
  

  

Efficient Computation of the Pareto Boundary 

for the Two-User MISO Interference Channel 

with Multi-User Decoding Capable Receivers 

  

  

Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson 

  

  

Linköping University Post Print 

  

  

  

  

N.B.: When citing this work, cite the original article. 

 

  

©2011 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 

Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson, Efficient Computation of the 

Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding 

Capable Receivers, 2011, Proceedings of the 4th IEEE International Workshop on 

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 241-244. 

  

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70826 
 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70826


Efficient Computation of the Pareto Boundary for
the Two-User MISO Interference Channel with

Multi-User Decoding Capable Receivers
Johannes Lindblom, Eleftherios Karipidis, andErik G. Larsson

Communication Systems Division, Department of ElectricalEngineering (ISY), Linköping University
SE-581 83 Linköping, Sweden.{lindblom,karipidis,erik.larsson}@isy.liu.se

Abstract—We study the two-user multiple-input single-output
(MISO) interference channel for the scenario where the transmit-
ters have perfect channel state information and employ single-
stream beamforming. We assume that the receivers are able
of decoding the data from both transmitters. Hence, the signal
from the interfering transmitter might be decoded, treating the
desired signal as noise, and subtracted from the received signal.
We propose an efficient method for finding the Pareto boundary
of the corresponding achievable rate region. This method has a
complexity which is constant in the number of transmit antennas.

I. I NTRODUCTION

We study a wireless system where two transmitter (TX)
– receiver (RX) pairs, or links, operate simultaneously in
the same frequency band. Hence, the links interfere with
each other. This situation can be modeled via the so-called
interference channel (IC) [1]. The TXs employnT ≥ 2
antennas each, whereas the RXs are equipped with a single
antenna each. Hence, the system is a multiple-input single-
output (MISO) IC [2]. When the RXs treat the interference
as noise, see e.g. [2]–[4], the interference can substantially
degrade the performance of the two links.

The capacity region of the IC is unknown. However, we
know that for strong interference, it is optimal to first decode
the interference treating the desired signal as noise, subtract
the interference, and then decode the desired message [5]. For
weak interference, it is optimal to treat the interference as
additive noise [6]. Motivated by these facts, we assume thatthe
RXs are capable to decode the interference and subtract it from
the received signal before decoding the intended data. Because
of practical reasons, the RXs do the decoding independently.
Moreover, we assume that both TXs have perfect channel state
information and use Gaussian coding with single-stream beam-
forming. Given these assumptions, we obtain an achievable
rate region. Herein, the focus is to efficiently find the so-called
Pareto boundary of this region. The Pareto boundary consists
of the points where we cannot increase the rate of one link
without decreasing the rate of the other.

The MISO IC with multi-user decoding (MUD) capable
RXs was first investigated in [2], where the authors illustrated
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the potential gain of MUD compared to single-use decoding.
In [7], an achievable rate region for the described scenario
was defined. The authors of [7] proposed a parameterization
of the beamforming vectors that achieve Pareto-optimal (PO)
rate points. This parameterization does only yieldnecessary
conditions that the beamforming vectors have toseparately
fulfill. That is, we only get pairs of beamforming vectors
which potentially give PO operating points. In order to find
the Pareto boundary, we have to perform a brute-force search
over all rate pairs. However, the parameterization gives us
some insight. When the RXs treat interference as noise, the
PO beamforming vectors are obtained by trading off between
maximizing the own rate and avoid creating interference. On
the other hand, when the RXs decode the interference, we have
a trade-off between maximizing the own rate and causing extra
interference in order to aid the decoding of the interference.

Contributions: We propose a method thatjointly finds a
pair of beamforming vectors that yield an arbitrary PO point.
We find the Pareto boundary in two steps. First, we compute
the boundaries corresponding to the four scenarios of 1) both
RXs decode the interference, 2) both RXs treat the interference
as additive noise, 3) RX1 decodes the interference while RX2

treats it as noise, and 4) RX1 treats the interference as noise
while RX2 decodes it. Second, the rate region for the MISO
IC with MUD is obtained as the union of these four regions.

Notation: Πx , xx
H/‖x‖2 is the orthogonal projection

onto the vectorx, whereasΠ⊥
x
, I −Πx is the orthogonal

projection onto the orthogonal complement ofx. By x ∼
CN (0, σ2) we say thatx is a zero-mean complex circularly-
symmetric Gaussian random variable with varianceσ2.

II. SYSTEM MODEL

We assume that the transmissions consist of scalar coding
followed by beamforming and that all propagation channels are
frequency-flat. The matched-filtered symbol-sampled complex
baseband data received by RX1 is modeled as1

y1 = h
H
11w1s1 + h

H
21w2s2 + e1. (1)

In (1), h11,h21 ∈ CnT , are the (conjugated) channel vectors
for the links TX1 → RX1 and TX2 → RX1, respectively. We
assume that the channels are perfectly known at the TXs. Also,
w1,w2 ∈ CnT are the beamforming vectors employed by TX1

1Whenever an expression is introduced only with respect to link 1, the
expression for link 2 is obtained by interchanging the indices.



and TX2, respectively,s1, s2 ∼ CN (0, 1) are the transmitted
symbols of TX1 and TX2, respectively, ande1 ∼ CN (0, σ2)
models the receiver noise at RX1.

The achievable rates depend on the received power. Specif-
ically, for RX1 we definep1(w1) , |hH

11w1| to be the power
received from TX1 over the direct channel andq1(w2) ,

|hH
21w2| to be the power received from TX2 over the cross-talk

channel. There is a power constraint that we, without loss of
generality, set to 1 and define the set of feasible beamforming
vectors asW , {w ∈ CnT |‖w‖2 ≤ 1}.

III. A N ACHIEVABLE RATE REGION

In this section, we construct an achievable rate region for
the described scenario. Each pair of beamforming vectors
(w1,w2) and combination of decoding strategies (decode the
interference (d) or treat it as noise (n)) is associated with
maximum achievable rates. We denote these rates, in bits per
channel use (bpcu),Rxy

i (w1,w2), i = 1, 2, wherex and y
stand for the decoding strategiesn or d. For each decoding
strategy, we obtain a rate region by taking the union over all
feasible beamforming vectors, i.e.

Rxy ,
⋃

(w1,w2)∈W2

(Rxy
1 (w1,w2), R

xy
2 (w1,w2)), (2)

where x and y stand for the decoding strategiesn or d.
The maximum achievable rate for each pair of beamforming
vectors(w1,w2) is as follows [7]:

Both RXs treat the interference as noise:When both RXs
treat the interference as noise, link 1 achieves the rate [2]

Rnn
1 (w1,w2) = log2

(

1 + p1(w1)/(q1(w2) + σ2)
)

. (3)

RX1 decodes the interference, RX2 treats it as additive
noise: Since RX1 decodes and subtracts the interference
caused by TX2, it experiences an interference-free signal and
achieves the rate

Rdn
1 (w1) = log2

(

1 + p1(w1)/σ
2
)

. (4)

RX1 will be able to decode interference from TX2 if the rate
of link 2 satisfies

R2 ≤ log2
(

1 + q1(w2)/(p1(w1) + σ2)
)

. (5)

Since RX2 does not decode the interference, the rate of link 2
must also satisfy

R2 ≤ log2
(

1 + p2(w2)/(q2(w1) + σ2)
)

. (6)

The maximum achievable rateRdn
2 (w1,w2) is the minimum

of the right-hand sides of (5) and (6). For link 2, we note that
the maximum achievable rate does not necessarily exploit the
signal-to-interference-plus-noise (SINR) ratio at RX2 to the
full extent. Actually, it might hold back on rate to facilitate
RX1 to decode the signal of link 2. This fact was not exploited
in [2], where the description leads to too restrictive conditions.

RX2 decodes the interference, RX1 treats it as additive
noise: This case is identical toRnd, but with interchanged
indices.

Both RXs decode the interference:Both RXs decode the
interference before decoding their desired signals. When RX1

has decoded the interference from TX2, the desired signal can
be decoded if the rate of link 1 satisfies

R1 ≤ log2(1 + p1(w1)/σ
2). (7)

RX2 can decode the interference caused by TX1 if the rate of
link 1 satisfies

R1 ≤ log2
(

1 + q2(w1)/(p2(w2) + σ2)
)

(8)

So, the maximum achievable rate of link 1,Rdd
1 (w1,w2), is

the minimum of the right-hand sides of (7) and (8).
The achievable rate region:The rate region for the MISO

IC with MUD capability is obtained as

R = Rnn ∪Rdn ∪Rnd ∪Rdd. (9)

We are interested in finding the so-called Pareto boundary of
the regionR. The Pareto boundary consists of PO points,
where Pareto-optimality is defined as follows.

Definition 1. A rate pair(R?
1, R

?
2) ∈ R is Pareto-optimal if

there is no other rate pair(R1, R2) ∈ R with (R1, R2) >
(R?

1, R
?
2). (The inequality is component-wise.)

Note that Def. 1 also includes the horizontal and vertical
sections of the Pareto boundary. Hence the definition defines
weak Pareto-optimality. Graphically, the Pareto boundaryis
the north-east boundary of the region. To find the Pareto
boundary ofR, we first find the Pareto boundaries ofRnn,
Rdn, Rnd, andRdd. Second, we consider as boundary ofR
the boundary of the union ofRnn, Rdn, Rnd, andRdd. For
each of these regions, we do as follows. Let(R?

1, R
?
2) be an

arbitrary point on the Pareto boundary. In order to find this
point, we fix the rate of link 1 atR?

1 and maximizeR2 in
order to getR?

2. Due to the monotonicity of the logarithmic
function, we formulate a SINR optimization problem. We
defineγxy

i (w1,w2) , 2R
xy

i
(w1,w2)−1 to be the SINR needed

to achieveRxy
i (w1,w2). The problem of finding the optimal

γ?
2 for a givenγ?

1 can be formulated as [3]

maximize
(w1,w2)∈W2

γxy
2 (w1,w2), (10)

subject toγxy
1 (w1,w2) = γ?

1 . (11)

The optimal solution of (10)–(11) is the pair of beamforming
vectors(w?

1,w
?
2) enabling(R?

1, R
?
2).

IV. EFFICIENT COMPUTATION OF THEPARETO BOUNDARY

In this section, we propose efficient methods for finding
the boundaries ofRnn, Rdn, Rnd, andRdd. The focus is on
Rdn andRdd. Due to symmetry, the problem of computing the
boundary ofRnd is identical to that of finding the boundary
of Rdn. ForRnn, we have previously proposed two methods.
In [3] we computed an arbitrary point on the boundary via
a sequence of second-order cone (SOC) programs. In [4],
we gave a closed-form parameterization of the beamforming
vectors that yield PO rate points. The methods for finding
Rdn, Rnd, andRdd devised in the sequel are novel.



A. Only One RX Decodes Interference
Here, we consider the boundary of the regionRdn, i.e. the

region consisting of the points where RX1 is able to decode
the interference while RX2 treats it as noise. We insert (4)–(6)
in (10)–(11) and obtain the resulting problem

maximize
γ2∈R+,(w1,w2)∈W2

γ2 (12)

subject to p1(w1)/σ
2 = γ?

1 , (13)

q1(w2)/(p1(w1) + σ2) ≥ γ2, (14)

p2(w2)/(q2(w1) + σ2) ≥ γ2. (15)

This is nonconvex, because (13) is a quadratic equality and
(14), (15) are nonconvex quadratic inequalities parameterized
by γ2. However, in [7] it was shown that the beamforming
vectors that solve (12)–(15) can be parameterized as

w1 = x1
Πh12

h11

‖Πh12
h11‖

+ y1
Π

⊥
h12

h11
∥

∥Π
⊥
h12

h11

∥

∥

, (16)

w2 = x2
Πh22

h21

‖Πh22
h21‖

+ y2
Π

⊥
h22

h21
∥

∥Π
⊥
h22

h21

∥

∥

, (17)

where (xi, yi) ∈ Q , {(x, y)|x, y ≥ 0, x2 + y2 ≤ 1}. We
see thatQ is a quarter disk, which is a convex set. Using the
parameterization (16)–(17), we propose a closed-form solution
of (12)–(15). By using the parameterization (16)–(17), we
note thaty1 does not affectq2(w1) and y2 does not affect
p2(w2). Hence, we can ignore the complex phases ofh

H
12w1

andhH
22w2. Also, we see that the inner productshH

11w1 and
h
H
21w2 are real and positive. Then, we definet ,

√
γ2, insert

(13) in (14) and equivalently write (12)–(17) as

maximize
t∈R+,(xi,yi)∈Q,i=1,2

t (18)

subject to αx1 + α̃y1 =
√

γ?
1σ

2, (19)

β2x2 + β̃2y2/
√

(γ?
1 + 1)σ2 ≥ t, (20)

g22x2/
√

g212x
2
1 + σ2 ≥ t. (21)

The coefficients in (18)–(21) are defined in Tab. I. We solve
(18)–(21) in two steps. First, we solve for(x1, y1) and we call
the optimal solution(x?

1, y
?
1). We note thatx1 and y1 only

appear in constraints (19) and (21). We make the left-hand
side of (21) as large as possible by minimizingx1 subject to
the constraint (19):

minimize
(x1,y1)∈Q

x1 (22)

subject to αx1 + α̃y1 =
√

γ?
1σ

2. (23)

Second, we insert the optimal solutionx?
1, y

?
1 of (22)–(23) into

(18)–(21) and obtain

maximize
t∈R+,(x2,y2)∈Q

t (24)

subject to β2x2 + β̃2y2/
√

(γ?
1 + 1)σ2 ≥ t, (25)

g22x2/
√

g212(x
?
1)

2 + σ2 ≥ t. (26)

α , ‖Πh12
h11‖, α̃ ,

∥

∥Π
⊥
h12

h11

∥

∥

β1 , ‖Πh11
h12‖, β̃1 ,

∥

∥Π
⊥
h11

h12

∥

∥

β2 , ‖Πh22
h21‖, β̃2 ,

∥

∥Π
⊥
h22

h21

∥

∥

gij , ‖hij‖, i, j = 1, 2

TABLE I
DEFINITION OF CONSTANTS.

The solutions of (22)–(23) and (24)–(26) are summarized in
the following proposition.

Proposition 1. The optimal solution(x?
1, y

?
1) of (22)–(23) is

x?
1 = max

{

0,
1

g211

(

α
√

γ1?σ2 − α̃
√

g211 − γ1?σ2

)}

, (27)

y?1 =

{

√

γ1?σ2/α̃, x?
1 = 0,

√

1− (x?
1)

2, otherwise.
(28)

Then, the optimal value of(24)–(26) is given as

γ2
? =















g222/((x
?
1g12)

2 + σ2), a ≤ b,

g221/(σ
2(γ?

1 + 1)), ab > b2 + c2

g222c
2

((x?
1g12)

2 + σ2)((a− b)2 + c2)
, otherwise,

(29)
for

x?
2 =











1, a ≤ b,

b/
√
b2 + c2, ab > b2 + c2

c/
√

c2 + (a− b)2, otherwise,

(30)

y?2 =
√

1− (x?
2)

2 (31)

where










a , g22/
√

(x?
1)

2g212 + σ2,

b , β2/
√

σ2(γ?
1 + 1),

c , β̃2/
√

σ2(γ?
1 + 1).

(32)

The optimal(w?
1,w

?
2) is obtained by inserting(27)–(28) and

(30)–(31) into (16)–(17).

Prop. 1 provides a scheme for evaluating the Pareto bound-
ary quickly and exactly, by providingγ?

2 as an explicit function
of γ?

1 , in closed-form. In order to find the entire boundary,
we varyγ?

1 over the interval[0, g211/σ
2]. Note that the upper

bound,g211/σ
2, is the largest value thatp1(w1)/σ

2 can assume
whenw1 ∈ W and corresponds to the rightmost segment of
the Pareto boundary. We note that once the constants in Tab. I
are computed, the complexity is constant with respect to the
number of transmit antennas. From Prop. 1 we note that TX2

will always use full power at the Pareto boundary, whereas
TX1 might use less than full power. This was proven in [7].

B. Both RXs Decode Interference

Here we consider the boundary of the regionsRdd, i.e.
the region consisting of the points where both RX1 and RX2
decode the interference. We insert (7)–(8) in (10)–(11) and
obtain the resulting problem



maximize
γ2∈R+,(w1,w2)∈W2

γ2 (33)

subject to p1(w1)/σ
2 ≥ γ?

1 , (34)

q2(w1)/(p2(w2) + σ2) ≥ γ?
1 , (35)

p2(w2)/σ
2 ≥ γ2, (36)

q1(w2)/(p1(w1) + σ2) ≥ γ2. (37)

This is a nonconvex problem, but the beamforming vectors
that solve it can be parameterized as [7]

wi = xi

Πhii
hij

‖Πhii
hij‖

+ yi
Π

⊥
hii

hij
∥

∥Π
⊥
hii

hij

∥

∥

(38)

for i, j = 1, 2 and j 6= i, where(xi, yi) ∈ Q. Inserting (38)
in (33)–(37) yields the equivalent optimization problem

maximize
t∈R+,(xi,yi)∈Q,i=1,2

t (39)

subject to g11x1 ≥
√

γ?
1σ

2, (40)

β1x1 + β̃1y1 ≥
√

γ?
1 (g

2
22x

2
2 + σ2), (41)

g22x2 ≥ σt, (42)

β2x2 + β̃2y2 ≥ t
√

g211x
2
1 + σ2. (43)

The coefficients in (39)–(43) are defined in Tab. I. The
objective function (39) and the constraints (40) and (42) are
linear in the optimization variables. The setQ is convex.
Constraint (41) defines a SOC. However, (43) is a SOC
constraint parameterized byt. So, we solve (39)–(43) by
bisection overt [8, Ch. 4]. An upper bound,U , ont is obtained
by setting γ?

1 = 0 and solving (39)–(43). Then, we have
x?
1 = y?1 = 0 and (43) is a linear constraint. We set the lower

bound toL = 0 and sett := (U + L)/2. For t, we solve the
following convex SOC feasibility problem.

find
(xi,yi)∈Q, i=1,2

(x1, y1, x2, y2) (44)

subject to g11x1 ≥
√

γ?
1σ

2, (45)

β1x1 + β̃1y1 ≥
√

γ?
1 (g

2
22x

2
2 + σ2), (46)

g22x2 ≥ σt, (47)

β2x2 + β̃2y2 ≥ t
√

g211x
2
1 + σ2. (48)

If (44)–(48) is feasible we setL := t, otherwise, we set
U := t. We iterate this procedure until convergence. Typ-
ically, a handful of iterations is needed. We get the opti-
mal beamforming vectors(w?

1,w
?
2), by inserting the opti-

mal solution (x?
1, y

?
1 , x

?
2, y

?
2) into (38). In order to find the

entire boundary, we letγ?
1 go from 0 to the maximum of

min{p1(w1), q2(w1)}/σ2 for w1 ∈ W . Once the constants in
Tab. I are computed, the complexity of (44)–(48) is constant
with respect to the number of transmit antennas. In [7] it was
proven that the TXs might not necessarily use the maximum
available power at the Pareto boundary. However, it is easy to
verify that at least one TX uses maximum power.
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Fig. 1. Example of regions fornT = 3 andσ2
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V. NUMERICAL EXAMPLE AND CONCLUSION

In Fig. 1, we illustrate the rate regionsRnn, Rdn, Rnd,
and Rdd for one realization of the channels, wherehij ∼
CN (0, I), i, j = 1, 2. In this specific example, we see that
Rdn constitutes almost the entire rate regionR. It is a typical
result that the union of the two regions obtained when one
RX decodes interference (Rdn and Rnd) is larger than the
regionRdd obtained when both RXs decode interference. The
reason for whyRdd is not the largest region is that in order to
decode the interference we need extra power over the cross-
talk channel. This comes at the cost of decreased power over
the direct channel. So, when both RXs decode interference
before decoding the desired signal, they might experience low
power received from the direct channel. This implies low
achievable rates.

In this paper we proposed an efficient method for finding
the Pareto boundary of the rate region for the MISO IC with
MUD capable receivers. The method is efficient in the sense
that it has a complexity that is constant with respect to the
number of transmit antennas. Also, the boundary can partly
be found in closed form. The merit of the proposed method,
compared to the previously known methods, is that it avoids
the brute-force search over all feasible beamforming vectors.
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