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Abstract—The Schottky barrier height (SBH) of an ultrathin 

epitaxial NiSi2-y film grown on Si(100) is significantly modified by 

means of dopant segregation (DS).  The DS process begins with the 

NiSi2-y formation and is followed by dopant implantation and 

drive-in annealing.  The rapid lattice restoration and superior 

morphological stability upon heat treatment up to 800 oC allows 

the epitaxial NiSi2-y film to take full advantage of the DS process.  

For drive-in annealing below 750 oC, the effective SBH is altered 

to 0.9-1.0 eV for both electrons and holes by B- and As-DS, 

respectively, without deteriorating the integrity of the NiSi2-y film. 

 

Index Terms—Ultrathin, epitaxy, NiSi2, Schottky barrier 

height, dopant segregation, morphological stability  

I. INTRODUCTION 

n ultrathin silicide film below 10 nm in thickness is 

projected to be necessary for contact formation in CMOS 

technologies beyond the 22-nm node [1].  For these technology 

nodes, Ni-based silicide will most likely continue its dominance 

in the source/drain contact formation.  Recent publications show 

that a NiSi2-y film grows epitaxially on Si(100) if the initial 

thickness of Ni-Pt alloys is less than 4 nm and the Pt addition is 

restricted below 10% [2]-[5].  Polycrystalline Ni1-xPtxSi films 

will form for other thickness and/or composition combinations.  

In contrast to low-temperature agglomeration of poly-Ni1-xPtxSi 

films, epitaxial Ni(Pt)Si2-y remains morphologically intact upon 

annealing up to 800 
o
C.  The latest advancements in formation 

of ultrathin Ni-based silicide films have led to a reproducible 

growth of such epitaxial NiSi2-y films in a very simple manner 

[6],[7].  There is, therefore, a need to investigate if the Schottky 

barrier height (SBH) of such epitaxial NiSi2-y films can be tuned 

to improve carrier injection for metallic source/drain MOSFETs 

as an example [8]-[10].  In the present study, Schottky diodes 

with an epitaxial NiSi2-y film for contact formation are 

fabricated.  Dopant segregation (DS) is then used to achieve the 

desired modification of effective SBH for the NiSi2-y/Si contact.  
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Alternative approaches for SBH modification not studied here 

include surface passivation [11] and alloying [12,13]. 

II. EXPERIMENTAL PROCEDURE 

To fabricate the Schottky diodes, both n- and p-type epitaxy 

Si(100) wafers were used as the starting substrate material.  The 

wafers have a heavily doped substrate to avoid adverse effects 

of series resistance during electrical characterization [14]-[16].  

The lightly doped epitaxial layers were 8.1-9.9 m thick with a 

resistivity of 17-25 cm for the n-type wafers, and 5.8-7.2 m 

thick with a resistivity of 11-15 cm for the p-type ones.  With 

a conventional LOCOS isolation to define circular diodes of 

400 m in diameter, a 3-nm-thick Ni was deposited in a sputter 

deposition chamber.  Silicidation was carried out in a rapid 

thermal processing (RTP) chamber at 500 or 750 
o
C for 30 s, in 

N2 atmosphere.  The resultant epitaxial NiSi2-y films were about 

8 nm in thickness [2].  The wafers were then immersed in an 

H2SO4:H2O2 (4:1) solution at 120 
o
C for 10 min to strip the 

unreacted Ni from the SiO2 surface.  For the wafers with the 

silicide formation at 500 
o
C, B or As was ion implanted (I/I) to a 

dose of 110
15

 cm
-2

 into the preformed epitaxial NiSi2-y films; B 

to the NiSi2-y formed on the n-type substrate at 2 keV with a 

tilted angle of 45 degrees and As to the NiSi2-y formed on the 

p-type substrate at 3 keV with a tilted angle of 7 degrees.  Monte 

Carlo simulation [17] indicated that the implanted ions were 

mostly confined in the ultrathin NiSi2-y films.  Subsequently, 

isochronal drive-in anneals at 500 to 800 
o
C at a 50-

o
C interval, 

each anneal for 30 s, were performed.  This process for DS, also 

known as SADS (silicide as diffusion source), has been 

successfully employed by several research groups 

[15],[16],[18]-[21].  The effective SBH, to electrons (bn) and to 

holes (bp), of the epitaxial NiSi2-y films was extracted through 

characterizing the diodes by means of capacitance-voltage (C-V) 

measurements on an HP4284A precision LCR meter at 100 kHz, 

following the procedure described in [15].  For sheet resistance 

monitoring as well as physical analyses using secondary ion 

mass spectroscopy (SIMS) and cross-sectional transmission 

electron microscopy (XTEM), blanket samples on Si(100) were 

also prepared following the same procedure described above.  

III. RESULTS AND DISCUSSION 

Interaction of the 3-nm thick Ni film with Si(100) at 500 
o
C 

leads to epitaxial growth of NiSi2-y, according to extensive 

XTEM, diffraction, pole-figure, resistance, and Raman analyses 

[2]-[5].  After B and As I/I, the resistance of the silicide films is 

rather high around 150 Ω/□ as shown in Fig. 1.  Upon 

subsequent drive-in annealing, the resistance for both B- and 

As-implanted NiSi2-y films keeps decreasing until it approaches 

the value for an as-formed NiSi2-y film at 700-750 
o
C.  The B or 

As I/I is anticipated to generate damage in the silicide film.  As 
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seen in Fig. 2(a) for a high-resolution XTEM image, the 

near-surface region of the silicide films is indeed severely 

damaged by B I/I.  The annealing has apparently caused 

structural recovery and lattice restoration of the epitaxial NiSi2-y 

film, cf. Fig. 2(b), and thereby led to the successive resistance 

decrease below 750 
o
C.  For comparison, the high-resolution 

XTEM image in Fig. 2(c) shows a defect-free structure for the 

epitaxial NiSi2-y film formed at 750 
o
C.  Moreover, the I/I and 

subsequent drive-in annealing have led to no observable loss of 

NiSi2-y since all the films in Fig. 2 retain their 8-nm thickness.  It 

is worth noting that the temperature behavior in Fig. 1 is 

identical to that for the NiSi2-y formation at different silicidation 

temperatures [2],[5].  For comparison, poly-Ni1-xPtxSi films of 

comparable thickness tend to agglomerate with a sharp 

resistance increase below 600 
o
C [2],[3].  Hence, the observed 

morphological stability as well as the ability of rapid lattice 

restoration is significant for implementation of the DS process 

for the epitaxial NiSi2-y films. 

The extracted effective SBH values for both p- and n-type 

Schottky diodes are summarized in Table I for the samples 

prepared with two silicidation temperatures.  For the Schottky 

diodes formed at 500 
o
C, the SBH extraction failed due to a 

large leakage current.  The leakage could be due to some 

imperfections at the interface of the ultrathin epitaxial NiSi2-y 

film formed at 500 
o
C [2],[5].  For the NiSi2-y films formed at 

750 
o
C with a much improved interfacial morphology in Fig. 2(c) 

[2],[5], bn=0.81 eV was obtained while it remained to be 

challenging to extract the low bp due to large leakage.  This bn 

value is almost identical to that extracted for type-B NiSi2 

epitaxially grown on Si(111), i.e., 0.79 eV [22].  However, it 

departs significantly from bn=0.4 eV obtained for epitaxial 

NiSi2 on Si(100) [23].  The mysterious difference in b between 

type-B NiSi2 on Si(111) and NiSi2 on Si(100) was accounted for 

by invoking inhomogeneities at the NiSi2/Si(100) interface [22].  

It remains unclear if the NiSi2-y/Si interface obtained in the 

present study is more homogeneous than produced 20 years ago, 

but subtle details of the interfacial structure have been shown to 

play a critical role in determining SBH [24],[25].  

With DS, the effective SBHs, which are also shown in Table 

I, can be modified to 0.9-1.0 eV for both polarities after an 

appropriate drive-in annealing between 500 and 750 
o
C.  

Dopant diffusion in the epitaxial NiSi2-y films leading to dopant 

accumulation at the silicide/Si interface at 650 and 750 
o
C is 

evident for both B, Fig. 3(a), and As, Fig. 3(b).  For comparison, 

depth profiling of the dopants in the as-implanted samples are 

also depicted.  The peak broadening at the NiSi2-y/Si interface as 

well as the long B and As tails are attributed to SIMS artifacts, 

because (i) no I/I damage occurred to the Si substrate and 

intrinsic diffusion should be negligible below 750 
o
C [16],[26]; 

(ii) the longer As tail than the B one would suggest a more rapid 

As diffusion, contradicting the commonly accepted picture of 

the opposite [26]; and (iii) diffusion at different temperatures 

would yield B tails in the Si substrate with distinct slopes, so the 

parallel B tails are indicative of an artifact.  Hence, despite 

distinct differences in crystallographic phase and crystallinity, 

the effect of DS on effective SBHs of the epitaxial NiSi2-y films 

found here are consistent with our previous results with 

Silicidation temperature (
o
C) bn (eV) bp (eV) 

500 - - 

750 0.81 - 

Drive-in annealing temperature (
o
C) bn (eV) bp (eV) 

500 0.99 - 

550 0.96 - 

600 0.99 - 

650 1.0 0.86 

700 1.0 0.92 

750 0.96 0.93 

 

TABLE I 

EXTRACTED SBH VALUES AT TWO SILICIDATION TEMPERATURES 

AND DIFFERENT DRIVE-IN ANNEALING TEMPERATURES.  FOR THE 

LATTER, B I/I INTO NiSi2-y ON n-TYPE Si FOR EXTRACTION OF bn 

WHILE As I/I INTO NiSi2-y ON p-TYPE Si FOR EXTRACTION OF bp. 

 

   
 

 
 

Fig. 2. High-resolution XTEM images for NiSi2-y films formed at 500 oC 

and then (a) I/I with B and (b) after subsequent drive-in annealing at 750 oC.  

For comparison, an epitaxial NiSi2-y film formed at 750 oC is depicted in (c). 
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Fig. 1. Sheet resistance of epitaxial NiSi2-y films first ion-implanted with B 

or As and then followed by drive-in annealing at different temperatures. 
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Fig. 3. Dopant depth profiling by means of SIMS showing accumulation of 

(a) B and (b) As at the NiSi2-y/Si interface upon drive-in annealing at 650 and 

750 oC.  Results for the as-implanted samples are included for comparison. 
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poly-NiSi and PtSi films [15],[16].  This observation further 

confirms the robustness of the SADS process for DS.  

According to the relationship bn+bp=Eg, bn and bp of 

0.1-0.2 eV have thus been realized for the Schottky diodes 

with NiSi2-y through As- and B-DS, respectively.  The SBH 

modulation by DS is also confirmed by current-voltage (I-V) 

characterization of the Schottky diodes.  In Fig. 4, the I-V 

characteristics show a consistent trend for both types of diodes 

with a decreasing leakage current density, Jr, at reverse bias 

with increasing drive-in annealing temperature.  The smaller 

variations in Jr for the n-type diodes (i.e., on n-type substrate) 

faithfully reflect the smaller changes in bn reported in Table I.  

For the p-type diodes, the very small starting bp requires higher 

drive-in annealing temperatures, i.e., ≥650 
o
C, to suppress Jr for 

a reliable extraction of bp.  The excellent morphological 

stability of the epitaxial NiSi2-y films practically allows such 

high-temperature processing so as to attain the desired low bn 

and bp without deteriorating the integrity of the silicide films.  

IV. CONCLUSIONS 

This work demonstrates a successful implementation of 

SADS for DS in Schottky diodes with an 8-nm thick epitaxial 

NiSi2-y film as the metal contact.  The excellent morphological 

stability of the epitaxial NiSi2-y film allows annealing at 

temperatures up to 800 
o
C for damage repair and dopant 

diffusion after ion implantation of B and As into the silicide 

films.  Initially damaged, the NiSi2-y film restores its defect-free 

crystallographic structure with low resistivity and sharp 

interface to the underlying Si substrate.  Finally, the effective 

SBH is reduced from 0.3 to 0.1 eV for p-type diodes and from 

0.8 to 0.2 eV for n-type diodes.  
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