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A theory for large amplitude compressional electromagnetic solitary pulses in a magnetized electron-positron
(e-p) plasma is presented. The pulses, which propagate perpendicular to the external magnetic field, are associated
with the compression of the plasma density and the wave magnetic field. Here the solitary wave magnetic field
pressure provides the restoring force, while the inertia comes from the equal mass electrons and positrons. The
solitary pulses are formed due to a balance between the compressional wave dispersion arising from the curl
of the inertial forces in Faraday’s law and the nonlinearities associated with the divergence of the electron and
positron fluxes, the nonlinear Lorentz forces, the advection of the e-p fluids, and the nonlinear plasma current
densities. The compressional solitary pulses can exist in a well-defined speed range above the Alfvén speed. They
can be associated with localized electromagnetic field excitations in magnetized laboratory and space plasmas
composed of electrons and positrons.
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I. INTRODUCTION

Electron-positron (e-p) plasmas are found in the early
universe [1,2], in astrophysical objects (e.g., pulsars [3], super-
nova remnants, and active galactic nuclei [4,5]), in γ -ray bursts
[6], and at the center of the Milky Way galaxy [7]. In such
physical systems, the e-p pairs can be created by collisions
between particles that are accelerated by electromagnetic and
electrostatic waves and/or by gravitational forces. In pulsar
environments, there is also a possibility of pair creation via
high-energy curvature radiation photons that are triggered by
charged particles streaming along the curved magnetic field
[8,9], with a resulting collection of positrons at the polar caps
of the pulsar [10–12]. High-energy laser-plasma interactions
and fusion devices also constitute a source of e-p plasmas (also
referred to as pair plasma). Intense laser-plasma interaction
experiments have reported the production of MeV electrons
and conclusive evidence of positron production [13–16] via
electron collisions [17]. Positrons have also been created
in postdisruption plasmas in large tokamaks [18] through
collisions between MeV electrons and thermal particles. The
progress in the production of positron plasmas of the past two
decades makes it possible to consider laboratory experiments
on e-p plasmas [19–21].

The pair plasmas are composed of electrons and positrons
of equal mass and opposite charges. Due to the equal mass of
the pairs, there are fewer spatial and temporal scales on which
collective effects (e.g., electrostatic and electromagnetic waves
as well as their instabilities, coherent nonlinear structures,
etc.) arise. For example, Iwamoto [22] presented an elegant
description of the linear modes in a nonrelativistic pair plasma
that is magnetized. Zank and Greaves [23] then discussed the
linear properties of various electrostatic and electromagnetic
waves in unmagnetized and magnetized pair plasmas, in addi-
tion to discussing the two-stream instability and nonenvelope
solitary wave solutions. It should be noted that the magnetic-
field-aligned circularly polarized electromagnetic (CPEM)
waves and elliptically polarized extraordinary (EPEO) waves

propagating across the external magnetic field direction have
the same frequencies [24–26] in the cold e-p magnetoplasma.
Several authors [27–30] have investigated the properties
of magnetic-field-aligned nonlinear Alfvén-like waves in a
relativistic magnetized pair plasma. A review of numerous
linear and nonlinear waves in unmagnetized and magnetized
pair plasmas can be found in Ref. [31]. It turns out that studies
of collective plasma wave phenomena are of great importance
in connection with energization of electrons and positrons in
a magnetized pair plasma.

In this Brief Report, we present an investigation of large-
amplitude compressional electromagnetic solitary pulses that
are propagating across the external magnetic field in a pair
plasma. In our quasineutral pair plasma, the dynamics of the
compressional electromagnetic solitary waves is governed by
the continuity and momentum equations, as well as Ampère’s
and Faraday’s laws. In a stationary frame with a constant speed,
the governing equations can be reduced to a pair of equations in
which the compressional magnetic field and the plasma density
are nonlinearly coupled, as shown in Sec. II. In Sec. III, we
carry out a numerical analysis of the nonlinear equations which
reveals that the solitary electromagnetic pulses are composed
of density and magnetic field humps and have some similarities
with the compressional Alfvénic solitons in a cold electron-
ion plasma [32]. The properties and existence criteria of the
solitary electromagnetic pulses are discussed, and examples
of profiles of the solitary pulses are displayed graphically. It
is found that a stronger localization of solitary pulses occurs
in a cold pair magnetoplasma. Section IV contains a summary
and possible implications of our work for astrophysical and
laboratory pair plasmas.

II. THE NONLINEAR MODEL

Let us consider the nonlinear propagation of large amplitude
compressional electromagnetic waves across the external
magnetic field B0ẑ, where B0 is the strength of the external
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magnetic field and ẑ the unit vector along the z axis in
a Cartesian coordinate system, in a quasineutral electron-
positron plasma. In the latter, we have ne = np ≡ n, where ne

and np are the number densities of the electrons and positrons.
For one-dimensional electromagnetic wave propagation along
the x axis, the continuity equations for the electrons and
positrons predict that the x components of the electron and
positron fluid velocities must be equal, viz., vex = vpx ≡ vx .
Hence the continuity equation for both the electrons and
positrons reads

∂n

∂t
+ ∂(nvx)

∂x
= 0. (1)

Furthermore, by using n and vx in the x components of the
electron and positron momentum equations, we have

m

(
∂

∂t
+ vx

∂

∂x

)
vx = −eEx − e

c
veyB − kBT

nn2
0

∂n3

∂x
(2)

and

m

(
∂

∂t
+ vx

∂

∂x

)
vx = eEx + e

c
vpyB − kBT

nn2
0

∂n3

∂x
, (3)

where m is the electron or positron mass, e the magnitude of
the electron charge, Ex the x component of the wave electric
field, B the sum of the ambient and compressional (along the
z axis) magnetic fields, c the speed of light in vacuum, kB

the Boltzmann constant, T the common constant temperature
of the electrons and positrons, and n0 the unperturbed plasma
number density. The last term in the right-hand side of Eqs. (2)
and (3) corresponds to the adiabatic equation of state for
the electron and positron pressure P = P0(n/n0)γ , where
P0 = n0kBT is the equilibrium pressure at n = n0, where
γ = CP /CV = (N + 2)/N is the ratio between specific heats
and N is the number of degrees of freedom in the system. We
have chosen N = 1 for one-dimensional compression.

Eliminating Ex from Eq. (2) by using Eq. (3) we have

2m

(
∂

∂t
+ vx

∂

∂x

)
vx = e

c
(vpy − vey)B − 6

kBT

n2
0

n
∂n

∂x
, (4)

which yields(
∂

∂t
+ vx

∂

∂x

)
vx = − B

8πmn

∂B

∂x
− 3

kBT

mn2
0

n
∂n

∂x
, (5)

where we have used Ampère’s law,

∂B

∂x
= −4πen

c
(vpy − vey), (6)

which is valid for compressional electromagnetic waves with
phase velocities much smaller than c.

For our purposes, Faraday’s law reads

∂B

∂t
= −c

∂Ey

∂x
, (7)

where Ey is the y component of the wave electric field.
The y components of the electron and positron momentum

equations are

m

(
∂

∂t
+ vx

∂

∂x

)
vey = −eEy + e

c
vxB (8)

and

m

(
∂

∂t
+ vx

∂

∂x

)
vpy = eEy − e

c
vxB. (9)

Subtracting Eq. (8) from Eq. (9), we have

m

(
∂

∂t
+ vx

∂

∂x

)
(vpy − vey) = 2eEy − 2

e

c
vxB, (10)

which, by using Eq. (6), gives

Ey = vxB

c
− mc

8πe2

(
∂

∂t
+ vx

∂

∂x

) (
1

n

∂B

∂x

)
. (11)

From Eqs. (7) and (11) we then obtain

∂B

∂t
+ ∂(vxB)

∂x
− mc2

8πe2

∂

∂x

(
∂

∂t
+ vx

∂

∂x

)(
1

n

∂B

∂x

)
= 0.

(12)

Equations (1), (5), and (12) are the governing nonlinear
equations for the compressional electromagnetic waves in a
warm e-p magnetoplasma.

Letting n = n0 + n1 and B = B0 + B1, where n1 � n0 and
B1 � B0, we first linearize the system of Eqs. (1), (5), and
(12) and combine the resultant equations to obtain the wave
equation[(

1 − λ2
e

∂2

∂x2

) (
∂2

∂t2
− 3V 2

T

∂2

∂x2

)
− C2

A

∂2

∂x2

]
B1 = 0,

(13)

where λe = c/ωpe is the electron/positron skin depth,
ωpe = (8πn0e

2/m)1/2 the electron plasma frequency, VT =
(kBT /m)1/2 the thermal speed, and CA = B0/

√
8πn0m the

Alfvén speed in the e-p plasma.
Assuming that B1 is proportional to exp(−iωt + ikx),

where ω and k are the frequency and the wave number,
respectively, we next Fourier transform Eq. (13) to obtain

ω2 = 3k2V 2
T + k2C2

A

1 + k2λ2
e

. (14)

We note that the frequency of the compressional electromag-
netic wave, given by Eq. (14), differs from the frequencies of
the CPEM and EPEO waves in a magnetized pair plasma. It
should be stressed that the CPEM wave does not accompany a
density perturbation, contrary to the EPEO and compressional
electromagnetic waves which have density fluctuations.

Let us now investigate the properties of the nonlinear
compressional electromagnetic pulses in a warm e-p mag-
netoplasma. For this purpose, we normalize n by n0, B by B0,
vx by the Alfvèn speed CA, and the time and space variables
by ω−1

ce = mc/eB0 and λA = CA/ωce ≡ λe, and we rewrite
Eqs. (1), (5), and (12) as

Dn

dt
+ n

∂vx

∂x
= 0, (15)

Dvx

dt
+ 1

2n

∂B2

∂x
+ 3β

2

∂n2

∂x
= 0, (16)

and

∂B

∂t
+ ∂(vxB)

∂x
− ∂

∂x

[
D

dt

(
1

n

∂B

∂x

)]
= 0, (17)
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FIG. 1. (Color online) The spatial profiles of the normalized
magnetic field B (top panel) and the plasma density n (bottom panel)
for β = 0 and Mach numbers M = 1.2 (dashed curves) and M = 1.5
(solid curves). The amplitude decreases for finite β, for example, for
β = 0.1 and M = 1.2 (dotted curves).

where D/dt = (∂/∂t) + vx∂/∂x and β = V 2
T /C2

A ≡
8πkBn0T/B2

0 .
We now seek solitary pulse solutions of Eqs. (15)–(17)

in a stationary frame ξ = x − Mt , where M = v0/CA is the
Mach number and v0 is the constant propagation speed of the
solitary pulses. Thus, from Eqs. (15), (16), and (17) we have,
respectively,

vx = M(1 − 1/n), (18)

M2

(
1

n
− 1

)
+ 1

2
(B2 − 1) + β(n3 − 1) = 0, (19)

and
∂

∂ξ

(
1

n

∂B

∂ξ

)
− B + n = 0, (20)

where for solitary electromagnetic waves we have imposed the
boundary conditions vx = 0, n = 1, B = 1, and ∂B/∂ξ = 0
at |ξ | = ∞.

III. PROFILES OF SOLITARY PULSES

Numerical solutions of Eqs. (19) and (20) are displayed in
Fig. 1, which shows the profiles of large-amplitude compres-

sional electromagnetic solitary pulses for M = 1.2 and M =
1.5 and for different values of β. It is seen that both the density
and the magnetic field are compressed at the center of the
solitary electromagnetic pulse and that the amplitude increases
with increasing values of M . For finite β, the amplitudes of
the solitary pulses quickly decrease, as can be seen from
the dotted curve for β = 0.1 and M = 1.2. It is found that
compressional solitary electromagnetic pulses only exist in
the range

√
1 + 3β < M < Mmax, where the amplitude goes

to zero as M → √
1 + 3β. The lower limit of M corresponds to

the linear acoustic wave speed at long wavelengths, and hence
the solitary pulses are always superacoustic. The maximum
speed Mmax depends on β. For β = 0, we find numerically
that Mmax = 2, and for M → 2 we find a maximum value of
B → 3 and a pileup of the density at the center of the solitary
pulse in this limit. For finite β, both the magnetic-field and the
plasma-density variations are always finite and decrease for
larger values of β.

IV. SUMMARY AND CONCLUSIONS

In this Brief Report, we have investigated the properties of
large-amplitude compressional electromagnetic pulses propa-
gating perpendicular to the ambient magnetic field in a pair
plasma composed of electrons and positrons. It is found that
solitary electromagnetic pulses can exist within a definite
velocity range between the Alfvénic speed and twice the
Alfvénic speed in our pair plasma. The solitary electro-
magnetic pulses are associated with an enhancement of
both the plasma density and the magnetic field, and they
experience a sharp pileup of the density for speeds ap-
proaching twice the Alfvénic speed. Furthermore, it is found
that a strong localization of pulses occurs in a cold pair
plasma. In conclusion, we stress that the present solitary
pulses can be associated with large-amplitude compressional
electromagnetic disturbances that can occur in nonrelativistic
magnetized pair plasmas, such as those in active galactic
nuclei and in laboratory experiments. Finally, we have to
explore new aspects of nonlinear plasma waves and their role
with regard to electron and positron acceleration in inertial
confinement fusion plasmas and in small-scale laboratory
discharges that are composed of magnetized electrons and
positrons.
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