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Robust Joint Optimization of Nonregenerative
MIMO Relay Channels with Imperfect CSI

Ebrahim A. Gharavol and Erik G. Larsson
Division of Communication Systems,

Electrical Engineering Department (ISY)
Linköping University, 581 83 Linköping, Sweden

Abstract—In this paper, we deal with the problem of joint
optimization of the source precoder, the relay beamformer and
the destination equalizer in a nonregenerative relay network with
only a partial knowledge of the Channel State Information (CSI).
We model the partial CSI using a deterministic norm bounded
error model, and we use a system-wide mean square error perfor-
mance measure which is constrained based on the transmit power
regulations for both source and relay nodes. Most conventional
designs employ the average performance optimization, however,
we solve this problem from a worst-case design perspective.
The original problem formulation is a semi-infinite triline ar
optimization problem which is not convex. To solve this problem
we extend the existing theories to deal with the constraints
which are semi-infinite in different independent complex matrix
variables. We show that the equivalent approximate problemis
a set of linear matrix inequalities, that can be solved iteratively.
Finally simulation results assess the performance of the proposed
scheme.

I. I NTRODUCTION

Relay networks are known to effectively expand the cover-
age area and increase the signal strength of a typical communi-
cation system. The relay channels are considered in the recent
wireless communication standards like Long Term Evolution
(LTE), LTE-Advanced (LTE-A), and WiMAX. To best exploit
the diversity of such a system equipped with multiple antennas,
beamforming process is a promising method. To implement the
beamforming process, the Channel State Information (CSI)
plays a dominant role, and therefore it is conventionally
assumed that the CSI is perfectly known at both the transmit
and the receive stations. However, this assumption is not a
practical one, due to the erroneous channel estimations and
the limited feedback mechanism between the receive and the
transmit sides. It is not practically possible to acquire perfect
CSI and dispatch it to the network nodes.

In [1]-[3] the problem of the robust beamforming is studied
for different network configurations and with different assump-
tions. These papers are mostly concerning MISO broadcast
channels. In [4]-[6] the problem of beamforming in half duplex
relay channels are considered. Distributed relay beamforming
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is considered in [4] and three different half-duplex beamform-
ing problems are formulated and subsequently their solutions
are provided in terms of closed form solutions or via convex
optimization. The concept of general rank beamforming is
introduced in [5] to solve the beamforming problem in a relay
network with multiple antennas employed only in the relay
node. Soft and hard interference cancellation methods which
are important for all types of relay networks are presented
in [6]. This work shows that the subspace computation and
the generalized waterfilling methods are essential in the relay
beamforming.

The problem of robust beamforming is considered in [7]-
[11]. In [7], the problem of robust beamforming is solved
for single antenna transmit and receive stations with multi-
ple single antenna relay nodes. The CSI is assumed to be
norm bounded, and it is shown that the robust solution is a
Semidefinite Programming (SDP) problem. Zero forcing and
Minimum Mean Square Error (MMSE) based beamforming
for relay assisted downlink transmission is considered in [8]. In
[9] the problem of beamforming for a Multiple Input Multiple
Output (MIMO) relay channel is studied. In this work it is
assumed that there is no direct path between the source and
the destination and it is also assumed that the relay node
perfectly knows the CSI of the channel between the source
and the relay. It is also shown that the robust solution is a SDP.
An MMSE based robust relay design for the relay channel is
introduced in [10]. In this paper it is assumed that the CSI
is impaired by Gaussian noise and an average performance
measure optimization solution based on the quadratic matrix
programming is proposed. Finally [11] extends the general
rank precoding design to the case with uncertain CSI.

In this paper we consider a half-duplex relay with multiple
antennas at the source, the relay node and the destination.
The CSI is impaired with a norm bounded error matrix, and
we assume that there is a direct link between the source and
the relay station. We use a worst case analysis basis to study
the system. We extend the current tools to be applicable to
constraints with more that one uncertain variables. The robust
solution finally would be a set of Linear Matrix Inequalities
(LMI’s) here. Our work is a direct successor of [7] and [9]
and generalize them in different directions.

In this paper the following notations are used: Boldfaced
letters are used to show vectors or the matrices while scalar



Fig. 1. OWRC Signal Flow Graph

variables or constants are shown with no specific format-
ting. The field of the complex numbers, the field of then-
dimensional complex-valued vector spaces and the field of
the m × n complex-valued matrices are denoted usingC,
Cn and Cm×n, respectively. For any vectorx or for any
matrix X, ‖x‖ and ‖X‖F denote the Euclidean and the
Frobenius norms of that vector or matrix, respectively. The
positive semidefinite matrixX is denoted usingX � 0.
To show a vertically concatenated vectorized version of a
matrix, vec [], to show a vertical concatenation of a set of
matrices to build a taller block matrix,MAT [], and to show the
block diagonal concatenation of a set of matricesblkdiag [. . . ]
are used, respectively. Finally,Ex [f(x)] is the mathematical
expectation off(x) with respect to the stochastic variablex.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A wireless relay system in which the source, the relay and
the destination nodes are equipped with multiple antennas is
depicted in Fig. 1. In this system, to initiate a half-duplex
communication service, two distinct time slots are required. In
the first time slot, the source node broadcasts its data to reach
to both the relay and the destination nodes, and in the second
slot, the relay node transmits the amplified signal towards the
destination. By means of this relaying process, the Signal to
Noise Ratio (SNR) at the destination is improved and thus
the destination node is helped to better decode its received
signal. To transmitS independent streams of zero-mean, unit-
variance data (x ∈ CT ) with independent elements toward
the destination, the source node is equipped withT transmit
antennas. The destination is equipped withR receive antennas,
while the relay hasr and t receive and transmit antennas,
respectively. To better compensate the fading channel, the
source node precodes the data using a precoding matrix
P ∈ CT×S . The precoded data is sent over two wireless
fading channels, namelyF ∈ CR×T andG ∈ Cr×T . At the
relay node, the received signal is amplified usingW ∈ Ct×r

and the resultant signal is transmitted to the destination in the
next time slot over the wireless channelH ∈ CR×t. At the
destination, after appropriately combining the received signals
and decoding using a linear decoderD ∈ CS×R, the received
signal is as follows:

x̂ = (DFP +DHWGP )x+DHWu+Dn, (1)

whereu ∈ Cr andn ∈ CR are the additive zero-mean noise
signals with independent elements andσ2

u andσ2
n variances,

respectively. Due to the limited feedback between the nodes,

it is assumed that the nominal value of the CSI is known to
the system. In other words, the CSI follows the norm bounded
error model:

F ∈ F = {F̃ +∆F | ‖∆F ‖F ≤ δF }, (2a)

G ∈ G = {G̃+∆G | ‖∆G‖F ≤ δG}, (2b)

H ∈ H = {H̃ +∆H | ‖∆H‖F ≤ δH}. (2c)

whereF̃ , G̃, andH̃ are the fixed nominal value of the CSI for
each of the channels and∆F , ∆G, and∆H , are the random
norm-bounded variations (uncertainties) around these nominal
values.

In this paper, our goal is to jointly optimize the source
precoder, the relay beamformer, and the destination equalizer.
To do so, we use the system-wide MSE as the performance
measure of the system, and we restrict the optimization
problem with the power budgets of both the source and the
relay nodes. By employing a worst-case design approach,
the optimal solutions will be valid for all the realizationsof
the CSI that satisfy (2). To facilitate the computation of the
system-wide MSE, and the transmit powers of the source and
the relay nodes, we use the following lemma.

Lemma 1: For any set of zero-mean, independent and iden-
tically distributed random vectors with independent elements
and individual variances ofExi

[x∗
ixi] = σ2

i we have

E{xi}i
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Proof: It is clear that
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By plugging the following

Exi,xj

[

xix
∗
j

]

=

{

σ2
i I i = j,

0 i 6= j,
(4)

into the expectation, we get
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σ2
i tr [A

∗
iAi] (5)

which proves the lemma.
Based on this Lemma 1, the system wide MSE (MSE), and

the transmit powers of the source (TxPs) and the relay (TxPr)



nodes are defined as follows:

MSE , Ex,u,n

[

‖x̂− x‖2
]

(6a)

= ‖DFP +DHWGP − I‖2F + σ2
u‖DHW‖2F

+ σ2
n‖D‖

2
F (6b)

TxPs , Ex

[

‖Px‖22
]

(6c)

= ‖P ‖2F (6d)

TxPr , Ex,u

[

‖WGPx+Wu‖22
]

(6e)

= ‖WGP ‖2F + σ2
u‖W‖

2
F (6f)

Remark 1: It is clear that theMSE is a multilinear function
of the design variables, whileTxPs andTxPr are convex (lin-
ear) and biconvex functions in the same variables, respectively.
�

Using these quantities, the problem formulation in its epi-
graph form will be,

minimize
P ,W ,D,τ≥0

τ (7a)

subject to TxPs ≤ Ps (7b)

TxPr ≤ Pr, ∀G ∈ G (7c)

MSE ≤ τ, ∀F ∈ F,G ∈ G,H ∈ H (7d)

wherePs andPr are the power limits of the source and the
relay nodes.

Remark 2: It is clear that in this robust problem formu-
lation, the last constraints are semi-infinite constraints, i.e.,
they have infinitely many realizations, while the constraint
functions are not simultaneously convex in the design vari-
ables. Both these features make the proposed problem very
hard to solve (a NP-hard problem). Additionally, it should be
mentioned that the last constraint is threefold semi-infinite (in
three different and independent variables). �

Remark 3: Clearly if we setδF = δG = δH = 0, F,G and
H would become singleton sets, and these sets are reduced to
the nominal values of the CSI corresponding to each channel.
This case is the perfect CSI scenario which is studied deeplyin
the literature [4]-[6]. We will use this scenario as a benchmark
to compare the performance of the proposed algorithm here.
�
In the following section we choose a two stage mechanism to
simplify the problem (7) to an equivalent problem, and then
we provide an iterative algorithm which solves the equivalent
problem optimally.

III. SOLUTION

In this section, we deal with the nonconvex problem (7)
and convert it into a convex equivalent problem, for which
computationally efficient interior point methods exist. Todo
so, we employ a two stage process: first, we deal with the
semi-infiniteness of the last two constraints of (7) using the
generalized version of Petersen’s lemma for complex valued
matrices, and then we propose an iterative algorithm based on
the ACS, to suboptimally solve the multilinear (nonconvex)
problem. We start with the last constraint which, based on
Remark 2, is multilinear in the design variables and threefold

semi-infinite. TheTxPr constraint needs a similar procedure
which is not repeated here. To deal with the MSE constraint,
first using ‖Ai‖F = ‖vec [Ai] ‖2, the MSE is recast as
follows:

MSE =

∥

∥

∥

∥

∥

∥





vec [DFP ] + vec [DHWGP ]− vec [I]
σuvec [DHW ]

σnvec [D]





∥

∥

∥

∥

∥

∥

2

(8)

After inserting the form of (2) into the above equation, and
neglecting the higher order uncertainty terms1, it is possible
to recast the MSE asMSE , ‖µ‖2 where

µ = µ̃+MF vec [∆F ] +MG vec [∆G] +MH vec [∆H ] ,
(9)

where

µ̃ =









vec
[

DF̃P
]

+ vec
[

DH̃WG̃P
]

− vec [I]

σuvec
[

DH̃W
]

σnvec [D]









(10a)

and subsequently

MF =

[

P T ⊗D

0

]

∈ C
S′×RT , (10b)

MG =

[

P T ⊗DH̃W

0

]

∈ C
S′×rT , (10c)

MH =





(WG̃P )T ⊗D

σuW
T ⊗D

0



 ∈ C
S′×Rt, (10d)

whereS′ = S(S+R+r). Using the Schur complement lemma
[12], the MSE constraint can be recast as the following LMI:
[

τ µ̃∗

µ̃ I

]

� −
∑

ζ∈{F,G,H}

[

0 (M ζvec [∆ζ ])
∗

M ζvec [∆ζ ] 0

]

(11)

To proceed with this constraint, we formally generalize the
Petersen’s Lemma to multiple complex valued uncertainties
[13]-[14]. It is noteworthy that the complex valued versionof
this lemma for a single uncertainty is proved in [15].

Lemma 2: Given matricesA and {P i,Qi}
N
i=1 with A =

A∗, the semi-infinite LMI of the form of

A �

N
∑

i=1

(P ∗
iXiQi +Q∗

iX
∗
iP i) , ∀i,Xi : ‖Xi‖ ≤ κi;

holds if and only if there exist nonnegative real numbers
ǫ1, · · · , ǫN such that
[

A−
∑N

i=1 ǫiQ
∗
iQi MAT

[

{−κiP i}
N
i=1

]∗

MAT
[

{−κiP i}
N
i=1

]

blkdiag
[

{ǫiI}
N
i=1

]

]

� 0. (12)

Proof: The proof is omitted due to length constraints.

1
D∆HW∆GP has a very small norm relative to the other terms

and introduces a nonlinearity to the system which makes it mathematically
intractable.



Using Lemma 2, and by appropriately choosing its parameters
as follows,

A =

[

τ µ̃∗

µ̃ I

]

∈ C
(1+S′)×(1+S′)

Q1 = Q2 = Q3 =
[

−1 0
T
]

∈ C
1×(1+S′)

P 1 =
[

0 M∗
F

]

∈ C
RT×(1+S′),

P 2 =
[

0 M∗
G

]

∈ C
rT×(1+S′),

P 3 =
[

0 M∗
H

]

∈ C
Rt×(1+S′),

X1 = vec [∆F ] ,X1 = vec [∆G] ,X3 = vec [∆H ] ,

It is possible to rewrite the MSE constraint as the following
finite(single) LMIs:





[

τ −
∑3

i=1 ǫi µ̃∗

µ̃ I

]

Υ
∗

Υ blkdiag
[

{ǫiI}
3
i=1

]



 � 0 (14a)

diag [τ, ǫ1, ǫ2, ǫ3] � 0 (14b)

where

Υ =
[

−δFP
T
1 −δGP

T
2 −δHP T

3

]T
. (14c)

Using a similar procedure for the other semi-infinite con-
straint, i.e., theTxPr constraint, it is possible to show that
TxPr = ‖π‖2, where

π = π̃ + PG vec [∆G] , (15a)

π̃ =

[

vec
[

WG̃P
]T

σuvec [W ]
T

]T

, (15b)

PG =
[

(P T ⊗W )T 0
]T

. (15c)

Similarly, it is possible to replace this constraint with the
following single LMI:





[

Pr − ǫ4 π̃∗

π̃ I

]

Π
∗

Π ǫ4I



 � 0, (16a)

ǫ4 ≥ 0, (16b)

where

Π =
[

0 −δG P ∗
G

]

. (16c)

Putting all these equivalent constraints together will result
in the following LMI which replaces (7):

minimize
P ,W ,D,τ

τ (17)

subject to ‖P ‖2F ≤ Ps

diag [τ, ǫ1, ǫ2, ǫ3, ǫ4] � 0




[

Pr − ǫ4 π̃∗

π̃ I

]

Π
∗

Π ǫ4I



 � 0





[

τ −
∑3

i=1 ǫi µ̃∗

µ̃ I

]

Υ
∗

Υ blkdiag
[

{ǫiI}
3
i=1

]



 � 0

The above problem is not a semi-infinite problem, but it is
still nonconvex. Due to biconvex and multilinear structure
of the elements ofΠ and Υ, we resort to an iterative
algorithms derived based on the Alternating Convex Search
(ACS) method, i.e., Algorithm 1.

Algorithm 1
Require: ε (the desired accuracy) andKmax (the maximum

number of iterations)
1: Initialization step: setk ← 0, set the beamformer matrices

randomly:W ←W [0],D ←W [0], and choose arbitrary
τnew ≫ 0.

2: repeat
3: k ← k + 1
4: τold ← τnew
5: Solve (17) to findP .
6: Solve (17) to updateW for fixed P found in the

previous step.
7: Solve (17) to updateD and τnew for fixed P andW

found in the previous steps.
8: until k ≤ Kmax or τnew − τold ≥ ε

The convergence of the above algorithm is inherent from
the ACS method. Since the original problem is not a convex
problem, we may have different solutions due to different
initial matrices. It is easily possible to show that ifδF =
δG = δH = 0 the above problem reduces to problem with full
(perfect) CSI. In that case, (17) becomes a simple SOCP as
follows:

minimize
P ,W ,D,τ

τ (18)

subject to ‖P ‖2F ≤ Ps

‖π̃‖2 ≤ Pr

‖µ̃‖2 ≤ τ

IV. SIMULATION RESULTS

To assess the performance of the proposed algorithm, the
following simulation is done, and the results are summarized
here in this section. The simulation setup is as follows: the
system is used to transferS = 2 streams of independent data
between the source and the destination. The number of trans-
mit and receive antennas in the source, relay and destination
are equal toT = R = t = r = 4. Both source and relay power
budgets are set to be equal toPr = Ps = 1. The convergence
parameters of the algorithm are set toKmax = 1000, and
ε = 10−4. The initial value of the relay precoder and the
destination equalizer matrices are set to be equal to zero. The
set of channels are generated randomly to model Rayleigh
fading channels. In Fig. 2 and Fig. 3 the system-wide MSE
and the transmit power of the relay node for a single typical
run are depicted.

In Fig. 2 the MSE of the relay system is depicted. As can
be seen, the MSE increases proportionally with the increase
of the uncertainty size. It is expected sinceµ is a linear
combination of the uncertainty matrices, and the uncertainty
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size is the norm of these matrices. For smaller noise powers,
the MSE is mostly dominated by the uncertainty terms rather
than the noise terms, and because of that the MSE is more
or less constant with respect to the noise power. However, for
higher noise powers, the MSE is dominated by the noise terms
and on the rightmost part, the MSE is only a function of the
noise power but not the uncertainty size. Since the MSE is
proportional to the uncertainty size, the perfect (full) CSI case
outperforms the other cases with uncertainty, because the full
CSI case is a special case of the partial CSI case withδ = 0.

In Fig. 3 the transmit power of the relay station is depicted.
Unlike the source transmit power constraint which is satisfied
with the equality sign, the relay transmit power constraintis
not satisfied with the equality sign to possibly prevent the
over amplification of the relay noise power to the destination.
As can be seen with the increase of the noise power, and to
maintain a minimum MSE, the transmit power of the relay
station increases. It is clear that the transmit power is also
a function of the uncertainty size. With the increase of the
uncertainty size, the transmit power decreases. It is because

that the MSE increases with the increase of theδ, and again
to maintain the minimum MSE, the transmit power should be
decreased.

V. CONCLUSION

In this paper the problem of the robust joint optimization
of a one-way relay channel is studied. The system-wide MSE-
based problem formulation which is nonconvex in nature, is
considered. An approximate convex solution for this problem
is proposed here. Simulation results of the solution show that
the MSE of the system increases with the increase of the
uncertainty size of the CSI. For the smaller noise powers, the
MSE is dominated by the uncertainty terms while for the larger
noise powers MSE is dominated by the noise terms. Also,
It can be seen that to prevent the amplification of the relay
station noise in the destination, the relay transmitter power is
less than the actual power limit. It can be concluded as well
that the transmit power of the relay station depends on the
uncertainty size: the larger the uncertainty size, the lessthe
transmit power.
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