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Magnitude Scaling for Increased SFDR in DDFS
Petter K̈allström and Oscar Gustafsson

Department of Electrical Engineering
Linköping University

SE-581 83 Link̈oping, Sweden
Email: {petterk, oscarg}@isy.liu.se

Abstract—When generating a sine table to be used in, e.g.,
frequency synthesis circuits, a widely used way to assign the table
content is to simply take a sine wave with the desired amplitude
and quantize it using rounding. This results in uncontrolled
rounding of up to 0.5 LSB, causing some noise. In this paper
we present a method for increasing the signal quality, simply by
adjust the amplitude within a ±0.5 range from the intended.
This will not affect the maximum value of the sinusoid, but can
increase the spurious free dynamic range with some dB.

I. I NTRODUCTION

A direct digital frequency synthesis (DDFS) is used to
generate sinusoids with high spurious free dynamic range
(SFDR) and good frequency control. The simplest version of
a DDFS consists of a phase accumulator and a look-up-table
(LUT) containing the sine table. In order to save ROM area,
the sine symmetry can be used to store only one quarter of
the table.

Figure 1 illustrates anW bits DDFS, quantized toD bits
output resolution (including the sign bit), and anL bits phase
accumulator, whereL ≥ W . The architecture usesL − W
bits phase truncation (PT) between signals1 and s2, where
theL−W least significant bits (LSBs) have been discarded.
The data on the signalss1 to s8 are illustrated in the graphs
both by the specificationW = 4, D = 3 (the square curves),
and without truncation/quantization (the thinner curves).

Quadrants1 to 4 are marked Q1 to Q4 over graphs3. The
signals are as follows:

s1 The phase accumulator values.
s2 The phase after truncation of theL−W (LSBs).
s3 The truncated phase when the two most significant

bits (MSBs) have been removed.
s4 The second most significant bit (MSB) of the phase,

indicating Q2 and Q4.
s5 The phase, when Q2 and Q4 have been “mirrored”.
s6 The output of the look up table (LUT).
s7 The most significant bit of the phase, indicating Q3

and Q4.
s8 The phase, when Q3 and Q4 have been inverted.

Each clock cycle a frequency control word (FCW ) is added
to the phase accumulator, modulo2L. WhenFCW = 1, the
accumulator will make one rotation in2L clock cycles.

If FCW > 1, the accumulator will finish exactlyFCW
rotations per2L clock cycles, so the frequency resolution,fres ,

Fig. 1. DDFS block schematic with signal indications for the signalss1 to
s8.

and the output frequency,fo, will be

fres =
fclk
2L

,

fo = FCW · fres .

The ROM coefficients are typically calculated using a0.5
LSB phase offset, which make the sine symmetry more effi-
ciently implemented. This is well described by, e.g., Vankka
et al. [1]. This can be seen as a phase rounding toward the
closest “.5”, e.g., phase3.125 is rounded to3.5 rather than
truncated to3.0, as the truncation would mean.

The phase truncation will give alias problems, well de-
scribed by, e.g., Ashrafiet al [2]. Those are related only to the
input wordlength,W , and weakly affected by the accumulator
sizeL, according to the relation [3, eq. (10)]

SFDRalias = 20 log10

(

sin π(2W−1)
2L

sin π

2L

)

dB. (1)

The phase truncation has a signal and DFT response effect
illustrated with an example in Fig. 2, whereW = 5 and the
output quantization has been omitted.

The output quantization gives an error that, in some sense,
is close to random, and so gives a noise spread over the entire
spectrum of odd harmonics. Figure 3 illustrates the noise with
4 output bits (D = 4) and many input bits (W = 10, no phase
truncation). The phase is given in radians, because the phase
resolution is not very relevant here. As can be seen, there
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Fig. 2. The phase truncation, applied on a signal and it’s frequency
response (only the first quadrant of the sinusoid is shown). Here W = 5

and quantization is omitted (so the amplitude scale is irrelevant). Six bits
truncation shows the main aliases around the2

W harmonic.
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Fig. 3. Quantization of a signal and it’s frequency response. Here withD = 4

bits of amplitude resolution (excl. sign bit) are used.W = 10 phase bits are
used to give a good phase resolution. The highest spur is clearly visible as
the 39:th harmonic.

is a spur peak around harmonichspur = 39. The sinusoid
corresponding tohspur = 39 and the error are depicted in
Fig. 4. A spur at harmonichspur will make hspur rotations
per2L samples, and so the sine component will have a period
of 2π/hspur rad (where2π rad corresponds to phase2L).

This peak is caused by the triangular error shape, with a
period starting at1/(2D−1−1) radians, and slowly increasing.
The peak will, more general, have a harmonic numberhspur .

2π · (2D−1 − 1).
Figure 5 illustrates a combination of phase truncation and

output quantization, in a good balanced relation between
W = 5 and D = 4; it differs ≈ 1 dB between the biggest
quantization noise spur and the alias spur.

The phase to sine amplitude converter (PSAC) can be
implemented in many ways. In this paper we are considering
ROM based methods, where each phase can be controlled in-
dividually (in difference from, e.g., polynomial approximation
algorithms). Those methods includes pure look up tables (with
or without memory compression) [4], sum of bit products [5]
or thermometer coded implementations [6].
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Fig. 4. The quantization error from Fig. 3, and the greatest spur sinusoid,
caused by the error. AgainD = 4 and W = 10. The spur has harmonic
number39.
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Fig. 5. A signal and its frequency response, whereW = 5, D = 4 bits of
phase and amplitude respectively, illustrates the noise sources. The intended
signal and the errors are also shown. The quantization errorcauses a floor
of spurs, while the phase truncation causes aliases around the 2

W
· fres

frequencies.

A. Input vs Output Resolution

WhenW ≪ D, the aliases spurs are dominating, and so the
quantization has no impact at all on the SFDR. This “range”
in the (D,W ) design plane is denoted PT range in this paper
(because the phase truncation causes the aliases).

WhenD ≪W , the amplitude quantization (AQ) is the lim-
iting factor on the signal, so the SFDR can be optimized with
the proposed scaling algorithm. This range is here denoted the
AQ range.

The selected ratio betweenD and W depends on the
application, but typicallyD ≈ 0.75(W − 1) gives a good
balance, as supported by the results. A greaterD (lower
quantization noise) can be motivated if a low pass filter can be
used to suppress the alias spurs, or if the total noise shouldbe
minimized. A greater phase resolution (W ) will not increase
the SFDR very much (it may even decrease, as will be shown).

B. The SFDR Measurement

The spurious free dynamic range (SFDR) is a meassure of
how much “louder” the carrier is than the highest spur for
a sinusoid. The SFDR for DDFS’ is typically measured with
an oddFCW during 2L samples, because this will “test” all
2L phases. The spurs will be rearranged, but not “collide”
with each others when comparing different (odd)FCWs.
Typical, the measurement is performed withFCW = 1, which
gives the same SFDR as for any oddFCW , as supported by
Torosyanet al. [3].

The SFDR of a certain integer vectors for the first quadrant,
using L − W bits phase truncation, is calculated in the
following steps:

1) Expands to the entire rotate from the first quarter.
2) Duplicate each point2L−W times.
3) Perform an FFT and keep first half of the vector.
4) Find the amplitudes for the carrier,c, and biggest noise

spur,n.
5) SFDR =20 log10(

c

n
)

II. PROPOSEDSCALING ALGORITHM

If the sine table, in positioni, has the valueampl · sin(φi),
the biggest value in the memory will be[ampl ] (ampl

rounded toward closest integer). This is typically desiredto



be = 2D−1 − 1, which implies thatampl = 2D−1 − 1 + as,
whereas, −0.5 . as ≤ 0.5, denotes a “sub amplitude”.

The proposed algorithm starts at the smallest allowed sub
amplitude (≈ −0.5), and gradually increase it up to0.5. For
each step, the SFDR is analyzed, and the best result is selected.
The step size is set so that exactly one value in the ROM is
affected.

The algorithm is presented in a pseudo code format in
Algorithm 1.

Algorithm 1 The scale algorithm.δ is a small number, used
to avoid problems caused by floating point roundings.

ampl ← 2D−1 − 1; // set the amplitude.

as ←
ampl − 0.5

cos(π/2W )
− ampl + δ;

// initialize the sub amplitude to the smallest allowed value.

φ← ((1, ..., 2W−2)− 0.5)
π

2W−1
;

// a vector with all phases in the first quadrant.

repeat
s← (ampl + as) · sin(φ); // table with the sinusoid.

Analyze the SFDR for[s];
inc ← [s]+0.5−s; // calculate how much each point can increase

before it affects the rounding.

rinc ← inc/s; // same, but relative the amplitude.

minc ← min(rinc); // the smallest change that affects one integer.

as ← as+(ampl+as) ·minc+δ; // Update the sub amplitude.

until as ≥ 0.5
Select the best SFDR found and theas that generated it.

A. Time complexity

During the entire amplitude scan, the amplitude is increased
with one. The unrounded value in phaseφ will increases ≈
sin(φ) during the scan, and so the probability is roughlys
that this phase will change value in the table during the scan.
There is2W−2 values in the table, and a ratio2/π of them
will change. Only one will change per iteration, so in average
this will require2W−1/π iterations.

Figure 6 compares the real number of iterations (markers)
with the approximation2W−1/π (line).

The carrier amplitude will differ with different amplitudes,
this is however typically a very small change on the dB scale.
With, e.g.,D = 7, the amplitude will change less than±0.8%,
which corresponds to≈ 0.07 dB, or≈ 0.004 dB whenD =
11.

III. RESULTS

In all analysis presented here, five bits of phase truncation
have been used, soL = W + 5 in (1), givesSFDRalias ≈
20 log10(2

W − 1) ≈ 6W dB, as a higher bound on the SFDR
from the alias spurs. In the AQ range (W ≫ D), the SFDR
can be increased up to allmost 3 dB by changing the sub
amplitude (without any cost in the implementation hardware).

Figure 7 illustrates briefly, on scales from0 to 3 dB, how
much SFDR that is possible to gain for differentW ’s andD’s
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Fig. 7. The SFDR gain from scaling, for differentW andD. The dB axes
are 3 dB high.

by scaling the DDFS. The plot clearly shows the difference
between the PT range in left bottom half, and the AQ range
in the top right half.

Two examples of this gain is illustrated in Fig. 8 where
the SFDR is plotted as a function of the sub amplitude, with
W = 12.

Figures 7 and 8 also depict that with aD & 0.75(W − 1)
the scaling will have no effect at all.

The frequency response has, as mentioned, a peak just below
harmonichspur ≈ 2π · (2D−1 − 1) ≈ 396 whenD = 7. In
Fig. 9 this is illustrated usingW = 12 and five bits phase
truncation, both before and after the scaling. There is a clear
peak at harmonic393, which has spread out slightly to the
neighboring harmonics when the amplitude is scaled from63
to 63.2423. 63.2423 is the amplitude that will give the length
of the triangular wave (Fig. 3) the largest distortion (so two
neighboring teeth will probably have different length).

Table I illustrates the SFDR before and after scaling, as well
as the gained SFDR. In the PT range (left bottom corner), the
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Fig. 9. The frequency response forW = 12, L = 17 and D = 7,
showing the characteristic peak of spears, both default (as = 0) and optimized
amplitude (as = 0.2423 in this case).

SFDR is affected only by the number of input bits,W . In the
AQ range (top right corner), the SFDR is mainly affected by
the output resolution,D, and is therefore possible to increase
with scaling.

One effect that is clear in table I is that the SFDR is
increased with≈ 16 dB per two output bits (8 dB per bit),
in the AQ range. The noise floor is decreased by≈ 6 dB per
bit, so the SFDR should increase with6 dB per bit, if it was
not for the spur peak, illustrated in Fig. 9. The peak seems to
grow as theD decreases, with roughly2 dB per bit.

Because the SFDR grows with8 dB per output bit (D) in
the AQ range, and with6 dB per input bit (W ) in the PT
range, the balanced cut between the ranges is placed around
the lineW = D · 43 +1. A designer of a DDFS should mainly
be interested in this range,± a few bits.

TABLE I
THE SFDRACHIEVED BEFORE AND AFTER THE SCALING, ON THE FORM

“before+gain=after“ (dB).

Input bit width (W )
6 8 10 12 14 16

O
ut

pu
t

bi
t

w
id

th
(D

)

5 35.97 42.23 42.63 42.94 42.92 42.91
+0.00 +2.19 +2.47 +1.93 +1.92 +1.91

=35.97 =44.42 =45.10 =44.87 =44.84 =44.81

7 35.97 48.12 59.70 58.48 58.73 58.76
+0.00 +0.00 +0.48 +2.52 +2.14 +2.10

=35.97 =48.12 =60.18 =61.00 =60.87 =60.86

9 35.97 48.12 60.18 72.23 76.31 75.85
+0.00 +0.00 +0.00 +0.00 +0.66 +1.20

=35.97 =48.12 =60.18 =72.23 =76.97 =77.05

11 35.97 48.12 60.18 72.23 84.27 92.75
+0.00 +0.00 +0.00 +0.00 +0.00 +0.28

=35.97 =48.12 =60.18 =72.23 =84.27 =93.03

13 35.97 48.12 60.18 72.23 84.27 96.32
+0.00 +0.00 +0.00 +0.00 +0.00 +0.00

=35.97 =48.12 =60.18 =72.23 =84.27 =96.32

Note that the total noise will be reduced whenD grows,
even when the aliases are the dominating spurs, so the SNR
can be increased slightly.

One other effect that can be seen in Table I is that the SFDR
might be reduced whenW increases, in some special cases.
When, for instance,D = 7, W : 10 → 12, the (unscaled)
SFDR will shrink from 59.7 to 58.48. This may be caused
by the fact that a lowerW will introduce some noise to the
lengthof the triangular waves, so the amplitude from the top
spur may be divided into neighboring spurs, in a similar way
as the scaling acts.

IV. CONCLUSIONS

A method to increase the SFDR for a LUT based DDFS
without any hardware changes is proposed in this paper. The
method is based on a small scaling of the amplitude, in order to
archive the best SFDR. The SFDR can in this way be increased
with more than2 dB in some cases. In the case that the phase
to sine amplitude converter has12 input bits and7 output bits
(incl. sign bit), the SFDR can be increased from58.48 to 61
dBc.
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