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Abstract It has recently been pointed out that muscle decomposition influence

muscle force estimates in musculoskeletal simulations. We show analytically and

with numerical simulations that this influence depends on the recruitment criteria.

Moreover, we also show that the proper choices of force normalization factors may
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overcome the issue. Such factors for the minmax and the polynomial criteria are

presented.

Keywords force normalization factor · minmax optimization criteria · muscu-

loskeletal simulation · polynomial optimization criteria

1 Introduction

Recently, Blajer et al. [1] published an interesting article concerning the influence

of selected modeling and computational issues on muscle force estimates. This

topic is important for users of biomechanical simulations because it can serve as

an aid in the development of ”best practice”. Using a planar arm model (com-

prising 2 segments, 2 joints and 8 muscles) Blajer et al. [1] estimated the muscle

forces by inverse dynamics and static optimization. They compared results due to

differences in coordinate systems, muscle paths, muscle decomposition and muscle

recruitment optimization criteria. What we found intriguing was the influence of

muscle decomposition on force estimates. When decomposing the biceps brachii

muscle into two muscles with equal strength (half of the original) having identical

origin and insertion points they found that the load sharing between muscles had

changed. The force estimates changed for all muscles that played the same role

as biceps brachii (arm flexors in this case). This behavior has not been noted in

our own simulation work. But we also note that Blajer et al. [1] used a polynomial

criteria while we normally use a minmax criteria, both described in [2].

The issue of muscle decomposition is important in several respects. For in-

stance, it is common to model muscles as line objects, but many muscles (e.g.

the deltoids) have wide origin or insertion points (or both). The normal solution
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is then to decompose the muscle into several pieces. It seems important to know

whether such modeling practice has unexpected and perhaps unwanted effects.

The aim is to study whether the influence of muscle decomposition on force

estimates depends on the muscle recruitment optimization criteria.

2 Theory

In this section we study a simple small size muscle recruitment model based on

static optimization. Only two muscles are originally involved and one of these are

decomposed into two parts. By comparing in this way a two-muscle model to a

three-muscle one, we are able to deduce how force normalization factors should

be chosen in order to have a correct correlation between the two models. After

an initial discussion of the general case of an arbitrary number of forces, the

minmax criteria and the polynomial criteria are studied separately for the small

size problem.

2.1 Optimization criteria

Two mathematical forms of the cost function that has been used in static opti-

mization muscle recruitment models are, the minmax function

G (fm) = max

[

fm
1

N1
, . . . ,

fm
i

Ni
, . . . ,

fm
n

Nn

]

(1)

and the polynomial one

G (fm) =

n
∑

i=1

(

fm
i

Ni

)p

, (2)

where fm is the muscle force vector, fm
i is individual muscle force, Ni is a normal-

izing factor representing the available strength (maximal force) of each individual
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muscle, n is the number of muscles and p is the power of the polynomial. One of

these functions are to be minimized under constraints of (dynamic) force equilib-

rium. It may be noted that as p goes to infinity the polynomial function should

approach the minmax one.

2.2 Small size problems

minmax – we initially study a simplified problem involving two forces f1 and f2

and a single equilibrium equation. That is,



















min
f1,f2

max

[

f1
N1

,
f2
N2

]

subject to f1 + f2 = r, f1 ≥ 0, f2 ≥ 0,

(3)

where the equation of the constraint is the equilibrium equation and r consists

of inertial and external forces which are considered known at this stage. There is

no lack of generality in not using arbitrary coefficients in front of the forces in

this equation. However, an interpretation of such a simplified case could be that

the two muscles have the same moment arm. The solution of problem (3) is easily

shown to be (assuming r > 0)

f1 =
rN1

N1 +N2
, f2 =

rN2

N1 +N2
.

Next, the second force f2 is replaced by a pair of forces f1
2 and f2

2 with available

strengths N1
2 and N2

2 , respectively, resulting in the following modified problem:



















min
f1,f

1

2
,f2

2

max

[

f1
N1

,
f1
2

N1
2

,
f2
2

N2
2

]

subject to f1 + f1
2 + f2

2 = r, f1 ≥ 0, f1
2 ≥ 0, f2

2 ≥ 0.

(4)
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The solution of this modified problem becomes

f1 =
rN1

N1 +N1
2 +N2

2

, f1
2 =

rN1
2

N1 +N1
2 +N2

2

, f2
2 =

rN2
2

N1 +N1
2 +N2

2

,

so

f1
2 + f2

2 =
r(N1

2 +N2
2 )

N1 +N1
2 +N2

2

,

and we conclude that as long as N2 = N1
2 +N2

2 , it holds that f2 = f1
2 + f2

2 , which

is what we would demand from an appropriated muscle decomposition.

polynomial – as for the minmax objective we formulate and compare the results

of two problems:



















min
f1,f2

[(

f1
N1

)p

+

(

f2
N2

)p]

subject to f1 + f2 = r, f1 ≥ 0, f2 ≥ 0

(5)

and


















min
f1,f

1

2
,f2

2

[(

f1
N1

)p

+

(

f1
2

N1
2

)p

+

(

f2
2

N2
2

)p]

subject to f1 + f1
2 + f2

2 = r, f1 ≥ 0, f1
2 ≥ 0, f2

2 ≥ 0.

(6)

For simplicity it is assumed that N1
2 = N2

2 ≡ N . This implies that problem (6)

becomes symmetric in the two second forces, which can therefore be assumed to

be equal. We set 2f1
2 = 2f2

2 ≡ f and rewrite (6) as follows:



















min
f1,f

[(

f1
N1

)p

+ 2(1−p)

(

f

N

)p]

subject to f1 + f = r, f1 ≥ 0, f ≥ 0.

(7)

Thus, if

N1
2 = N2

2 = 2
1−p

p N2 (8)

problems (5) and (6) are identical and, therefore, f2 = f1
2 + f2

2 .
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In conclusion, for the minmax objective any decomposition of the force nor-

malization factor that sum to the original value gives a behavior that is what one

would expect from the physical interpretation of the problem. For the polynomial

objective, on the other hand, the value of the new normalization factors depends

on the degree of the polynomial, and if one makes the natural choice of taking

values that sum to the original value, one cannot expect to obtain forces that sum

to the original force. Even though these conclusions are here derived for a simple

small size problem, numerical results indicate that they are generally valid.

3 Numerical verification

To verify the force normalization factor (8) in Sec. 2.2, a similar model (Fig. 1) as

the one used in [1] was created in the AnyBody modeling system 4.1 (AnyBody

Technology A/S, Aalborg, Denmark). This software uses non-conventional mus-

culoskeletal inverse dynamics with static optimization, in which the muscle forces

are solved directly from body motion and external forces [3]. The approach uses

a full set of Cartesian co-ordinates for each body segment in the system and the

Newton-Euler equations of motion. Thus, the method used here is not exactly the

same as in [1], but it should behave similarly.

Muscle data can be seen in Table 1 and the complete code can be seen in

Online Resource 1. The two segments are rigid body elements, joints are ideal

hinges and muscles have constant strength (i.e. there is no contraction dynamics).

The simulated movement was arm flexion, generated by driving the shoulder and

elbow joints with constant velocity. Start and end positions can be seen in Fig. 1.
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Table 1: Muscle data

Muscle Strength (N)

m1 :brachioradialis 112.5

m2 :pronator teres 225

m3 :brachialis 375

m4 :biceps brachii 562.5

m41 :biceps brachii - part 1 Nm4/2 or 2(1−p)/pNm4

m42 :biceps brachii - part 2 Nm4/2 or 2(1−p)/pNm4

m5 :triceps brachii - caput longum 375

m6 :triceps brachii - caput mediale+laterale 675

m7 :deltoid extensor part 1125

m8 :deltoid flexor part 1125

(a) Start position (b) End position

Fig. 1: The simulation model
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Two set-ups of the model were created. The original, with one biceps brachii

(m4 ); and the modified, with biceps brachii decomposed into two muscles (m41

and m42 ) having the same origin and insertion points. To verify (8) for the simpli-

fied problem in Sec. 2.2, we first locked the shoulder joint and removed all muscles

except m3 and m4 (or m41 and m42 for the modified set-up). We then used the

full model to verify (8) for a more general case. Simulations were carried out using

cost functions according to (1) and (2), the latter for several values of p.

4 Results and Discussion

As seen in Fig. 2, 3 and 4 the minmax solution do not yield any differences, but

the polynomial one may. Force estimates of all including flexors (as well as the

deltoid extensor (m7 )) and joint reactions change between set-ups when using the

polynomial criteria if not choosing N according to (8). Note that (8) seems to be

generally valid as numerical results from the full model (Fig. 3) are practically

identical between the original set-up and the modified set-up when (8) is used. As

expected, when p grows, the polynomial solutions resemble the minmax solutions.

Interestingly, when p → ∞ in (8), that relation converges to N/2, which is the

correct choice for minmax when decomposing one muscle into two muscle pieces

of equal strength. The discontinuity in Fig. 2 for p = 1 comes from a change in the

numbers of muscles being active. As time increases there is a change from one to

two muscles with non-zero muscle force. Note that when only one muscle is active

the minmax objective is no different from the polynomial objective, which is seen

in the fact that all curves coincide for the initial time interval. There is a similar

situation in Fig. 3 for p = 1, although more complicated.
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(f) minmax

Fig. 2: Muscle force for f2 (original set-up) and f1
2 + f2

2 (modified setup (B) with

N1
2 = N2

2 = N2/2 according to [1] or modified set-up (HK) with N1
2 = N2

2 =

2(1−p)/pN2 according to (8) in Sec. 2.2) at different values of p and minmax for

the simplified problem in Sec. 2.2

There are several ways to construct a cost function in musculoskeletal model-

ing. Muscle force based cost functions are common, but not the only possibility,

see e.g. [4]. In our study, the cost functions are based on muscle activation, i.e.

normalized muscle force. These may be called ”fatigue-like” criteria [5]. The value

of the force normalization factor N is based on muscle physiological cross-section

area and it seems logical to divide the strength of a muscle equal to the num-

ber of pieces, or at least that the new normalization factors would sum to the

original value. But as shown, this only works for the minmax criteria and not

the polynomial criteria. However, if the cost function includes muscle volume scal-

ing in addition to muscle force normalization, the criteria can be characterized
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Fig. 3: Muscle force for biceps brachii, m4 (original set-up) and m41+m42 (mod-

ified setup (B) with Nm41 = Nm42 = Nm4/2 according to [1] or modified set-up

(HK) withNm41 = Nm42 = 2(1−p)/pNm4 according to (8) in Sec. 2.2), at different

values of p and minmax for the full model
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(a) x-direction
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(c) Resultant

Fig. 4: Shoulder joint reactions at p = 2 for original set-up, modified set-up (B)

with Nm41 = Nm42 = Nm4/2 according to [1] and modified set-up (HK) with

Nm41 = Nm42 = 2(1−p)/pNm4 according to (8) in Sec. 2.2 (x- and y-direction

according to Fig. 1)
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as ”effort-like” [5]. According to a review [4], ”fatigue-like” criteria are the most

commonly used within inverse dynamics and static optimization. A notable ex-

ception is [6]. In the case of ”effort-like” criteria, consistent muscle decomposition

would be achieved for p = 1, not for p → ∞ (minmax ). The reason for this is

that N would then be proportional to the muscle volume divided by the muscle

cross-sectional area and a natural decomposition would be N1
2 = N2

2 = N2, i.e.

p = 1 in (8). Nevertheless, when Ackermann and van den Bogert [5] compared

optimiality principles for gait modeling, a cost function corresponding to the min-

max criteria performed better than a cost function corresponding to a polynomial

criteria, regardless of whether volume scaling was included or not (that model did

not comprise any muscle decompositions).

To sum up, this study shows that force estimates may be influenced by muscle

decomposition depending on the recruitment criteria. To overcome this, muscle

decomposition force normalization factors for a minmax and a polynomial criteria

are presented in Sec. 2.2. As Blajer et al. [1] show, there may be several issues

to consider in biomechanical modeling. Having one less issue to worry about may

add confidence in simulation results.

Acknowledgements The authors wish to acknowledge the insightful comments made by the

reviewers.
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// ESM_1.pdf
// AnyScript code, for use with the AnyBody modeling system 4.1

// Model used for the paper "Muscle decomposition and recruitment criteria
// influence muscle force estimates" in the journal Multibody System Dynamics
// DOI 10.1007/s11044-011-9277-4

// L. Joakim Holmberg & Anders Klarbring, Division of Mechanics, 
// Institute of Technology, Linkoping University, Sweden
// Correspondence: joakim.holmberg@liu.se

// Muscle "m4" is biceps brachii while "m41" & "m42" are the new "pair" of 
// biceps brachii with half the strength of the original (or based on p)

Main = {
  
  // The actual body model goes in this folder
  AnyFolder ArmModel = {
    
    // Global Reference Frame
    AnyFixedRefFrame GlobalRef = {
      
      AnyDrawRefFrame DrwGlobalRef = {
        ScaleXYZ = {0.1, 0.1, 0.1};
        RGB = {0,0,0};
      };
      AnyRefNode S = { 
        sRel = {0,0,0}; 
      };
      AnyRefNode m8 = { 
        sRel = {0.05,0,0}; 
        AnyDrawNode drw = {
          Visible = On;
          ScaleXYZ = {0.007, 0.007, 0.007};
          RGB = {0, 0, 0};
        };
      };
      AnyRefNode m7 = { 
        sRel = {-0.05,0,0}; 
        AnyDrawNode drw = {
          Visible = On;
          ScaleXYZ = {0.007, 0.007, 0.007};
          RGB = {0, 0, 0};
        };
      };
      AnyRefNode m4 = { 
        sRel = {0.06,0,0}; 
        AnyDrawNode drw = {
          Visible = On;
          ScaleXYZ = {0.007, 0.007, 0.007};
          RGB = {0, 0, 0};
        };        
      };
      AnyRefNode m5 = { 
        sRel = {-0.06,0,0};
        AnyDrawNode drw = {
          Visible = On;



          ScaleXYZ = {0.007, 0.007, 0.007};
          RGB = {0, 0, 0};
        };        
      };
    };  // Global reference frame
    
    // Segments
    AnyFolder Segs = {
      AnySeg S1 = {
        r0 = {0, 0.3, 0};
        Axes0 =RotMat(-90*pi/180, z);
        Mass = 3.2;
        Jii = {0.001, 0.035, 0.035};
        AnyDrawSeg drw = {
          Opacity = 0.4;
          InertiaScale = 0.5;
        };
        
        AnyRefNode S = {
          sRel = {-0.15,0,0}; 
        };
        AnyRefNode E = {
          sRel = {0.16,0,0}; 
        };
        AnyRefNode m2 = { 
          sRel = {0.12,0,0}; 
        };
        AnyRefNode m8 = { 
          sRel = {-0.08,0,0}; 
        };
        AnyRefNode m7 = { 
          sRel = {-0.08,0,0}; 
        };
        AnyRefNode m3 = { 
          sRel = {0,0,0}; 
        };
        AnyRefNode m1 = { 
          sRel = {0.1,0,0}; 
        };
        AnyRefNode m6 = { 
          sRel = {-0.1,0,0}; 
        }; 
      };  // S1
      
      AnySeg S2 = {
        r0 = {0.3, 0, 0};        
        Mass = 5.2;
        Jii = {0.001,0.022,0.022};
        AnyRefNode E = {
          sRel = {-0.15,0,0};
        };
        AnyRefNode m3 = { 
          sRel = {-0.1,0,0}; 
        };
        AnyRefNode m1 = { 
          sRel = {0.1,0,0}; 
        };



        AnyRefNode m2 = { 
          sRel = {0,0,0}; 
        };
        AnyRefNode m4 = { 
          sRel = {-0.05,0,0}; 
        };
        AnyRefNode m5m6 = { 
          sRel = {-0.20,0,0}; 
        };
        AnyDrawSeg drw = {
          Opacity = 0.4;
          InertiaScale = 0.5;
        };
        
      }; // S2
      
    }; // Segs folder
    
    AnyFolder Jnts = {
      
      //---------------------------------
      AnyRevoluteJoint S = {
        Axis = z;
        AnyRefNode &GroundNode = ..GlobalRef.S;
        AnyRefNode &S1Node = ..Segs.S1.S;
      }; // Shoulder joint
      
      AnyRevoluteJoint E = {
        Axis = z;
        AnyRefNode &S1Node = Main.ArmModel.Segs.S1.E;
        AnyRefNode &S2Node = Main.ArmModel.Segs.S2.E;
      }; // Elbow joint
      
    }; // Jnts folder
    
    AnyFolder Drivers = {
      
      //---------------------------------
      AnyKinEqSimpleDriver ShoulderMotion = {
        AnyRevoluteJoint &Jnt = ..Jnts.S;
        DriverPos = {-110*pi/180};
        DriverVel = {30*pi/180};
        Reaction.Type = {Off};
//        DriverVel = {0}; // "rigifying" the shoulder
//        Reaction.Type = {On}; // "rigifying" the shoulder
      }; // Shoulder driver
      
      //---------------------------------
      AnyKinEqSimpleDriver ElbowMotion = {
        AnyRevoluteJoint &Jnt = ..Jnts.E;
        DriverPos = {70*pi/180};
        DriverVel = {45*pi/180};
        Reaction.Type = {Off};
      }; // Elbow driver
    }; // Driver folder
    
    AnyFolder Muscles = {



      // Simple muscle model with constant strength
      AnyMuscleModel MusMdl1 = {
        F0 = 0.75*150;
      };
      AnyMuscleModel MusMdl2 = {
        F0 = 0.75*300;
      };
      AnyMuscleModel MusMdl35 = {
        F0 = 0.75*500;
      };
      AnyMuscleModel MusMdl4 = {
        F0 = 0.75*750;
      };
      AnyVar p = 2; // used for poly, p=1-5
//      AnyVar p = 1e6; // used to get F0=0.5*strength of m4
      AnyMuscleModel MusMdl412 = {
        F0 = 0.75*750*2^((1-.p)/.p);
      };
      AnyMuscleModel MusMdl6 = {
        F0 = 0.75*900;
      };
      AnyMuscleModel MusMdl78 = {
        F0 = 0.75*1500;
      };
      
      //---------------------------------
      AnyViaPointMuscle m1 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl1;
        AnyRefNode &Org = ..Segs.S1.m1;
        AnyRefNode &Ins = ..Segs.S2.m1;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
      AnyViaPointMuscle m2 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl2;
        AnyRefNode &Org = ..Segs.S1.m2;
        AnyRefNode &Ins = ..Segs.S2.m2;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
      AnyViaPointMuscle m3 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl35;
        AnyRefNode &Org = ..Segs.S1.m3;
        AnyRefNode &Ins = ..Segs.S2.m3;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
//      AnyViaPointMuscle m4 = {
//        AnyMuscleModel &MusMdl = ..Muscles.MusMdl4;
//        AnyRefNode &Org = ..GlobalRef.m4;
//        AnyRefNode &Ins = ..Segs.S2.m4;
//        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
//      };
      //---------------------------------



      AnyViaPointMuscle m41 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl412;
        AnyRefNode &Org = ..GlobalRef.m4;
        AnyRefNode &Ins = ..Segs.S2.m4;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      //---------------------------------
      AnyViaPointMuscle m42 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl412;
        AnyRefNode &Org = ..GlobalRef.m4;
        AnyRefNode &Ins = ..Segs.S2.m4;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
      AnyViaPointMuscle m5 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl35;
        AnyRefNode &Org = ..GlobalRef.m5;
        AnyRefNode &Ins = ..Segs.S2.m5m6;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
      AnyViaPointMuscle m6 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl6;
        AnyRefNode &Org = ..Segs.S1.m6;
        AnyRefNode &Ins = ..Segs.S2.m5m6;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };

      //---------------------------------
      AnyViaPointMuscle m7 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl78;
        AnyRefNode &Org = ..GlobalRef.m7;
        AnyRefNode &Ins = ..Segs.S1.m7;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };
      
      //---------------------------------
      AnyViaPointMuscle m8 = {
        AnyMuscleModel &MusMdl = ..Muscles.MusMdl78;
        AnyRefNode &Org = ..GlobalRef.m8;
        AnyRefNode &Ins = ..Segs.S1.m8;
        AnyDrawMuscle DrwMus = {MaxStress = 2500000;};
      };      
    }; // Muscles folder
    
    AnyForceMomentMeasure ShoulderReaction = {
      AnyForceBase &vad = Main.ArmModel.Jnts.S.Constraints.Reaction;
      AnyRefFrame &var = Main.ArmModel.GlobalRef;
    };
    AnyForceMomentMeasure ElbowReaction = {
      AnyForceBase &vad = Main.ArmModel.Jnts.E.Constraints.Reaction;
      AnyRefFrame &var = Main.ArmModel.Segs.S1.E;
    };
    
  }; // MyModel



  
  // The study: Operations to be performed on the model
  AnyBodyStudy ArmStudy = {
    AnyFolder &Model = .ArmModel;
    Gravity = {0.0, -9.81, 0.0};
    InverseDynamics.Criterion = {
//      Type = MR_Linear; //poly with power 1
      Type = MR_Quadratic; //poly with power 2
//      Type = MR_Polynomial; Power = 3;
//      Type = MR_Polynomial; Power = 4;
//      Type = MR_Polynomial; Power = 5;
//      Type = MR_MinMaxStrict;
    };
    
  };
  
  
};  // Main
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