

Optimum Circuits for Bit Reversal

Mario Garrido Gálvez, Jesus Grajal and Oscar Gustafsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2011 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Mario Garrido Gálvez, Jesus Grajal and Oscar Gustafsson, Optimum Circuits for Bit

Reversal, 2011, IEEE Transactions on Circuits and Systems - II - Express Briefs, (58), 10,

657-661.

http://dx.doi.org/10.1109/TCSII.2011.2164141

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71782

http://dx.doi.org/10.1109/TCSII.2011.2164141
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71782

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS 1

Optimum Circuits for Bit Reversal
Mario Garrido, Member, IEEE, Jesús Grajal and Oscar Gustafsson, Senior Member, IEEE

Abstract—This paper presents novel circuits for calculating the
bit reversal on a series of data. The circuits are simple and consist
of buffers and multiplexers connected in series. The circuits
are optimum in two senses: they use the minimum number of
registers that are necessary for calculating the bit reversal and
have the minimum latency. This makes them very suitable for
calculating the bit reversal of the output frequencies in hardware
FFT architectures.

The paper also proposes optimum solutions for reordering the
output frequencies of the FFT when different common radices
are used, including radix-2, radix-2k, radix-4 and radix-8.

Index Terms—Bit Reversal, FFT, Pipelined Architecture

I. INTRODUCTION

B IT REVERSAL is an algorithm that permutes a set of
indexed data according to a reversing of the bits of the

index [1]. This algorithm is used many times to sort out the
output frequencies of the fast Fourier transform (FFT), which
are usually provided in bit-reversed order.

The bit reversal algorithm has been studied for many years.
Most approaches in the literature propose efficient procedures
for calculating the bit reversal of a set of data stored in a mem-
ory with the aim of minimizing the computation time [2]–[5].
In some cases cache techniques are also considered [6], [7]. As
these approaches carry out a procedure, they are suitable for
calculating the bit reversal in computers or microprocessors.

For in-place FFT hardware architectures [8] memory-based
approaches have also been proposed [9], [10]. They focus on
the design of the address generator.

However, in pipelined FFT hardware architectures [11]–
[14], samples are provided sequentially in a continuous flow.
In this context the calculation of the bit reversal is a different
problem from shuffling data in a memory. On the one hand,
if samples are stored in a memory all input data are available
from the beginning. This is not true for samples arriving in
series. On the other hand, the bit reversal of a continuous
flow of data also provides a continuous flow of data, instead
of writing back the bit-reversed sequence in the memory.
Currently, the bit reversal of a series of data is calculated using
either double buffering [12], [15] or a single memory in which
the memory address is generated in natural and bit-reversed
order, alternatively for even and odd sequences [12], [14], [16].

This paper analyzes the problem of calculating the bit
reversal of a series of data and presents the optimum solution

M. Garrido and O. Gustafsson are with the Department of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden, e-mails:
mariog@isy.liu.se, oscarg@isy.liu.se

J. Grajal is with the Department of Signal, Systems and Radiocommu-
nications, Universidad Politécnica de Madrid, 28040 Madrid, Spain, e-mail:
jesus@gmr.ssr.upm.es

This work was supported by the FPU Fellowship AP2005-0544 of the
Spanish Ministry of Education, the Project TEC2008-02148 of the Spanish
National Research and Development Program, and the Swedish ELLIIT
Program.

to this problem. The solution consists of very simple circuits
with buffers and multiplexers. These circuits are proven to
be optimum in two senses. First, they require the minimum
number of registers, i.e., the bit reversal cannot be calculated
with fewer storage elements. Second, the circuits have the
lowest latency that can be achieved. The theoretical minimum
latency and number of registers for radix-2 were already
discussed in [16]. However, simple circuits that use the lowest
number of registers were not proposed.

Besides, when radices such as radix-4 or radix-8 are used,
the outputs of the FFT are provided in an order different from
bit reversal [10]. These cases are also studied and optimum
circuits for these radices are obtained.

The presented circuits are derived by using the framework
for mapping algorithms to architectures presented in [14]. This
framework has already been used to derive circuits for matrix
transposition and novel FFT hardware architectures [14], [17].
Circuits for bit reversal can also be obtained by using other
approaches such as stride permutations [18]. However, to the
best of the authors’ knowledge no explicit results for bit
reversal have been presented so far.

This paper is organized as follows. Section II briefly reviews
the framework in [14]. Section III introduces the bit reversal al-
gorithm and some consideration for calculating it in hardware.
Section IV uses the framework to derive simple circuits for bit-
dimension permutations on data arriving in series. Section V
presents the optimum circuits for bit reversal and Section VI
extends the results to different radices used in the FFT. Finally,
some conclusions are drawn in Section VII.

II. REVIEW OF THE FRAMEWORK

This section summarizes some key ideas of the framework
presented in [14], which is used to derive the circuits proposed
in this paper. The framework links algorithms to their hardware
architectures, showing the relationship between them. It is
based on the theories of hypercubes [19] and bit-dimension
permutations [20] and can be applied to algorithms that involve
data management, such as matrix transposition or the FFT.

The framework considers an n-dimensional space with
dimensions xn−1 . . . x1x0. Each dimension can only take two
binary values, i.e, xi ∈ {0, 1},∀i. As the number of positions
in the hyperspace is finite, they can be numbered. According
to this, the position of a vector in the hyperspace is defined
as:

P =
n−1∑
i=0

xi2
i (1)

where xi is the value of the i-th component of the vector. It can
be noted that this is equivalent to considering the components
of the vector as a binary number. For instance, the position of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS 2

a vector u1u0u2 is:

P = 22 · u1 + 21 · u0 + 20 · u2 (2)

since x2 = u1, x1 = u0 and x0 = u2. Throughout this paper
the notation P ≡ u1u0u2 will be used, where the symbol (≡)
relates the decimal and binary representations of a number.

The position can change via bit-dimension permutations.
For instance, the permutation σ(u2u1u0) = u0u1u2 changes
dimensions x2 and x0. This means that data initially in
position P0 ≡ u2u1u0 move to position P1 ≡ u0u1u2.

Finally, algorithms operate on indexed data. The index is
represented by I ≡ bn−1bn−2 . . . b0. The framework allows
the index and position of the data to be known simultaneously,
which creates the link between the algorithms and the architec-
tures. For example, if P ≡ b0b2b1, the number of dimensions
is n = 3. Thus, for I = 5 ≡ 101, b2 = 1, b1 = 0 and b0 = 1,
so its positions is P (5) ≡ b0b2b1 = 110 ≡ 6.

III. THE BIT REVERSAL

The bit reversal of N = 2n indexed data is an algorithm
that reorders the data according to a reversing of the bits
of the index [1]. This means that any sample with index
I = bn−1 . . . b1b0 moves to the place BR(I) = b0b1 . . . bn−1.
Note that the bit reversal is an inversion operation, i.e.,
BR(x) = BR−1(x). Therefore, if data are in natural order, the
bit reversal algorithm obtains them in bit-reversed order and
viceversa. For instance, the bit reversal of (0, 1, 2, 3, 4, 5, 6, 7)
is (0, 4, 2, 6, 1, 5, 3, 7) and the bit reversal of the latter set is
the former.

For a hardware circuit that receives a series of N data in
natural order, the bit reversal of the data is calculated by the
permutation:

σ(un−1, . . . , u1, u0) = u0, u1, . . . , un−1 (3)

Due to the inversion property of bit reversal, the same permu-
tation applies to sorting out a sequence in bit-reversed order,
as desired for the output frequencies of the FFT.

IV. CIRCUITS FOR BIT-DIMENSION PERMUTATION OF
SERIAL DATA

Any permutation can be broken down into a series of ele-
mentary bit-exchanges [21], which are bit-dimension permu-
tations that only interchange two dimensions. In this section,
circuits for performing elementary bit-exchanges on serial data
are derived using the framework presented in Section II. These
circuits are desired to be very simple in order to reduce the
hardware complexity. The proposed circuits can be combined
in order to carry out any bit-dimension permutation on serial
data and are applied to the design of low-complexity circuits
for bit reversal in the following sections.

Let us consider N = 2n data in initial position P0 ≡
un−1, un−2, . . . , u0, i.e., xi = ui, ∀i. According to this, an
elementary bit-exchange of two dimensions xj and xk, j > k,
consists of moving each sample in the input position P0 to the
output position P1 where:

P0 ≡ un−1, . . . , uj+1, uj , uj−1, . . . , uk+1, uk, uk−1, . . . , u0

P1 ≡ un−1, . . . , uj+1, uk, uj−1, . . . , uk+1, uj , uk−1, . . . , u0

(4)

Fig. 1. Basic circuit for the permutation of serial dimensions.

Therefore, samples for which xj = xk will remain in the
same position, since they fulfill P1 = P0. Conversely, if xj ̸=
xk, the input position corresponds to one of these options:

P0A ≡ un−1, . . . , uj+1, 0, uj−1, . . . , uk+1, 1, uk−1, . . . , u0

P0B ≡ un−1, . . . , uj+1, 1, uj−1, . . . , uk+1, 0, uk−1, . . . , u0

(5)
If the initial position is P0 = P0A, the elementary bit-exchange
moves the sample to P1 = P0B . On the other hand, if P0 =
P0B the output position will be P1 = P0A. Therefore, pairs
of samples whose position only differ in dimensions xj and
xk must be swapped. As a result, an elementary bit-exchange
changes the position of half of the N samples, i.e., those for
which xj ̸= xk. The rest of the samples are unaffected by the
permutation and keep their positions.

In a hardware circuit where samples arrive serially, the
position can be defined so that it is equal to the order of
arrival [14]. Thus, each sample in position P0 arrives on time
t = P0, where P0 = 0 is the position of the first sample and
P0 = 2n − 1 is the position of the last one. According to this,
pairs of input samples that must be interchanged are separated
a number of clock cycles equal to:

∆t = P0B − P0A = 2j − 2k (6)

Although many pairs of samples have to be permuted, it
is important to realize that ∆t is constant for all pairs of
data. Note that P0A and P0B only differ in dimensions xj

and xk, leading to the constant value in (6). Consequently,
the permutation of serial dimensions consists of delaying
some samples and moving other samples forward, always the
same number of clock cycles. Furthermore, L = ∆t registers
are necessary for carrying out the delay. Indeed, this is the
minimum number of delays that makes the circuit causal and,
thus, implementable.

The circuit that carries out this kind of permutation is shown
in Fig. 1. It consists of a buffer of length L = ∆t and two
multiplexers controlled by the same control signal, S. The
control signal and the length of the buffer depend on the serial
dimensions that are permuted. In a general case, if data arrive
in series and σ is an elementary bit-exchange of dimensions
xj and xk, i.e., σ : xj ↔ xk, the total number of delays of
the circuit is:

D(σ) = L = 2j − 2k (7)

and the control signal is obtained as:

S = xj OR xk (8)

Note that S = 0 only if xj = 1 and xk = 0, i.e., when a
sample in position P0B is at the input of the circuit. At the
same time, the sample P0A = P0B − ∆t, which arrived ∆t
cycles before, is at the output of the buffer. As S = 0 both

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS 3

TABLE I
TIMING DIAGRAM OF THE PERMUTATION σ(u2u1u0) = u2u0u1 .

Time Input Index Buffer Control Output Index
(cycles) Dec. Bin. (L = 1) (S) Dec. Bin.

0 0 000 - 1 - -
1 1 001 0 1 0 000
2 2 010 1 0 2 010
3 3 011 1 1 1 001
4 4 100 3 1 3 011
5 5 101 4 1 4 100
6 6 110 5 0 6 110
7 7 111 5 1 5 101
8 - - 7 1 7 111

samples are interchanged. Otherwise, S = 1 and data are not
permuted.

For example, the permutation σ(u2u1u0) = u2u0u1 inter-
changes dimensions x1 and x0. According to (7) and (8), the
circuit in Fig. 1 requires L = 1 register in order to carry out the
permutation and the control signal is S = x1 OR x0. Table I
shows the timing diagram of the circuit. The input sequence
arrives in natural order, i.e., P0 ≡ b2b1b0, and the position of
the outputs is P1 ≡ b2b0b1. When S = 1 samples pass through
the buffer. On the other hand, when S = 0 the input sample
passes directly to the output of the circuit and the output of
the buffer is fed back to the input. From the timing diagram
it can be observed that outputs are provided one clock cycle
after the arrival of the inputs, so the latency is equal to L.
The binary representation of the input and output indexes is
included in Table I. This allows us to confirm that samples
whose indexes differ in bits b1 and b0 have been permuted.

Finally, although the description of the circuits has been
done in terms of registers or delay elements, it is important to
realize that a buffer can be implemented in hardware in many
different ways. One option is to use FIFOs. Besides, a buffer
can be implemented by a memory whose reading address is
delayed with respect to the writing address. In each particular
case the most suitable option can be chosen depending on the
technology used and the length of the buffer.

V. OPTIMUM CIRCUITS FOR BIT REVERSAL

As has been said, any permutation can be broken down
into a series of elementary bit-exchanges. For the case of bit
reversal, the permutation σ in equation (3) can be carried out
by exchanging each pair of dimensions xi and xn−1−i.

On the one hand, if the length of the sequence is an even
power of 2, then i ∈ [0, n/2− 1], leading to:

σ = σn/2−1 ◦ . . . ◦ σ1 ◦ σ0 (9)

where (◦) represents a function composition and σi inter-
changes dimensions xi and xn−1−i, i.e,

σi(un−1, . . . , un−i, un−1−i, . . . , ui+1, ui, . . . , u0) =
= un−1, . . . , un−i, ui, . . . , ui+1, un−1−i, . . . , u0

(10)

which can be also represented as:

σi : xi ↔ xn−1−i (11)

(a)

(b)

Fig. 2. Circuits for the bit reversal of a 16-point sequence.

(a) Inputs in natural order (b) Inputs in bit-reversed order

Fig. 3. Data shuffling for the bit reversal of a 16-point sequence.

It can be noted that the order in which the permutations σi

are applied can be arbitrarily chosen, since each of them oper-
ates on dimensions different to those of the other permutations.
For instance, σ can also be calculated as:

σ = σ0 ◦ σ1 ◦ . . . ◦ σn/2−1 (12)

As each permutation σi interchanges dimensions xi and
xn−1−i, the number of registers of σi is:

D(σi) = 2n−1−i − 2i (13)

and, thus, the total number of registers is:

D(σ) =

n/2−1∑
i=0

D(σi) = 2n−(2n/2+1−1) = (
√
N−1)2 (14)

The circuit that calculates the bit reversal of a 16-point
sequence is shown in Fig. 2(a). It carries out the permutation
σ(u3u2u1u0) = u0u1u2u3 in two stages that perform the
elementary bit-exchanges σ0 : x3 ↔ x0 and σ1 : x2 ↔ x1,
respectively. For each stage the control signals are obtained
from equation (8) and the number of registers is calculated
according to equation (7) or (13), being:

D(σ0) = 23 − 20 = 7
D(σ1) = 22 − 21 = 2

(15)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS 4

Fig. 4. Circuit for the bit reversal of a 32-point sequence.

Figure 3 shows how the circuit in Fig. 2(a) shuffles the
samples. Figure 3(a) represents the case of inputs arriving in
natural order, whereas in Fig. 3(b) the shuffling is applied
to sort out an input sequence in bit-reversed order. It can
be observed that σ0 and σ1 only exchange samples whose
positions differ in 7 and 2, respectively, as happens in the
circuit in Fig. 2(a). Besides, as the order of the elementary bit-
exchanges can be arbitrarily chosen, σ1 can also be calculated
before σ0. This solution is shown in Fig. 2(b).

On the other hand, if the length of the sequence is an odd
power of 2 the problem is slightly different. In this case the
number of dimensions is odd and the intermediate one is not
permuted. According to this, the bit reversal is calculated by
permuting each pair of dimensions xi and xn−1−i for i ∈
[0, (n− 3)/2], leading to:

σ = σ(n−3)/2 ◦ . . . ◦ σ1 ◦ σ0 (16)

In this case, the number of registers of each permutation is
also calculated according to (13) and the total number is:

D(σ) =

(n−3)/2∑
i=0

D(σi) =
(√

2N − 1
)(√N

2
− 1

)
(17)

The circuit that calculates the bit reversal of a 32-point
sequence is shown in Fig. 4. It carries out the permutation
σ(u4u3u2u1u0) = u0u1u2u3u4 by means of the elementary
bit-exchanges σ0 : x4 ↔ x0 and σ1 : x3 ↔ x1. According to
this, the lengths of the buffers are:

D(σ0) = 24 − 20 = 15
D(σ1) = 23 − 21 = 6

(18)

The analysis of the circuit is analogous to the previous cases.
Finally, in the proposed circuits the total size of the buffers

is lower than the length of the sequence, N = 2n. This
is, indeed, the lowest number of registers that are necessary
to carry out the bit reversal. This can be demonstated as
follows. If samples arrive in natural order and are provided
in bit reversal, each sample with index I will be the I-th
sample that arrives at the circuit and the BR(I)-th sample
that leaves the circuit. Therefore, the circuit must allocate at
least I − BR(I) samples. The lowest necessary number of
registers is given by the value that maximizes this subtraction,
i.e., Dmin = max(I − BR(I)). This equation is maximum
when the half most significant bits of I are equal to ”1” and the
rest of the bits are equal to ”0”, leading to the same values for
Dmin as those in (14) and (17). The case of samples arriving in
bit-reversed order and provided in natural order is analogous.

VI. EXTENSION TO OTHER RADICES

The order of the output frequencies of the FFT depends on
the radix used in the decomposition. For radix-2 and any radix-
2k,∀k, samples arrive in bit-reversed order, so the circuits

proposed in the previous section can be used. However, for
radices such as radix-4 and radix-8 the outputs are provided
in a different order. These cases are analyzed in this section.

The bit reversal for radix-4 (BR4) performs a bit reversal
by considering the bits of the index in pairs, i.e., each sample
with index I moves to BR4(I), where:

I ≡ bn−1bn−2, bn−3bn−4, . . . , b3b2, b1b0
BR4(I) ≡ b1b0, b3b2, . . . , bn−3bn−4, bn−1bn−2

(19)

The commas in equation (19) have been added in order to
highlight the pairs of bits. Notice also that N = 2n must be
a power of four and, therefore, n must be an even number.

As BR4(I) is an inversion operation, a circuit that permutes:

σ(un−1, un−2, un−3, un−4, . . . , u3, u2, u1, u0) =
= u1, u0, u3, u2, . . . , un−3, un−4, un−1, un−2,

(20)

can be used to calculate the BR4 of a sequence in natural order
and viceversa. This permutation can be carried out by a series
of elementary bit-exchanges, σi, where:

σ2i : x2i ↔ xn−2i−2

σ2i+1 : x2i+1 ↔ xn−2i−1
(21)

leading to the following registers for each permutation:

D(σ2i) = 2n−2i−2 − 22i

D(σ2i+1) = 2n−2i−1 − 22i+1 (22)

If the number of samples is an even power of four, i ∈
[0, n/4− 1], and the total number of registers is:

D(σ) =

n/4−1∑
i=0

[D(σ2i) +D(σ2i+1)] = (
√
N − 1)2 (23)

If the number of samples is an odd power of four, i ∈
[0, (n− 6)/4] and the total number of registers is:

D(σ) =

(n−6)/4∑
i=0

[D(σ2i) +D(σ2i+1)] = (
√
4N−1)(

√
N

4
−1)

(24)
The bit reversal for radix-8 (BR8) can be analyzed in the

same way. In this case the elementary bit-exchanges are:

σ3i : x3i ↔ xn−3i−3

σ3i+1 : x3i+1 ↔ xn−3i−2

σ3i+2 : x3i+2 ↔ xn−3i−1

(25)

For even powers of eight the total number of registers is
(
√
N − 1)2, whereas for odd powers of eight:

D(σ) =
(√

8N − 1
)(√N

8
− 1

)
(26)

Generalizing these results, the algorithm for any radix-r
(BRr) groups log2 r bits of the index and carries out a reversal
of these groups. Besides, BRr is an inversion for any r. If N
is an even power of r, the total number of registers is:

D(σ) =
(√

N − 1
)2

(27)

whereas for odd powers of r the total number of registers is:

D(σ) =
(√

rN − 1
)(√N

r
− 1

)
(28)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II: EXPRESS BRIEFS 5

(a) Radix-2

(b) Radix-4

(c) Radix-8

Fig. 5. Bit reversal circuits of a 64-point sequence for radices 2, 4 and 8.

In all cases the latency is equal to the number of registers.
Figure 5 shows bit reversal circuits of a 64-point sequence

for radices 2, 4 and 8. Input sequences both in natural and
bit-reversed order are shown. As 64 is an even power of 2
and 8, the total number of registers for radices 2 and 8 is
calculated according to equation (27), leading to 49 in both
cases. Conversely, 64 is an odd power of 4. According to
equation (28) the total number of registers for radix-4 is 45.

Finally, in previous approaches the bit reversal is calculated
using either double buffering [12], [15] or a single memory
of N addresses [12], [14], [16]. Thus, the radix-2 and radix-
8 circuits in Fig. 5 save 15 storing elements (23%), whereas
the radix-4 one saves 19 (29%). For higher N the savings are
larger, although they represents a lower percentage of storing
elements. For instance, 31 (12%) registers are saved for 256
points and radix-2, and 71 (13%) for 512 points and radix-8.

VII. CONCLUSIONS

This paper presents new circuits for calculating the bit
reversal of a sequence of data. The circuits are optimum in
two senses. On the one hand, they have the lowest possible
latency. On the other hand, they require the lowest number
of storage elements. This number is lower than the length of
the sequence and, therefore, lower than the number of storage
elements used in previous memory-based approaches.

The circuits are very suitable for sorting out the output
frequencies of the FFT in pipelined architectures. As the
output order depends on the radix of the FFT, different radices
have been analyzed and optimum circuits for any general case
have been presented.

REFERENCES

[1] B. Gold and C. M. Rader, Digital Processing of Signals. New York:
McGraw Hill, 1969.

[2] D. Sundararajan, M. O. Ahmad, and M. Swamy, “A fast FFT bit-reversal
algorithm,” IEEE Trans. Circuits Syst. II, vol. 41, no. 10, Oct. 1994.

[3] J. Rius and R. D. Porrata-Dòria, “New FFT bit-reversal algorithm,” IEEE
Trans. Signal Process., vol. 43, no. 4, pp. 991–994, Apr. 1995.

[4] J. Prado, “A new fast bit-reversal permutation algorithm based on a
symmetry,” IEEE Signal Process. Lett., vol. 11, no. 12, Dec. 2004.

[5] M. Jaber and D. Massicotte, “A novel approach for FFT data reordering,”
in Proc. IEEE Int. Conf. Symp. Circuits Syst., May 2010, pp. 1615–1618.

[6] Z. Zhang and X. Zhang, “Cache-optimal methods for bit-reversals,” in
Proc. ACM/IEEE Conf. Supercomputing, 1999.

[7] K. Gatlin and L. Carter, “Memory hierarchy considerations for fast
transpose and bit-reversals,” in Proc. Int. Symp. High-Performance
Computer Arch., 1999, pp. 33–42.

[8] C.-M. Chen, C.-C. Hung, and Y.-H. Huang, “An energy-efficient partial
FFT processor for the OFDMA communication system,” IEEE Trans.
Circuits Syst. II, vol. 57, no. 2, pp. 136–140, Feb. 2010.

[9] T. Choinski and T. Tylaska, “Generation of digit reversed address
sequences for fast Fourier transforms,” IEEE Trans. Comput., vol. 40,
no. 6, pp. 780–784, Jun. 1991.

[10] S. H. Ok and B. I. Moon, “A digit reversal circuit for the variable-length
radix-4 FFT,” in Proc. Future Generation Comm. Networking, vol. 2,
Dec. 2007, pp. 496–500.

[11] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally
pipelined FFT processor,” IEEE Trans. Circuits Syst. II, vol. 53, no. 7,
pp. 585–589, Jul. 2006.

[12] Y.-N. Chang, “An efficient VLSI architecture for normal I/O order
pipeline FFT design,” IEEE Trans. Circuits Syst. II, vol. 55, no. 12,
pp. 1234–1238, Dec. 2008.

[13] M. Sánchez, M. Garrido, M. López, and J. Grajal, “Implementing FFT-
based digital channelized receivers on FPGA platforms,” IEEE Trans.
Aerosp. Electron. Syst., vol. 44, no. 4, pp. 1567–1585, Oct. 2008.

[14] M. Garrido, “Efficient hardware architectures for the computation of the
FFT and other related signal processing algorithms in real time,” Ph.D.
dissertation, Universidad Politécnica de Madrid, 2009.

[15] F. Kristensen, P. Nilsson, and A. Olsson, “Flexible baseband transmitter
for OFDM,” in Proc. IASTED Conf. Circuits Signals Syst., May 2003.

[16] T. Chakraborty and S. Chakrabarti, “On output reorder buffer design of
bit reversed pipelined continuous data FFT architecture,” in Proc. IEEE
Asia Pacific Conf. Circuits Syst., 2008, pp. 1132–1135.

[17] M. Garrido, K. K. Parhi, and J. Grajal, “A pipelined FFT architecture
for real-valued signals,” IEEE Trans. Circuits Syst. I, vol. 56, no. 12,
pp. 2634–2643, Dec. 2009.

[18] T. Järvinen, “Systematic methods for designing stride permutation inter-
connections,” Ph.D. dissertation, Tampere Univ. of Technology, 2004.

[19] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1991.

[20] D. Fraser, “Array permutation by index-digit permutation,” J. Assoc.
Comp. Machinery (ACM), vol. 23, no. 2, pp. 298–309, Apr. 1976.

[21] A. Edelman, S. Heller, and L. Johnsson, “Index transformation algo-
rithms in a linear algebra framework,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 12, pp. 1302–1309, Dec. 1994.

	Optimum Circuits for Bit Reversal-TitlePage.pdf
	BitRev-(2011-06-23) - Finalversion

