seems well optimized for dimensions that are a power of
2, but not necessarily for other dimensions.

The processing times for different number of permutations
are given in Table 4 for the GLM and in Table 5 for CCA. As our
computer contains three GPUs, a multi-GPU implementation
was also made, such that each GPU performs one third of the
permutations.

The conversion of data from double precision column major
format to single precision time major format takes about 0.4 s
(this is not necessary if the data is stored in the right way from
the beginning). To copy the fMRI data to the GPU takes about
20 ms and then it takes about 0.2 ms to copy the activity map
back to the CPU. After the slice timing correction, the data is
flipped from time major format to row major format, this takes
about 2 ms.

7.4. GLM vs CCA

With the random permutation test it is possible to calculate
corrected p-values for fMRI analysis by CCA, and thereby ac-
tivity maps from GLM and CCA can finally be compared at the
same significance level. To do this, a random permutation test
with 10 000 permutations was used and then the activity maps
were thresholded at the same significance level, corrected p =
0.05. With 8 mm of 2D smoothing applied to our test dataset,
GLM detects 302 significantly active voxels while CCA detects
344 significantly active voxels. The aim of this small compar-
ison is not to prove that CCA has a superior detection perfor-
mance, but to show that objective evaluation of different meth-
ods for single subject fMRI analysis becomes practically possi-
ble by using fast random permutation tests.

8. Discussion

8.1. Processing Times

As can be seen in Table 3, the CUDA implementation
provides significant speedups compared to SPM, Matlab and
OpenMP, both for the preprocessing steps and for the statistical
analysis.

In general, the motion compensation with FFT based convo-
lution runs faster than the motion compensation based on spa-
tial convolution, as shown in Table 3. The computation times
for the CUDA implementation are much shorter compared to
the other implementations, but the speed advance of the FFT
approach turns into the opposite. However, if all the dimen-
sions of the volumes are a power of 2, motion compensation
with FFT based convolution is about 40% faster than with spa-
tial convolution. The performance of the 3D FFT in the CUFFT
library has been investigated and enhanced by Nukada et al. [3].
The reason for the slower speed of the spatial convolution ap-
proach for the Matlab implementation is that the 3D convolu-
tion is called 6 times, since it only can handle one real valued
filter at a time, while in the OpenMP implementation all three
complex valued filter responses are calculated simultaneously.

The largest speedup is achieved for the non-separable 2D
smoothing; this is due to the fact that this kernel is not bounded
by the global memory bandwidth as much as the other kernels.
Once the data has been loaded into the shared memory, all the
processor cores can access the data extremely fast and thereby
achieve close to optimal processing performance. The differ-
ence compared to the other kernels that also use shared mem-
ory, is that the convolution requires a much larger number of
calculations. There is also a larger speedup for CCA, than for
the GLM, as CCA requires more calculations and does not need
to read the data from global memory several times.

Table 4 and Table 5 clearly show that the GPU makes it prac-
tically possible to apply random permutation tests to single sub-
ject fMRI data. This enables the use of more advanced detec-
tion statistics, like RCCA, which do not have any parametric
null distribution.

While it is obvious that GPUs should be used for permutation
tests, it might not be as obvious that the GPU should be used
for the preprocessing as well. For the GLM the preprocess-
ing takes 15.5 s with Matlab, 5 s with OpenMP and 0.4 s with
the CUDA implementation. If we look into the future a couple
of years, we believe that it will be rather common with fMRI
datasets that have 1 mm isotropic resolution. As mentioned ear-
lier, fMRI data with 0.65 mm isotropic resolution has already
been presented by Heidemann et al. [26]. Using a field of view
of 256 mm would result in volumes of the resolution 256 x 256
x 128 voxels to cover the brain. If compressed sensing or par-
allel imaging is used at the same time, the temporal resolution
might be increased to 2 Hz, compared to the more common 0.5
Hz. An fMRI experiment that consists of four periods of rest
and activity, where each period is 40 seconds, would then re-
sult in 320 volumes of the resolution 256 x 256 x 128 voxels to
process. For fMRI datasets of this size, it becomes much more
important with an efficient implementation in order to process
the data. If the processing time scales linearly with the size of
the data, the Matlab implementation would require 96 minutes
to preprocess the data, OpenMP 31 minutes and the CUDA im-
plementation 1.7 minutes (FFT based convolution used in all
three cases).

8.2. Implementing GLM & CCA
As the GLM does not require any higher order matrix func-

tions, like CCA does, the implementation efforts were low, re-
quiring only the programming of a matrix multiplication and a
variance calculation.

To be able to do CCA the filters first had to be redesigned,
such that RCCA is not needed. The implementation of CCA is
more demanding as it requires a matrix inverse and an eigen-
value decomposition for each voxel time series - fortunately
there are direct solutions for small matrices. Our current im-
plementation only works for adaptive 2D filtering. For adaptive
3D filtering the same approach to guarantee plausible filters can
be used, but a total of seven 3D filters must be used and thereby
a 7 x 7 matrix must be inverted in each thread, which requires
a lot more registers. fMRI analysis by CCA is a good example
for the situation that an existing algorithm might have to be al-
tered in order to fit the architecture of the GPU. An alternative

13

Table 3: Processing times of the different processing steps for the different implementations. The size of the fMRI dataset is 80 volumes with the resolution 64 x 64
x 22 voxels.

Processing step SPM Matlab Matlab OpenMP Matlab CUDA
Slice timing correction 32 s 280 ms 235 ms 7.8 ms

Motion compensation, spatial convolution 28 s 126 s 17.5 s 415 ms
Motion compensation, FFT convolution - 13.7 s 4.6 s 650 ms

Smoothing, one separable 3D filter of size 9 x 9 x 9 voxels for GLM 32 s 1.5 s 195 ms 10.4 ms
Smoothing, four non separable 2D filters of size 9 x 9 pixels for CCA - 5.9 s 850 ms 9.9 ms

Detrending, for GLM - 8.6 ms 4.6 ms 0.37 ms
Detrending, for CCA - 33.6 ms 17.1 ms 1.44 ms

GLM 33 s 16.6 ms 5.8 ms 0.38 ms
CCA - 31.5 ms 15.2 ms 0.47 ms

Total time for GLM 125 s 15.51 s 5.04 s 0.43 s
Total time for CCA - 19.93 s 5.72 s 0.43 s

Table 4: Processing times for random permutation tests with the GLM for the different implementations. Note that smoothing of the fMRI volumes is done in each
permutation.

Number of permutations with GLM Matlab Matlab OpenMP Matlab CUDA, 1 x Nvidia GTX 480 Matlab CUDA, 3 x Nvidia GTX 480
1000 25 min 3.5 min 13.5 s 4.5 s

10 000 4 h 10 min 35 min 2 min 15 s 45 s
100 000 1 day 17 h 40 min 5 h 50 min 22.5 min 7.5 min

approach to guarantee plausible filters could be to include lin-
ear constraints, as proposed by Cordes et al. [64]. In our future
work we want to investigate how other statistical approaches
suit for a GPU implementation.

8.3. Training of Classifiers

A growing field in fMRI is the development of BCIs where
the brain activity is classified in real-time, allowing control of
various systems. In order to classify the brain activity, a clas-
sifier first has to be trained. Catanzaro et al. [4] have imple-
mented support vector machine (SVM) training and classifica-
tion on the GPU and achieved a speedup of 9-35 for training and
81-138 for classification. Classifiers are not only used to clas-
sify brain activity in real-time, but also to improve conventional
fMRI analysis by incorporating spatial information in adaptive
ways. Åberg et al. [73] have proven that fMRI analysis by find-
ing important voxels for SVM performs better than the GLM.
To find the most important voxels for the classifier, an evolu-
tionary algorithm is used in which different voxel clusters are
used to train and evaluate the classifier. According to the paper
this takes about 20 minutes, but it is also stated that evolution-
ary algorithms are fairly trivial to run in parallel, and thereby
they would be well suited for the GPU.

9. Conclusions

To summarize, doing the fMRI analysis on the GPU opens up
a lot of possibilities. All the preprocessing steps and both the
statistical approaches that we used suit the GPU well and sig-
nificant speedups were obtained. The obvious advantage is that
this saves time for researchers and clinicians, but it also makes
it easier to play around with the different parameters, to for ex-
ample see the effects of different amounts of smoothing. One of
the most important results is that the GPU makes it practically

possible to apply non-parametric statistics. We believe that the
GPU will result in a more common usage of permutation tests
for fMRI data. One of the challenges is to make GPU program-
ming easy, such that as many as possible can take advantage of
the computational power of GPUs. The main challenge, as we
see it, is to make fMRI analysis on the GPU available to the
large community that does fMRI analysis, i.e. both researchers
and clinicians.

10. Software

The authors are currently working on a software pack-
age that will be freely available, the name of the package is
WABAACUDA (Wanderines Accelerated Brain Activity An-
alyzer using CUDA). The software package will be available
under the GNU general public license (GPL) at

http://www.wanderineconsulting.com/wabaacuda

Acknowledgement

This work was supported by the strategic research center
MOVIII, funded by the Swedish foundation for strategic re-
search (SSF), and the Linnaeus center CADICS, funded by the
Swedish research council. The authors would like to thank the
NovaMedTech project at Linköping university for financial sup-
port of our GPU hardware and Johan Wiklund for support with
the CUDA installations.

References

[1] S. Ogawa, D. Tank, R. Menon, J. Ellermann, S. Kim, H. Merkle, K. Ugur-
bil, Intrinsic signal changes accompanying sensory stimulation: Func-
tional brain mapping with magnetic resonance imaging, Proc. Natl. Acad.
Sci. USA 89 (1992) 5951–5955.

14

Table 5: Processing times for random permutation tests with 2D CCA for the different implementations. Note that smoothing of the fMRI volumes is done in each
permutation.

Number of permutations with 2D CCA Matlab Matlab OpenMP Matlab CUDA, 1 x Nvidia GTX 480 Matlab CUDA, 3 x Nvidia GTX 480
1000 1 h 40 min 14 min 50 s 15 s 5 s

10 000 16 h 37 min 2 h 28 min 2 min 30 s 50 s
100 000 6 days 22 h 24 h 43 min 25 min s 8 min 20 s

[2] P. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor spectroscopy and
imaging, Biophysical Journal 66 (1994) 259–267.

[3] A. Nukada, Y. Ogata, T. Endo, S. Matsuoka, Bandwidth intensive 3-
D FFT kernel for GPUs using CUDA, in: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2008,
pp. 1–11.

[4] B. Cataranzo, N. Sundaram, K. Keutzer, Fast support vector machine
training and classification on graphics processors, in: Proceedings of the
25th International conference on Machine learning, 2008, pp. 104–111.

[5] I. Shterev, S.-H. Jung, S. George, K. Owzar, permGPU: Using graphics
processing units in RNA microarray association studies, BMC Bioinfor-
matics 11 (2010) 329.

[6] A. Eklund, O. Friman, M. Andersson, H. Knutsson, A GPU acceler-
ated interactive interface for exploratory functional connectivity analysis
of fMRI data, in: IEEE International Conference on Image Processing
(ICIP), 2011.

[7] A. Eklund, M. Andersson, H. Knutsson, Fast random permutation tests
enable objective evaluation of methods for single subject fMRI analysis,
International Journal of Biomedical Imaging, Article ID 627947 (2011).

[8] John L. Van Hemert, Julie A. Dickerson, Monte Carlo randomization
tests for large-scale abundance datasets on the GPU, Computer Methods
and Programs in Biomedicine 101 (2011) 80–86.

[9] R. Shams, P. Sadeghi, R. A. Kennedy, R. I. Hartley, A survey of medical
image registration on multicore and the GPU, IEEE Signal Processing
Mag. 27 (2010) 50–60.

[10] A.R. Ferreira da Silva, A Bayesian multilevel model for fMRI data anal-
ysis, Computer Methods and Programs in Biomedicine 102 (2010) 238–
252.

[11] A. Eklund, M. Andersson, H. Knutsson, Phase based volume registration
using CUDA, in: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2010, pp. 658 – 661.

[12] T. McGraw, M. Nadar, Stochastic DT-MRI connectivity mapping on
the GPU, IEEE Transactions on Visualization and computer graphics 13
(2007) 1504–1511.

[13] S. Stone, J. Haldar, S. Tsao, W. Hwu, B. Sutton, Z. Liang, Accelerating
advanced MRI reconstructions on GPUs, Journal of Parallel and Dis-
tributed Computing 68 (2008) 1307–1318.

[14] D. Gembris, M. Neeb, M. Gipp, A. Kugel, R. Männer, Correlation analy-
sis on GPU systems using NVIDIA’s CUDA, Journal of real-time image
processing (2010) 1–6.

[15] F. Rößler, E. Tejada, T. Fangmeier, T. Ertl, M. Knauff, GPU-based multi-
volume rendering for the visualization of functional brain images, Proc-
ceedings of SimVis (2006) 305–318.

[16] W. M. Jainek, S. Born, D. Bartz, W. Straßer, J. Fischer, Illustrative hy-
brid visualization and exploration of anatomical and functional brain data,
Computer Graphics Forum 27 (2008) 855–862.

[17] T. K. Nguyen, A. Eklund, H. Ohlsson, F. Hernell, P. Ljung, C. Forsell,
M. Andersson, H. Knutsson, A. Ynnerman, Concurrent volume visualiza-
tion of real-time fMRI, in: Proceedings of the 8th IEEE/EG International
Symposium on Volume Graphics, 2010, pp. 53–60.

[18] B. Biswal, F. Yetkin, V. Haughton, J. Hyde, Functional connectivity in
the motor cortex of resting state human brain using echo-planar MRI,
Magnetic Resonance in Medicine 34 (1995) 537–541.

[19] W. Liu, P. Zhu, J. Anderson, D. Yurgelun-Todd, P. Fletcher, Spatial regu-
larization of functional connectivity using high-dimensional markov ran-
dom fields, Proceedings of the 13th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI), Lec-
ture notes in computer science 6362 (2010) 363–370.

[20] A.R. Ferreira da Silva, cudaBayesreg: Bayesian Computation in CUDA,
The R Journal 2/2 (2010) 48–55.

[21] Jacket - The GPU Engine for Matlab, 2010. http://www.accelereyes.com/.

[22] Statistical Parametric Mapping (SPM) software for fMRI analysis, 2010.
http://www.fil.ion.ucl.ac.uk/spm/.

[23] M. Lustig, D. Donoho, J. Pauly, Sparse MRI: The application of com-
pressed sensing for rapid MR imaging, Magnetic Resonance In Medicine
58 (2007) 1182–1195.

[24] X. Golay, J. A. de Zwart, Y.-C. L. Ho, Y.-Y. Sitoh, Parallel imaging
techniques in functional MRI, Topics in Magnetic Resonance Imaging 15
(2004) 255–265.

[25] B. Zahneisen, T. Grotz, K. Lee, S. Ohlendorf, M. Reisert, M. Zaitsev,
J. Hennig, Three-dimensional MR-encephalography: Fast volumetric
brain imaging using rosette trajectories, Magnetic Resonance in Medicine
65 (2011) 1260 – 1268.

[26] R. M. Heidemann, D. Ivanov, R. Trampel, J. Lepsien, F. Fasano, J. Pfeuf-
fer, R. Turner, Isotropic sub-millimeter fMRI in humans at 7T, in: Pro-
ceedings of the annual meeting of the International society for magnetic
resonance in medicine (ISMRM), 2010, p. 1083.

[27] R. C. deCharms, Applications of real-time fMRI, Nature Reviews Neu-
roscience 9 (2008) 720–729.

[28] R. W. Cox, A. Jesmanowicz, J. S. Hyde, Real-time functional magnetic
resonance imaging, Magnetic Resonance in Medicine 33 (1995) 230–236.

[29] D. Gembris, J. G. Taylor, S. Schor, W. Frings, D. Suter, S. Posse, Func-
tional magnetic resonance imaging in real time (FIRE): Sliding-window
correlation analysis and reference-vector optimization, Magnetic Reso-
nance in Medicine 43 (2000) 259 – 268.

[30] N. Goddard, G. Hood, J. Cohen, W. Eddy, C. Genovese, D. Noll, L. Nys-
trom, Online analysis of functional MRI datasets on parallel platforms,
Journal of Supercomputing 11 (1997) 295–318.

[31] E. Bagarinao, K. Matsuo, T. Nakai, Real-time functional MRI using a PC
cluster, Concepts in magnetic resonance 19B (2003) 14–25.

[32] A. Eklund, H. Ohlsson, M. Andersson, J. Rydell, A. Ynnerman,
H. Knutsson, Using real-time fMRI to control a dynamical system by
brain activity classification, Proceedings of the 12th International Confer-
ence on Medical Image Computing and Computer Assisted Intervention
(MICCAI), Lecture notes in computer science 5761 (2009) 1000–1008.

[33] A. Eklund, M. Andersson, H. Ohlsson, A. Ynnerman, H. Knutsson, A
brain computer interface for communication using real-time fMRI, in:
Proceedings of International Conference on Pattern Recognition (ICPR),
2010, pp. 3665–3669.

[34] S. M. Laconte, S. J. Peltier, X. P. Hu, Real-time fMRI using brain-state
classification, Human Brain Mapping 28 (2007) 1033–1044.

[35] R. C. deCharms, F. Maeda, G. H. Glover, D. Ludlow, J. M. Pauly,
D. Soneji, J. D. Gabrieli, S. C. Mackey, Control over brain activation
and pain learned by using real-time functional MRI, PNAS 102 (2005)
18626–18631.

[36] R. Cusack, A. M. Owen, Distinct networks of connectivity for parietal but
not frontal regions identified with a novel alternative to the ”resting state”
method, in: Fifteenth Annual Meeting of the Cognitive Neuroscience
Society, 2008.

[37] M. W. Woolrich, M. Jenkinson, M. Brady, S. M. Smith, Fully bayesian
spatio-temporal modeling of fMRI data, IEEE Transactions on Medical
Imaging 23 (2004) 213–231.

[38] T. E. Nichols, A. P. Holmes, Nonparametric permutation tests for func-
tional neuroimaging: A primer with examples, Human Brain Mapping 15
(2001) 1–25.

[39] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson, M. Hategan, S. Small,
M. Wilde, Y. Zhao, Accelerating medical research using the swift work-
flow system, Studies in Health Technology and Informatics 126 (2007)
207–216.

[40] FASTRA II, 2010. http://fastra2.ua.ac.be/.
[41] The Khronos Group & OpenCL, 2010. http://www.khronos.org/opencl/.
[42] J. Kong, M. Dimitrov, Y. Yang, J. Liynage, L. Cao, J. Staples, M. Man-

15

tor, H. Zhou, Accelerating Matlab image processing toolbox functions on
GPUs, in: Proceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units, 2010, pp. 75–85.

[43] Nvidia, 2010. CUDA Programming Guide, Version 3.0.
[44] D. Kirk, W. Hwu, Programming Massively Parallel Processors, A Hands-

on Approach, Morgan Kaufmann, 2010. ISBN 978-0-12-381472-2.
[45] S. Strother, Evaluating fMRI preprocessing pipelines, IEEE Engineering

in Medicine and Biology Magazine 25 (2006) 27–41.
[46] R. Henson, C. Buchel, O. Josephs, K. Friston, The slice-timing problem

in event-related fMRI, Neuroimage 9 (1999) 125.
[47] R. W. Cox, A. Jesmanowicz, Real-time 3D image registration for func-

tional MRI, Magnetic Resonance in Medicine 42 (1999) 1014–1018.
[48] R. Cox, AFNI: Software for analysis and visualization of functional mag-

netic resonance neuroimages, Computers and Biomedical Research 29
(1996) 162–173.

[49] T. Oakes, T. Johnstone, K. Ores Walsh, L. Greischar, A. Alexander,
A. Fox, R. Davidson, Comparison of fMRI motion correction software
tools, Neuroimage 28 (2005) 529–543.

[50] P. Viola, W. Wells, Alignment by maximization of mutual information,
International Journal of Computer Vision 24 (1997) 137–154.

[51] G. Granlund, H. Knutsson, Signal Processing for Computer Vision,
Kluwer Academic Publishers, 1995. ISBN 0-7923-9530-1.

[52] M. Hemmendorff, M. Andersson, T. Kronander, H. Knutsson, Phase-
based multidimensional volume registration, IEEE Transactions on Med-
ical Imaging 21 (2002) 1536–1543.

[53] M. Mellor, M. Brady, Phase mutual information as similarity measure for
registration, Medical Image Analysis 9 (2005) 330–343.

[54] O. Friman, M. Borga, P. Lundberg, H. Knutsson, Detection and detrend-
ing in fMRI data analysis, NeuroImage 22 (2004) 645–655.

[55] CULA - GPU-accelerated LAPACK, 2010. http://www.culatools.com/.
[56] MAGMA - Matrix Algebra on GPU and Multicore Architectures, 2010.

http://icl.cs.utk.edu/magma/.
[57] K. Friston, A. Holmes, K. Worsley, J. Poline, C. Frith, R. Frackowiak,

Statistical parametric maps in functional imaging: A general linear ap-
proach, Human Brain Mapping 2 (1995) 189–210.

[58] O. Friman, J. Carlsson, P. Lundberg, M. Borga, H. Knutsson, Detection
of neural activity in functional MRI using canonical correlation analysis,
Magnetic Resonance in Medicine 45 (2001) 323–330.

[59] R. Nandy, D. Cordes, A novel nonparametric approach to canonical corre-
lation analysis with applications to low CNR functional MRI data, Mag-
netic Resonance in Medicine 49 (2003) 1152–1162.

[60] H. Hotelling, Relation between two sets of variates, Biometrika 28 (1936)
322–377.

[61] O. Friman, M. Borga, P. Lundberg, H. Knutsson, Adaptive analysis of
fMRI data, NeuroImage 19 (2003) 837–845.

[62] S. Das, P. Sen, Restricted canonical correlations, Linear Algebra and its
Applications 210 (1994) 29–47.

[63] J. Rydell, H. Knutsson, M. Borga, On rotational invariance in adaptive
spatial filtering of fMRI data, NeuroImage 30 (2006) 144–150.

[64] D. Cordes, R. Nandy, M. Jin, Constrained CCA with different novel lin-
ear constraints and a nonlinear constraint in fMRI, in: Proceedings of
the annual meeting of the International society for magnetic resonance in
medicine (ISMRM), 2010, p. 1151.

[65] R. Viviani, P. Beschoner, K. Ehrhard, B. Schmitz, J. Thöne, Non-
normality and transformations of random fields, with an application to
voxel-based morphometry, NeuroImage 35 (2007) 121–130.

[66] M. J. Brammer, E. T. Bullmore, A. Simmons, S. C. R. Williams, P. M.
Grasby, R. J. Howard, P. R.Woodruff, S. Rabe-Hesketh, Generic brain
activation mapping in functional magnetic resonance imaging: A non-
parametric approach, Magnetic Resonance Imaging 15 (1997) 763–770.

[67] J. J. Locascio, P. J. Jennings, C. I. Moore, S. Corkin, Time series analysis
in the time domain and resampling methods for studies of functional mag-
netic resonance brain imaging, Human Brain Mapping 5 (1997) 168–193.

[68] O. Friman, C.-F. Westin, Resampling fMRI time series, NeuroImage 25
(2005) 859–867.

[69] M. Belmonte, D. Yurgelun-Todd, Permutation testing made practical for
functional magnetic resonance image analysis, IEEE Transactions on
Medical Imaging 20 (2001) 243–248.

[70] T. Yamada, T. Sugiyama, On the permutation test in canonical correlation
analysis, Computational Statistics & Data Analysis 50 (2006) 2111–2123.

[71] OpenMP - The OpenMP API Specification for Parallel Programming,

2010. http://www.openmp.org/.
[72] B. Chapman, G. Jost, R. van der Pas, Using OpenMP, Portable Shared

Memory Parallel Programming, MIT Press, 2007. ISBN 978-0-262-
53302-7.

[73] M. B. Åberg, J. Wessberg, An evolutionary approach to the identification
of informative voxel clusters for brain state discrimination, IEEE Journal
of selected topics in signal processing 2 (2008) 919–928.

16

	fMRI Analysis on the GPU-TitlePage.pdf
	fMRI_GPU

