

A Delegation-Based Architecture for

Collaborative Robotics

Patrick Doherty, Fredrik Heintz and David Landén

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Patrick Doherty, Fredrik Heintz and David Landén, A Delegation-Based Architecture for

Collaborative Robotics, 2011, Agent-Oriented Software Engineering XI: 11th International

Workshop, AOSE 2010, Toronto, Canada, May 10-11, 2010, Revised Selected Papers, 205-

247.

Copyright: Springer

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72913

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72913

A Delegation-Based Architecture for Collaborative
Robotics ?

Patrick Doherty, Fredrik Heintz, and David Landén
{patrick.doherty, fredrik.heintz}@liu.se

Linköping University
Dept. of Computer and Information Science

581 83 Linköping, Sweden

Abstract. Collaborative robotic systems have much to gain by leveraging results
from the area of multi-agent systems and in particular agent-oriented software
engineering. Agent-oriented software engineering has much to gain by using col-
laborative robotic systems as a testbed. In this article, we propose and specify a
formally grounded generic collaborative system shell for robotic systems and hu-
man operated ground control systems. Collaboration is formalized in terms of the
concept of delegation and delegation is instantiated as a speech act. Task Spec-
ification Trees are introduced as both a formal and pragmatic characterization
of tasks and tasks are recursively delegated through a delegation process imple-
mented in the collaborative system shell. The delegation speech act is formally
grounded in the implementation using Task Specification Trees, task allocation
via auctions and distributed constraint problem solving. The system is imple-
mented as a prototype on Unmanned Aerial Vehicle systems and a case study
targeting emergency service applications is presented.

1 Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Lab1 at the Depart-
ment of Computer and Information Science, Linköping University, has been involved in
the development of autonomous unmanned aerial vehicles (UAV’s) and associated hard-
ware and software technologies [14–16]. The size of our research platforms range from
the RMAX helicopter system (100kg) [8, 17, 59, 66, 69] developed by Yamaha Motor
Company, to smaller micro-size rotor based systems such as the LinkQuad2 (1kg) and
LinkMAV [28, 60] (500g) in addition to a fixed wing platform, the PingWing [9] (500g).
These UAV platforms are shown in Figure 1.The latter three have been designed and
developed by the Unmanned Aircraft Systems Technologies Lab. All four platforms are
fully autonomous and have been deployed.

? This work is partially supported by grants from the Swedish Research Council (VR) Linnaeus
Center CADICS, VR grant 90385701, the ELLIIT Excellence Center at Linköping-Lund for
Information Technology, NFFP5-The Swedish National Aviation Engineering Research Pro-
gram, and the Center for Industrial Information Technology CENIIT.

1 www.ida.liu.se/divisions/aiics/
2 www.uastech.com

Fig. 1. The UASTech RMAX (upper left), PingWing (upper right), LinkQuad (lower left) and
LinkMAV (lower right).

Previous work has focused on the development of robust autonomous systems for
UAV’s which seamlessly integrate control, reactive and deliberative capabilities that
meet the requirements of hard and soft realtime constraints [17, 55]. Additionally, we
have focused on the development and integration of many high-level autonomous capa-
bilities studied in the area of cognitive robotics such as task planners [18, 19], motion
planners [66–68], execution monitors [21], and reasoning systems [20, 23, 54], in addi-
tion to novel middleware frameworks which support such integration [40, 42, 43]. Al-
though research with individual high-level cognitive functionalities is quite advanced,
robust integration of such capabilities in robotic systems which meet real-world con-
straints is less developed but essential to introduction of such robotic systems into so-
ciety in the future. Consequently, our research has focused, not only on such high-level
cognitive functionalities, but also on system integration issues.

More recently, our research efforts have transitioned toward the study of systems
of UAV’s. The accepted terminology for such systems is Unmanned Aircraft Systems
(UAS’s). A UAS may consist of one or more UAV’s (possibly heterogenous) in addi-
tion to one or more ground operator systems (GOP’s). We are interested in applications
where UAV’s are required to collaborate not only with each other but also with di-
verse human resources [22, 24, 25, 41, 52]. UAV’s are now becoming technologically
mature enough to be integrated into civil society. Principled interaction between UAV’s
and human resources is an essential component in the future uses of UAV’s in complex
emergency services or bluelight scenarios. Some specific target UAS scenario examples

are search and rescue missions for inhabitants lost in wilderness regions and assistance
in guiding them to a safe destination; assistance in search at sea scenarios; assistance
in more devastating scenarios such as earthquakes, flooding or forest fires; and environ-
mental monitoring.

As UAV’s become more autonomous, mixed-initiative interaction between human
operators and such systems will be central in mission planning and tasking. By mixed-
initiative, we mean that interaction and negotiation between one or more UAV’s and one
or more humans will take advantage of each of their skills, capacities and knowledge in
developing a mission plan, executing the plan and adapting to contingencies during the
execution of the plan.

In the future, the practical use and acceptance of UAV’s will have to be based on a
verifiable, principled and well-defined interaction foundation between one or more hu-
man operators and one or more autonomous systems. In developing a principled frame-
work for such complex interaction between UAV’s and humans in complex scenarios, a
great many interdependent conceptual and pragmatic issues arise and need clarification
not only theoretically, but also pragmatically in the form of demonstrators. Addition-
ally, an iterative research methodology is essential which combines foundational theory,
systems building and empirical testing in real-world applications from the start.

The complexity of developing deployed architectures for realistic collaborative ac-
tivities among robots that operate in the real world under time and space constraints is
very high. We tackle this complexity by working both abstractly at a formal logical level
and concretely at a systems building level. More importantly, the two approaches are
related to each other by grounding the formal abstractions into actual software imple-
mentations. This guarantees the fidelity of the actual system to the formal specification.
Bridging this conceptual gap robustly is an important area of research and given the
complexity of the systems being built today demands new insights and techniques.

The conceptual basis for the proposed collaboration framework includes a triad of
fundamental, interdependent conceptual issues: delegation, mixed-initiative interaction
and adjustable autonomy (Figure 2). The concept of delegation is particularly important
and in some sense provides a bridge between mixed-initiative interaction and adjustable
autonomy.

Fig. 2. A conceptual triad of concepts.

Delegation – In any mixed-initiative interaction, humans may request help from
robotic systems and robotic systems may request help from humans. One can abstract
and concisely model such requests as a form of delegation,Delegate(A,B, task, constraints),
where A is the delegating agent, B is the contractor, task is the task being delegated
and consists of a goal and possibly a plan to achieve the goal, and constraints repre-
sents a context in which the request is made and the task should be carried out. In our
framework, delegation is formalized as a speech act and the delegation process invoked
can be recursive.

Adjustable Autonomy – In solving tasks in a mixed-initiative setting, the robotic
system involved will have a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should not violate the degree of
autonomy mandated by a human operator unless agreement is made. One can begin
to develop a principled means of adjusting autonomy through the use of the task and
constraint parameters in Delegate(A,B, task, constraints). A task delegated with
only a goal and no plan, with few constraints, allows the robot to use much of its au-
tonomy in solving the task, whereas a task specified as a sequence of actions and many
constraints allows only limited autonomy. It may even be the case that the delegator
does not allow the contractor to recursively delegate.

Mixed-Initiative Interaction – By mixed-initiative, we mean that interaction and
negotiation between a robotic system, such as a UAV and a human, will take advan-
tage of each of their skills, capacities and knowledge in developing a mission plan,
executing the plan and adapting to contingencies during the execution of the plan.
Mixed-initiative interaction involves a very broad set of issues, both theoretical and
pragmatic. One central part of such interaction is the ability of a ground operator (GOP)
to be able to delegate tasks to a UAV, Delegate(GOP,UAV, task, constraints) and
in a symmetric manner, the ability of a UAV to be able to delegate tasks to a GOP,
Delegate(UAV,GOP, task, constraints). Issues pertaining to safety, security, trust,
etc., have to be dealt with in the interaction process and can be formalized as particular
types of constraints associated with a delegated task.

This article is intended to provide a description of a relatively mature iteration of a
principled framework for collaborative robotic systems based on these concepts which
combines both formal theories and specifications with an agent-based software archi-
tecture which is guided by the formal framework. As a test case, the framework and
architecture will be instantiated using a UAS involved in an emergency services ap-
plication. A prototype software system has been implemented and has been used and
tested both in simulation and on UAV systems.

1.1 Outline

In Section 2, we propose and specify a formal logical characterization of delegation in
the form of a speech act. This speech act will be grounded in the software architecture
proposed. In Section 3, an overview of the software architecture used to support col-
laboration via delegation is provided. It is an agent-based, service oriented architecture
consisting of a generic shell that can be integrated with physical robotics systems. In
Section 4, a formal characterization of tasks in the form of Task Specification Trees
is proposed. Task Specification Trees are tightly coupled to the the Delegation speech

act and to the actual software processes that instantiate the speech act in the software
architecture. In Section 5, the important topic of allocating tasks in a Task Specification
Tree to specific platforms is considered. Additionally, we show how the semantic char-
acterization of Task Specification Trees is grounded in a distributed constraint problem
whose solution drives the actual execution of the tasks in the tree. In Section 6,we turn
our attention to describing the computational process that realizes the speech act on a
robotic platform. In Section 7, we describe how that computational process is pragmat-
ically realized in the software architecture by defining a number of agents, services and
protocols which drive the process. In Section 8, we put the formal and pragmatic as-
pects of the approach together and show how the collaboration framework can be used
in a relatively complex real-life emergency services scenario consisting of a number of
UAV systems. In Section 9, we describe some of the representative related work and in
Section 10 we conclude with a summary and future work.

2 Delegation as a Speech Act

Delegation is central to the conceptual and architectural framework we propose. Conse-
quently, formulating an abstraction of the concept with a formal specification amenable
to pragmatic grounding and implementation in a software system is paramount. As a
starting point, in [5, 31], Falcone & Castelfranchi provide an illuminating, but informal
discussion about delegation as a concept from a social perspective. Their approach to
delegation builds on a BDI model of agents, that is, agents having beliefs, goals, inten-
tions, and plans [6]. However, their specification lacks a formal semantics for the oper-
ators used. Based on intuitions from their work, we have previously provided a formal
characterization of their concept of strong delegation using a communicative speech act
with pre- and post-conditions which update the belief states associated with the delega-
tor and contractor, respectively [25]. In order to formally characterize the operators used
in the definition of the speech act, we use KARO [48] to provide a formal semantics.
The KARO formalism is an amalgam of dynamic logic and epistemic/doxastic logic,
augmented with several additional modal operators in order to deal with the motiva-
tional aspects of agents.

The target for delegation is a task. A dictionary definition of a task is ”a usually
assigned piece of work often to be finished within a certain time”.3 Assigning a piece of
work to someone by someone is in fact what delegation is about. In computer science,
a piece of work in this context is generally represented as a composite action. There
is also often a purpose to assigning a piece of work to be done. This purpose is gen-
erally represented as a goal, where the intended meaning is that a task is a means of
achieving a goal. We will require both a formal specification of a task at a high-level of
abstraction in addition to a more data-structural specification flexible enough to be used
pragmatically in an implementation.

For the formal specification, the definition provided by Falcone & Castelfranchi will
be used. For the data-structure specification used in the implementation, task specifica-
tion trees (TST’s) will be defined in a Section 4. Falcone & Castelfranchi define a task

3 Merriam-Webster free on-line dictionary.m-w.com

as a pair τ = (α, φ) consisting of a goal φ, and a plan α for that goal, or rather, a plan
and the goal associated with that plan. Conceptually, a plan is a composite action. We
extend the definition of a task to a tuple τ = (α, φ, cons), where cons represents ad-
ditional constraints associated with the plan α, such as timing and resource constraints.
At this level of abstraction, the definition of a task is purposely left general but will be
dealt with in explicit detail in the implementation using TST’s and constraints.

From the perspective of adjustable autonomy, the task definition is quite flexible. If
α is a single elementary action with the goal φ implicit and correlated with the post-
condition of the action, the contractor has little flexibility as to how the task will be
achieved. On the other hand, if the goal φ is specified and the plan α is not provided,
then the contractor has a great deal of flexibility in achieving the goal. There are many
variations between these two extremes and these variations capture the different levels
of autonomy and trust exchanged between two agents. These extremes loosely follow
Falcone & Castelfranchi’s notions of closed and open delegation described below.

Using KARO to formalize aspects of Falcone & Castelfranchi ’s work, we consider
a notion of strong delegation represented by a speech act Delegate(A, B, τ) of A dele-
gating a task τ = (α, φ, cons) to B, where α is a possible plan, φ is a goal, and cons
is a set of constraints associated with the plan φ. Strong delegation means that the dele-
gation is explicit, an agent explicitly delegates a task to another agent. It is specified as
follows:

S-Delegate(A, B, τ), where τ = (α, φ, cons)

Preconditions:

(1) GoalA(φ)
(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))
(3) BelA(Dependent(A,B, τ))
(4) BelBCanB(τ)

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)
(2) CommittedB(α) (also written CommittedB(τ))
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntendB(τ))
(5) IntendA(doB(α))
(6) MutualBelAB(”the statements above” ∧ SociallyCommitted(B,A, τ))4

Informally speaking this expresses the following: the preconditions of the delegate
act of A delegating task τ to B are that (1) φ is a goal of delegator A (2) A believes that
B can (is able to) perform the task τ (which implies thatA believes thatB itself believes
that it can do the task) (3) A believes that with respect to the task τ it is dependent on
B. The speech act S-Delegate is a communication command and can be viewed as a
request for a synchronization (a ”handshake”) between sender and receiver. Of course,

4 A discussion pertaining to the semantics of all non-KARO modal operators may be found
in [25].

this can only be successful if the receiver also believes it can do the task, which is
expressed by (4).

The postconditions of the strong delegation act mean: (1) B has φ as its goal and
is aware of this (2) it is committed to the task τ (3) B believes that A has the goal φ
(4) B can do the task τ (and hence believes it can do it, and furthermore it holds that
B intends to do the task, which was a separate condition in Falcone & Castelfranchi’s
formalization), (5) A intends that B performs α (so we have formalized the notion
of a goal to have an acheivement in Falcone & Castelfranchi’s informal theory to an
intention to perform a task) and (6) there is a mutual belief between A and B that
all preconditions and other postconditions mentioned hold, as well as that there is a
contract between A and B, i.e. B is socially committed to A to achieve τ for A. In this
situation we will call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obligations to
the partners involved, depending on how the task is specified in the delegation action.
This dimension has to be added in order to consider how the contract affects the au-
tonomy of the agents, in particular the contractor’s autonomy. Falcone & Castelfranchi
discuss the following variants:

– Closed delegation: the task is completely specified and both the goal and the plan
should be adhered to.

– Open delegation: the task is not completely specified, either only the goal has to
be adhered to while the plan may be chosen by the contractor, or the specified plan
contains abstract actions that need further elaboration (a sub-plan) to be dealt with
by the contractor.

In open delegation the contractor may have some freedom in how to perform the
delegated task, and thus it provides a large degree of flexibility in multi-agent planning
and allows for truly distributed planning.

The specification of the delegation act above is based on closed delegation. In case
of open delegation, α in the postconditions can be replaced by an α′, and τ by τ ′ =
(α′, φ, cons′). Note that the fourth clause, CanB(τ ′), now implies that α′ is indeed
believed to be an alternative for achieving φ, since it implies thatBelB [α′]φ (B believes
that φ is true after α′ is executed). Of course, in the delegation process, A must agree
that α′, together with constraints cons′, is indeed viable. This would depend on what
degree of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi closely.
One can easily foresee other constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation [7, 11, 27]. It is important to keep
in mind that this formal characterization of delegation is not completely hierarchical.
There is interaction between both the delegators and contractors as to how goals can
best be achieved given the constraints of the agents involved. This is implicit in the
formal characterization of open delegation above, although the process is not made
explicit. This aspect of the process will become much clearer when the implementation
is described.

There are many directions one can take in attempting to close the gap between
this abstract formal specification and grounding it in implementation. One such direc-
tion taken in [25] is to correlate the delegate speech act with plan generation rules in

2APL [10], which is an agent programming language with a formal semantics. In this
article, a different direction is taken which attempts to ground the important aspects of
the speech act specification in the actual processes used in our robotic systems. Intu-
itions will become much clearer when the architectural details are provided, but let us
describe the approach informally based on what we have formally specified.

If a UAV system A has a goal φ which it is required to achieve, it first introspects
and determines whether it is capable of achieving φ given its inherent capabilities and
current resources in the context it is in, or will be in, when the goal has to be achieved. It
will do this by accessing its capability specification (assumed) and determine whether
it believes it can achieve φ, either through use of a planning and constraint solving
system (assumed) or a repertoire of stored actions. If not, then the fundamental pre-
conditions in the S-Delegate speech act are the second, BelACanB(τ) and the fourth,
BelBCanB(τ). Agent A must find another agent it believes can achieve the goal φ
implicit in τ . Additionally, B must also believe it can achieve the the goal φ implicit
in τ . Clearly, if A can not achieve φ itself and finds an agent B that it believes can
achieve φ and B believes it can achieve φ, then it is dependent on B to do that (precon-
dition 3: BelA(Dependent(A,B, α))). Consequently, all preconditions are satisfied
and the delegation can take place.

From a pragmatic perspective, determining (in an efficient manner) whether an
agent B can achieve a task τ (in an efficient) manner, is the fundamental problem that
has to be not only implemented efficiently, but also grounded in some formal sense.
The formal aspect is important because delegation is a recursive process which may
involve many agents, automated planning and reasoning about resources, all in the con-
text of temporal and spatial constraints. One has to have some means of validating this
complex set of processes relative to a highly abstract formal specification which is con-
vincing enough to trust that the collaborative system is in fact doing what it is formally
intended to do.

The pragmatic aspects of the software architecture through which we ground the
formal specification include the following:

– An agent layer based on the FIPA Abstract Architecture will be added on top of ex-
isting platform specific legacy systems such as our UAV’s. This agent layer allows
for the realization of the delegation process using speech acts and protocols from
the FIPA Agent Communication Language.

– The formal specification of tasks will be instantiated pragmatically as Task Speci-
fication Trees (TST’s), which provide a versatile data structure for mapping goals
to plans and plans to complex tasks. Additionally, the formal semantics of tasks is
defined in terms of a predicate Can which can be directly grounded above to the
semantics of the S-Delegate speech act and below to a constraint solving system.

– Finding a set of agents who together can achieve a complex task with time, space
and resource constraints through recursive delegation can be defined as a very com-
plex distributed task allocation problem. Explicit representation of time, space and
resource constraints will be used in the delegation process and modeled as a dis-
tributed constraint satisfaction problem (DCSP). This allows us to apply existing
DCSP solvers to check the consistency of partial task assignments in the delegation
process and to formally ground the process. Consequently, the Can predicate used

in the precondition to the S-Delegate speech act is both formally and pragmatically
grounded into the implementation.

3 Delegation-Based Software Architecture Overview

Before going into details regarding the implementation of the delegation process and
its grounding in the proposed software architecture, we provide an overview of the
architecture itself.

Our RMAX helicopters use a CORBA-based distributed architecture [17]. For our
experimentation with collaborative UAV’s, we view this as a legacy system which pro-
vides sophisticated functionality ranging from control modes to reactive processes, in
addition to deliberative capabilities such as automated planners, GIS systems, con-
straint solvers, etc. Legacy robotic architectures generally lack instantiations of an agent
metaphor although implicitly one often views such systems as agents. Rather than re-
design the legacy system from scratch, the approach we take is to agentify the existing
legacy system in a straightforward manner by adding an additional agent layer which
interfaces to the legacy system. The agent layer for a robotic system consists of one or
more agents which offer specific functionalities or services. These agents can communi-
cate with each other internally and leverage existing legacy system functionality. Agents
from different robotic systems can also communicate with each other if required.

Our collaborative architectural specification is based on the use of the FIPA (Foun-
dation for Intelligent Physical Agents) Abstract Architecture [32]. The FIPA Abstract
Architecture provides the basic components for the development of a multi-agent sys-
tem. Our prototype implementation is based on the FIPA compliant Java Agent Devel-
opment Framework (JADE) [29, 62] which implements the abstract architecture. ”JADE
(Java Agent Development Framework) is a software environment to build agent systems
for the management of networked information resources in compliance with the FIPA
specifications for interoperable multi-agent systems.” [30].

The FIPA Abstract Architecture provides the following fundamental modules:

– An Agent Directory module keeps track of the agents in the system.
– A Directory Facilitator keeps track of the services provided by those agents.
– A Message Transport System module allows agents to communicate using the FIPA

Agent Communication Language (FIPA ACL) [33].

The relevant concepts in the FIPA Abstract Architecture are agents, services and
protocols. All communication between agents is based on exchanging messages which
represent speech acts encoded in an agent communication language (FIPA ACL). Ser-
vices provide functional support for agents. There are a number of standard global
services including agent-directory services, message-transport services and a service-
directory service. A protocol is a related set of messages between agents that are logi-
cally related by some interaction pattern.

JADE provides base classes for agents, message transportation, and a behavior
model for describing the content of agent control loops. Using the behavior model,
different agent behaviors can be constructed, such as cyclic, one-shot (executed once),

sequential, and parallel behavior. More complex behaviors can be constructed using the
basic behaviors as building blocks.

From our perspective, each JADE agent has associated with it a set of services.
Services are accessed through the Directory Facilitator and are generally implemented
as behaviors. In our case, the communication language used by agents will be FIPA
ACL which is speech act based. New protocols will be defined in Section 7 to support
the delegation and other processes.

The purpose of the Agent Layer is to provide a common interface for collaboration.
This interface should allow the delegation and task execution processes to be imple-
mented without regard to the actual realization of elementary tasks, capabilities and
resources which are specific to the legacy platforms.

We are currently using four agents in the agent layer:

1. Interface agent - This agent is the clearinghouse for communication. All requests
for delegation and other types of communication pass through this agent. Exter-
nally, it provides the interface to a specific robotic system or ground control station.

2. Delegation agent- The delegation agent coordinates delegation requests to and
from other UAV systems and ground control stations, with the Executor, Resource
and Interface agents. It does this essentially by verifying that the pre-conditions to
a Delegate() request are satisfied.

3. Execution agent - After a task is contracted to a particular UAV or ground station
operator, it must eventually execute that task relative to the constraints associated
with it. The Executor agent coordinates this execution process.

4. Resource agent - The Resource agent determines whether the UAV or ground sta-
tion of which it is part has the resources and ability to actually do a task as a po-
tential contractor. Such a determination may include the invocation of schedulers,
planners and constraint solvers in order to determine this.

Figure 3 provides an overview of an agentified robotic or ground operator system.

Fig. 3. Overview of an agentified platform or ground control station.

The FIPA Abstract Architecture will be extended to support delegation and col-
laboration by defining an additional set of services and a set of related protocols.The

interface agent, resource agent and delegation agent will have an interface service, re-
source service and delegation service associated with it, respectively, on each individual
robotic or ground station platform. The executor service is implemented as a non-JADE
agent that understands FIPA protocols and works as a gateway to a platform’s legacy
system. Additionally, three protocols, the Capability-Lookup, Delegation and Auction
protocols, will be defined and used to drive the delegation process.

Human operators interacting with robotic systems are treated similarly by extending
the control station or user interface functionality in the same way. In this case, the
control station is the legacy system and an agent layer is added to this. The result is
a collaborative human robot system consisting of a number of human operators and
robotic platforms each having both a legact system and an agent layer as shown in
Figure 4.

Fig. 4. An overview of the collaborative human robot system.

The reason for using the FIPA Abstract Architecture and JADE is pragmatic. The
focus of our research is not to develop new agent middleware, but to develop a formally
grounded generic collaborative system shell for robotic systems. Our formal character-
ization of the Delegate() operator is as a speech act. We also use speech acts as an agent
communication language and JADE provides a straightforward means for integrating
the FIPA ACL language which supports speech acts with our existing systems.

Further details as to how the delegation and related processes will be implemented
based on additional services and protocols will be described in Section 7. Before doing
this, the processes themselves will be specified in Section 6. We begin by providing a
formal characterization of Tasks in the form of Task Specification Trees.

4 Task Specification Trees

Both the declarative and procedural representation and semantics of tasks are central to
the delegation process. The relation between the two representations is also essential if
one has the goal of formally grounding the delegation process in the system implemen-
tation. A task was previously defined abstractly as a tuple (α, φ, cons) consisting of a
composite action α, a goal φ and a set of constraints cons, associated with α . In this
section, we introduce a formal task specification language which allows us to represent

tasks as Task Specification Trees (TST’s). The task specification trees map directly to
procedural representations in our proposed system implementation.

For our purposes, the task representation must be highly flexible, sharable, dynam-
ically extendible, and distributed in nature. Tasks need to be delegated at varying levels
of abstraction and also expanded and modified because parts of complex tasks can be
recursively delegated to different robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable. Additionally, a task structure is
a form of compromise between an explicit plan in a plan library at one end of the spec-
trum and a plan generated through an automated planner [51] at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

The flexibility allows for the use of both central and distributed planning, and also
to move along the scale between these two extremes. At one extreme, the operator plans
everything, creating a central plan, while at the other extreme the agents are delegated
goals and generate parts of the distributed plan themselves. Sometimes neither com-
pletely centralized nor completely distributed planning is appropriate. In those cases
the operator would like to retain some control of how the work is done while leaving
the details to the agents. Task Specification Trees provide a formalism that captures the
scale from one extreme to the next. This allows the operator to specify the task at the
point which fits the current mission and environment.

The task specification formalism should allow for the specification of various types
of task compositions, including sequential and concurrent, in addition to more general
constructs such as loops and conditionals. The task specification should also provide a
clear separation between tasks and platform specific details for handling the tasks. The
specification should focus on what should be done and hide the details about how it
could be done by different platforms.

In the general case, A TST is a declarative representation of a complex multi-agent
task. In the architecture realizing the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task that should be performed.
There are six types of nodes: sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes which require some form of
expansion or planning to generate a plan for achieving the goal.

Each node has a node interface containing a set of parameters, called node param-
eters, that can be specified for the node. The node interface always contains a platform
assignment parameter and parameters for the start and end times of the task, usually
denoted P , TS and TE , respectively. These parameters can be part of the constraints as-
sociated with the node called node constraints. A TST also has tree constraints, express-
ing precedence and organizational relations between the nodes in the TST. Together the
constraints form a constraint network covering the TST. In fact, the node parameters
function as constraint variables in a constraint network, and setting the value of a node
parameter constrains not only the network, but implicitly, the degree of autonomy of an
agent.

4.1 TST Syntax

The syntax of a TST specification has the following BNF:

SPEC ::= TST
TST ::= NAME (’(’ VARS ’)’)? ’=’ (with VARS)? TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS
TASK ::= ACTION | GOAL | (NAME ’=’)? NAME (’(’ ARGS ’)’)? |

while COND TST | if COND then TST else TST |
sequence TSTS | concurrent TSTS

VAR ::= <variable name> | <variable name> ’.’ <variable name>
VARS ::= VAR | VAR ’,’ VARS
CONSTRAINT ::= <constraint>
CONS ::= CONSTRAINT | CONSTRAINT and CONS
ARG ::= VAR | VALUE
ARGS ::= ARG | ARG ’,’ ARGS
VALUE ::= <value>
NAME ::= <node name>
COND ::= <ACL query>
GOAL ::= <goal statement>
ACTION ::= <elementary action>

Where

– <ACL query> is a FIPA ACL query message requesting the value of a boolean
expression.

– <elementary action> is an elementary action name(p0, ..., pN), where p0, ..., pN
are parameters.

– <goal statement> is a goal name(p0, ..., pN), where p0, ..., pN are parameters.

The TST clause in the BNF introduces the main recursive pattern in the specification
language. The right hand side of the equality provides the general pattern of providing
a variable context for a task (using with) and a set of constraints (using where) which
may include the variables previously introduced.

Example Consider a small scenario where the mission is to first scan AreaA and AreaB,
and then fly to Dest4 (Figure 5). A TST describing this mission is shown in Figure 6.
Nodes N0 and N1 are composite action nodes, sequential and concurrent, respectively.
Nodes N2, N3 and N4 are elementary action nodes. Each node specifies a task and has
a node interface containing node parameters and a platform assignment variable. In this
case only temporal parameters are shown representing the respective intervals a task
should be completed in.

In the TST depicted in Figure 6. The nodes N0 to N4 have the task names τ0 to τ4
associated with them respectively. This TST contains two composite actions, sequence
(τ0) and concurrent (τ1) and three elementary actions scan (τ2, τ3) and flyto (τ4). The
resulting TST specification is:

Fig. 5. Example mission of first scanning AreaA and AreaB, and then fly to Dest4.

τ0(TS0
,TE0

) =
with TS1

, TE1
, TS4

, TE4
sequence

τ1(TS1
,TE1

) =
with TS2 , TE2 , TS3 , TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3

,TE3
) = scan(TS3

,TE3
,Speed3,AreaB)

where consτ1 ;
τ4(TS4

,TE4
) = flyto(TS4

,TE4
,Speed4,Dest4)

where consτ0

consτ0 = {TS0 ≤ TS1 ∧ TS1 ≤ TE1 ∧ TE1 ≤ TS4 ∧ TS4 ≤ TE4 ∧ TE4 ≤ TE0}
consτ1 = {TS1

≤ TS2
∧ TS2

≤ TE2
∧ TE2

≤ TE1
∧ TS1

≤ TS3
∧ TS3

≤ TE3
∧ TE3

≤
TE1
}

Fig. 6. A TST for the mission in Figure 5.

4.2 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific and
node-specific constraints which together are intended to represent the context in which
a task should be executed in order to meet the task’s intrinsic requirements, in addition
to contingent requirements demanded by a particular mission. The leaf nodes of a TST
represent elementary actions used in the definition of the composite action the TST rep-
resents and the non-leaf nodes essentially represent control structures for the ordering
and execution of the elementary actions. The semantic meaning of non-leaf nodes is
essentially application independent, whereas the semantic meaning of the leaf nodes
are highly domain dependent. They represent the specific actions or processes that an
agent will in fact execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided or generated to achieve a
specific set of goals, and if the delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be characterized in terms of whether
an agent believes it can successfully execute the task associated with the node in a
given context represented by constraints, given its capabilities and resources. This can
only be a belief because the task will be executed in the future and even under the
best of conditions, real-world contingencies may arise which prevent the agent from
successfully completing the task. The semantics of a TST will be the aggregation of the
semantics for each individual node in the tree.

The formal semantics for TST nodes will be given in terms of the logical predicate
Can() which we have used previously in the formal definition of the S-Delegate speech
act, although in this case, we will add additional arguments. This is not a coincidence
since our goal is to ground the formal specification of the S-Delegate speech act into
the implementation in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate described in Sec-
tion 2, the logical predicateCanX(τ) is used to state that an agentX has the capabilities
and resources to achieve task τ .

An important precondition for the successful application of the speech act is that
the delegator (A) believes in the contractor’s (B) ability to achieve the task τ , (2):
BelACanB(τ). Additionally, an important result of the successful application of the
speech act is that the contractor actually has the capabilities and resources to achieve
the task τ , (4): CanB(τ). In order to directly couple the semantic characterization of
the S-Delegate speech act to the semantic characterization of TST’s, we will assume
that a task τ = (α, φ, cons) in the speech act characterization corresponds to a TST.
Additionally, the TST semantics will be characterized in terms of a Can predicate with
additional parameters to incorporate constraints explicitly.

In this case, theCan predicate is extended to include as arguments a list [p1, . . . , pk]
denoting all node parameters in the node interface together with other parameters pro-
vided in the (with VARS) construct5 and an argument for an additional constraint set

5 For reasons of clarity, we only list the node parameters for the start and end times for a task,
[ts, te, . . .], in this article.

cons provided in the (where CONS) construct.6 Observe that cons can be formed in-
crementally and may in fact contain constraints inherited or passed to it through a recur-
sive delegation process. The formula Can(B, τ, [ts, te, . . .], cons)7 then asserts that an
agent B has the capabilities and resources for achieving task τ if cons, which also con-
tains node constraints for τ , is consistent. The temporal variables ts and te associated
with the task τ are part of the node interface which may also contain other variables
which are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification, will now be
equivalent to the successful solution of a constraint problem in the formal logical sense.
The constraint problem in fact provides the formal semantics for a TST. Constraints
associated with a TST are derived from a reduction process associated with the Can()
predicate for each node in the TST. The generation and solution of constraints will
occur on-line during the delegation process. Let us provide some more specific details.
In particular, we will show the very tight coupling between the TST’s and their logical
semantics.

The basic structure of a Task Specification Tree is:

TST ::= NAME (’(’ VARS1 ’)’)? ’=’ (with VARS2)? TASK (where CONS)?

where VARS1 denotes node parameters, VARS2 denotes additional variables used in the
constraint context for a TST node, and CONS denotes the constraints associated with a
TST node. Additionally, TASK denotes the specific type of TST node. In specifying a
logical semantics for a TST node, we would like to map these arguments directly over
to arguments of the predicate Can(). Informally, an abstraction of the mapping is

Can(agent1, TASK, V ARS1 ∪ V ARS2, CONS) (1)

The idea is that for any fully allocated TST, the meaning of each allocated TST node
in the tree is the meaning of the associated Can() predicate instantiated with the TST
specific parameters and constraints. The meaning of the instantiated CAN() predicate
can then be associated with an equivalent constraint satisfaction problem (CSP) which
turns out to be true or false dependent upon whether that CSP can be satisfied or not.
The meaning of the fully allocated TST is then the aggregation of the meanings of each
individual TST node associated with the TST, in other words, a conjunction of CSP’s.

One would also like to capture the meaning of partial TST’s. The idea is that as
the delegation process unfolds, a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number of fully expanded and allo-
cated nodes in addition to other nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by providing meaning for an unal-
located TST node in terms of both a Can() predicate and a Delegate() predicate:

∃agent2Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (2)
6 For pedagogical expediency, we can assume that there is a constraint language which is reified

in the logic and is used in the CONS constructs.
7 Note that we originally defined τ = (α, φ, cons) as a tuple consisting of a plan, a goal and a

set of constraints for reasons of abstraction when defining the delegation speech act. Since we
now want to explicitly use cons as an argument to the Can predicate in the implementation,
we revert to defining τ = (α, φ) as a pair instead, where the constraints cons are lifted up as
an argument to Can.

Either agent1 can achieve a task, or (exclusively) it can find an agent, agent2, to which
the task can be delegated. In fact, it may need to find one or more agents if the task to
be delegated is a composite action.

Given the S-Delegate(agent1, agent2, TASK) speech act semantics, we know
that if delegation is successful then as one of the postconditions of the speech act,
agent2 can in fact achieve TASK (assuming no additional contingencies):

Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (3)
→ Can(agent2, TASK, V ARS1 ∪ V ARS2, CONS)

Consequently, during the computational process associated with delegation, as the
TST expands through delegation where previously unallocated nodes become allocated,
each instance of the Delegate() predicate associated with an unallocated node is re-
placed with an instance of the Can() predicate. This recursive process preserves the
meaning of a TST as a conjunction of instances of the Can() predicate which in turn
are compiled into a (interdependent) set of CSPs and which are checked for satisfaction
using distributed constraint solving algorithms.

Sequence Node

– In a sequence node, the child nodes should be executed in sequence (from left to
right) during the execution time of the sequence node.

– Can(B,S(α1, ..., αn), [ts, te, . . .], cons)↔
∃t1, . . . , t2n, . . .

∧n
k=1[(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))]
∧ consistent(cons)8

– cons = {ts ≤ t1 ∧ (
∧n
i=1 t2i−1 < t2i)∧ (

∧n−1
i=1 t2i ≤ t2i+1)∧ t2n ≤ te} ∪ cons′9

Concurrent Node

– In a concurrent node each child node should be executed during the time interval
of the concurrent node.

– Can(B,C(α1, ..., αn), [ts, te, . . .], cons)↔
∃t1, . . . , t2n, . . .

∧n
k=1[(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))]
∧ consistent(cons)

– cons = {
∧n
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′

Selector Node
8 The predicate consistent() has the standard logical meaning and checking for consistency

would be done through a call to a constraint solver which is part of the architecture.
9 In addition to the temporal constraints, other constraints may be passed recursively during the

delegation process. cons′ represents these constraints.

– Compared to a sequence or concurrent node, only one of the selector node’s chil-
dren will be executed, which one is determined by a test condition in the selector
node. The child node should be executed during the time interval of the selector
node. A selector node is used to postpone a choice which can not be known when
the TST is specified. When expanded at runtime, the net result can be any of the
legal node types.

Loop Node

– A loop node will add a child node for each iteration the loop condition allows. In
this way the loop node works as a sequence node but with an increasing number
of child nodes which are dynamically added. Loop nodes are similar to selector
nodes, they describe additions to the TST that can not be known when the TST is
specified. When expanded at runtime, the net result is a sequence node.

Goal

– A goal node is a leaf node which can not be directly executed. Instead it has to be
expanded by using an automated planner or related planning functionality. After
expansion, a TST branch representing the generated plan is added to the original
TST.

– Can(B,Goal(φ), [ts, te, . . .], cons)↔
∃α (GenerateP lan(B,α, φ, [ts, te, . . .], cons) ∧ Can(B,α, [ts, te, . . .], cons))
∧ consistent(cons)

Observe that the agent B can generate a partial or complete plan α and then further
delegate execution or completion of the plan recursively via the Can() statement in the
second conjunct.

Elementary Action Node

– An elementary action node specifies a domain-dependent action. An elementary
action node is a leaf node.

– Can(B, τ, [ts, te, . . .], cons)↔
Capabilities(B, τ, [ts, te, . . .], cons) ∧Resources(B, τ, [ts, te, . . .], cons)
∧ consistent(cons)

There are two parts to the definition of Can for an elementary action node. These
are defined in terms of a platform specification which is assumed to exist for each
agent potentially involved in a collaborative mission. The platform specification has
two components.

The first, specified by the predicate Capabilities(B, τ, [ts, te], cons) is intended
to characterize all static capabilities associated with platform B that are required as
capabilities for the successful execution of τ . These will include a list of tasks and/or
services the platform is capable of carrying out. If platform B has the necessary static
capabilities for executing task τ in the interval [ts, te] with constraints cons, then this
predicate will be true.

The second, specified by the predicate Resources(B, τ, [ts, te], cons) are intended
to characterize dynamic resources such as fuel and battery power, which are consum-
able, or cameras and other sensors which are borrowable. Since resources generally
vary through time, the semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource constraint
predicates, one per task. The parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task. For example, assume there
is a task flyto(dest, speed). The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate is defined as a conjunction
of constraints, in the logical sense. The general pattern for this conjunction is:

te = ts + F,C1, ..., CN , where
• F is a function of the resource constraint parameters and possibly local re-

source variables and
• C1, . . . , CN is a possibly empty set of additional constraints related to the re-

source model associated with the task.

Example As an example, consider the task flyto(dest, speed) with the corresponding
resource constraint predicate flyto(ts, te, dest, speed). The constraint model associ-
ated with the task for a particular platform P1 might be:

te = ts +
distance(pos(ts ,P1),dest)

speed ∧ (SpeedMin ≤ speed ≤ SpeedMax)

Depending on the platform, this constraint model may be different for the same task.
In that sense, it is platform dependent.

5 Allocating Tasks in a TST to Platforms

Given a TST representing a complex task, an important problem is to find a set of plat-
forms that can execute these tasks according to the TST specification. The problem is
to allocate tasks to platforms and assign values to parameters such that each task can be
carried out by its assigned platform and all the constraints of the TST are satisfied.

For a platform to be able to carry out a task, it must have the capabilities and the
resources required for the task as described in the previous section. A platform that can
be assigned a task in a TST is called a candidate and a set of candidates is a candi-
date group. The capabilities of a platform are fixed while the available resources will
vary depending on its commitments, including the tasks it has already been allocated.
These commitments are generally represented in the constraint stores and schedulers
of the platforms in question. The resources and the commitments are modeled with
constraints. Resources are represented by variables and commitments by constraints.
These constraints are local to the platform and different platforms may have different
constraints for the same action. Figure 7 shows the constraints for the scan action for
platform P1.

When a platform is assigned an action node in a TST, the constraints associated
with that action are instantiated and added to the constraint store of the platform. The

Fig. 7. The parameterized platform constraints for the scan action. The red/dark variables repre-
sent node parameters in the node interface. The gray variables represent local variables associated
with the platform P1’s constraint model for the scan action. These are connected through depen-
dencies.

platform constraints defined in the constraint model for the task are connected to the
constraint problem defined by the TST via the node parameters in the node interface for
the action node. Figure 8 shows the constraint network after allocating node N2 from
the TST in Figure 6 (on page 14) to platform P1.

A platform can be allocated to more than one node. This may introduce implicit
dependencies between actions since each allocation adds constraints to the constraint
store of the platform. For example, there could be a shared resource that both actions
use. Figure 9 shows the constraint network of platform P1 after it has been allocated
nodes N2 and N4 from the example TST. In this example the position of the platform
is implicitly shared since the first action will change the location of the platform.

A complete allocation is an allocation which allocates every node in a TST to a plat-
form. A completely allocated TST defines a constraint problem that represents all the
constraints for this particular allocation of the TST. As the constraints are distributed
among the platforms it is in effect a distributed constraint problem. If a consistent so-
lution for this constraint problem is found then a valid allocation has been found and
verified. Each such solution can be seen as a potential execution schedule of the TST.
The consistency of an allocation can be checked by a distributed constraint satisfaction
problem (DCSP) solver such as the Asynchronous Weak Commitment Search (AWCS)
algorithm [70] or ADOPT [56].

Example The constraint problem for a TST is derived by recursively reducing the Can
predicate statements associated with each task node with formally equivalent expres-
sions, beginning with the top-node τ0 until the logical statements reduce to a constraint
network. Below, we show the reduction of the TST from Figure 6 (on page 14) when
there are three platforms, P0, P1 and P2, with the appropriate capabilities. P0 has been
delegated the composite actions τ0 and τ1. P0 has recursively delegated parts of these
tasks to P1 (τ2 and τ4) and P2(τ3).

Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(α1, α4), [ts0 , te0], cons)↔
∃ts1 , te1 , ts4 , te4(Can(P0, α1, [ts1 , te1], consP0

)
∨ ∃a1Delegate(P0, a1, α1, [ts1 , te1], consP0

))
∧ (Can(P0, α4, [ts4 , te4], consP0

)
∨ ∃a2Delegate(P0, a2, α4, [ts4 , te4], consP0))

Fig. 8. The combined constraint problem after allocating node N2 to platform P1.

Let’s continue with a reduction of the 1st element in the sequence α1 (the 1st conjunct
in the previous formula on the right-hand side of the biconditional):

Can(P0, α1, [ts1 , te1], consP0
)

∨ ∃a1(Delegate(P0, a1, α1, [ts1 , te1], consP0
))

Since P0 has been allocated α1, the 2nd disjunct is false.

Can(P0, α1, [ts1 , te1], consP0
) =

Can(P0, C(α2, α3), [ts1 , te1], consP0)↔
∃ts2 , te2 , ts3 , te3 ((Can(P0, α2, [ts2 , te2], consP0) ∨
∃a1Delegate(P0, a1, α2, [ts2 , te2], consP0

)) ∧
(Can(P0, α3, [ts3 , te3], consP0

) ∨
∃a2Delegate(P0, a2, α3, [ts3 , te3], consP0

)))

The node constraints for τ0 and τ1 are then added to P0’s constraint store. What remains
to be done is a reduction of tasks τ2 and τ4 associated with P1 and τ3 associated with
P2. We can assume that P1 has been delegated α2 and P2 has been delegated α3 as
specified. Consequently, we can reduce to

Can(P0, α1, [ts1 , te1], consP0
) =

Can(P0, C(α2, α3), [ts1 , te1], consP0
)↔

∃ts2 , te2 , ts3 , te3 (Can(P1, α2, [ts2 , te2], consP0
) ∧

Can(P2, α3, [ts3 , te3], consP0))

Fig. 9. The parameter constraints of platform P1 when allocated node N2 and N4.

Since P0 has recursively delegated α4 to P1 (the 2nd conjunct in the original formula
on the right-hand side of the biconditional) we can complete the reduction and end up
with the following:
Can(P0, α0, [ts0 , te0], cons) = Can(P0, S(C(α2, α3), α4), [ts0 , te0], cons)↔
∃ts1 , te1 , ts4 , te4
∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2], consP1) ∧ Can(P2, α3, [ts3 , te3], consP2)
∧ Can(P1, α4, [ts4 , te4], consP1)

These remaining tasks are elementary actions and consequently the definitions of
Can for these action nodes are platform dependent. When a platform is assigned to
an elementary action node a local constraint problem is created on the platform and
then connected to the global constraint problem through the node parameters of the as-
signed node’s node interface. In this case, the node parameters only include temporal
constraints and these are coupled to the internal constraint variables associated with the
elementary actions. The completely allocated and reduced TST is shown in Figure 10.
The reduction of Can for an elementary action node contains no further Can pred-
icates, since an elementary action only depends on the platform itself. All remaining
Can predicates in the recursion are replaced with constraint sub-networks associated
with specific platforms as shown in Figure 10.

In summary, the delegation process, if successful, provides a TST that is both valid
and completely allocated. During this process, a network of distributed constraints is
generated which if solved, guarantees the validity of the multi-agent solution to the
original problem, provided that additional contingencies do not arise when the TST is
actually executed in a distributed manner by the different agents involved in the collab-
orative solution. This approach is intended to ground the original formal specification
of the S-Delegate speech act with the actual processes of delegation used in the im-
plementation. Although the process is pragmatic in the sense that it is a computational
process, it in effect strongly grounds this process formally, due to the reduction of the
collaboration to a distributed constraint network which is in effect a formal representa-
tion. This results in real-world grounding of the semantics of the Delegation speech act
via the Can predicate.

Fig. 10. The completely allocated and reduced TST showing the interaction between the TST
constraints and the platform dependent constraints.

6 The Delegation Process

Now that the S-Delegate speech act, the Task Specification Tree representation, and the
formal relation between them has been considered, we turn our attention to describing
the computational process that realizes the speech act in a robotic platform.

According to the semantics of the Delegate(A,B,τ = (α, φ)) speech act the dele-
gator A must have φ as a goal, believe that there is an agent B that is able to achieve
τ , and believe that it is dependent on B for the achievement of τ via action α. In the
following, we assume that the agent A already has φ as a goal and that it is dependent
on some other agent to achieve the task. Consequently, the main issue is to find an agent
B that is able to achieve the task τ .

This could be done in at least two ways. Agent A could have a knowledge base
encoding all its knowledge about what other agents can and can not do and then rea-
son about which agents could achieve τ . This would be very similar to a centralized
form of multi-agent planning since the assumption is that τ is a complex task. This is
problematic because it would be difficult to keep such a knowledge base up-to-date and
it would be quite complex given the heterogeneous nature of the platforms involved.
Additionally, the pool of platforms accessible for any given mission at a given time is
not known since platforms come and go.

As an alternative, the process of finding agents to achieve tasks will be done in
a more distributed manner through communication among agents and an assumption

that elementary actions are platform dependent and the details of such actions are not
required in finding appropriate agents to achieve the tasks at hand.

The following process takes as input a complex task represented as a TST. The TST
is intended to describe a complex mission. The process will find an appropriate agent
or set of agents capable of achieving the mission possibly through the use of recursive
delegation. If the allocation of agents in the TST is approved by the delegators recur-
sively, then the mission can then be executed. Note that the mission schedule will be
distributed among the group of agents that have been allocated tasks and the mission
may not necessarily start immediately. This will depend on the temporal constraints
used in the TST specification. But commitments to the mission will have been made
in the form of constraints in the constraint stores and schedulers of the individual plat-
forms. Note also, that the original TST given as input does not have to be completely
specified. It may contain goal nodes which require expansion of the TST with additional
nodes.

The process is as follows:

1. Allocate the complex task through an iterative and recursive process which finds
a platform to whom the task can be delegated to. This process expands goals into
tasks, assigns platforms to tasks, and assigns values to task parameters. The input
is a TST and the output is a fully expanded, assigned and parameterized TST.

2. Approve the mission or request the next consistent instantiation. Repeat 1 until
approved or no more instantiations.

3. If no approved instantiated mission is found then fail.
4. Otherwise, execute the approved mission until finished or until constraints associ-

ated with the mission are violated during execution. While executing the mission,
constraints are monitored and their parameterization might be changed to avoid
violations on the fly.

5. If constraints are violated and can not be locally repaired goto 1 and begin a recur-
sive repair process.

The first step of the process corresponds to finding a set of platforms that satisfy
the preconditions of the S-Delegate speech act for all delegations in the TST. The ap-
proval corresponds to actually executing the speech act where the postconditions are
implicitly represented in the constraint stores and schedulers of the platforms. During
the execution step, the contractors are committed to the constraints agreed upon during
the approval of the tasks. They do have limited autonomy during execution in the form
of being able to modify internal parameters associated with the tasks as long as they do
not violate those constraints externally agreed upon in the delegation process.

6.1 An Algorithm for Allocating Complex Tasks Specified by TSTs

The most important part of the Delegation Process is to find a platform that satisfies
the preconditions of the S-Delegate speech act. This is equivalent to finding a platform
which is able to achieve the task either itself of through recursive delegation. This can
be viewed as a task allocation problem where each task in the TST should be allocated
to an agent.

Multi-robot task allocation (MRTA) is an important problem in the multi-agent
community [38, 39, 53, 63, 71, 72]. It deals with the complexities involved in taking a
description of a set of tasks and deciding which of the available robots should do what.
Often the problem also involves maximizing some utility function or minimizing a cost
function. Important aspects of the problem are what types of tasks and robots can be
described, what type of optimization is being done, and how computationally expensive
the allocation is.

This section presents a heuristic search algorithm for allocating a fully expanded
TST to a set of platforms. A successful allocation allocates each node to a platform
and assigns values to parameters such that each task can be carried out by its assigned
platform and all the constraints of the TST are satisfied. During the allocation, temporal
variables will be instantiated resulting in a schedule for executing the TST.

The algorithm starts with an empty allocation and extends it one node at a time
in a depth-first order over the TST. To extend the allocation, the algorithm takes the
current allocation, finds a consistent allocation of the next node, and then recursively
allocates the rest of the TST. Since a partial allocation corresponds to a distributed con-
straint satisfaction problem, a DCSP solver is used to check whether the constraints are
consistent. If all possible allocations of the next node violate the constraints, then the
algorithm uses backtracking with backjumping to find the next allocation.

The algorithm is both sound and complete. It is sound since the consistency of the
corresponding constraint problem is verified in each step and it is complete since every
possible allocation is eventually tested. Since the algorithm is recursive the search can
be distributed among multiple platforms.

To improve the search, a heuristic function is used to determine the order platforms
are tested. The heuristic function is constructed by auctioning out the node to all plat-
forms with the required capabilities. The bid is the marginal cost for the platform to
accept the task relative to the current partial allocation. The cost could for example be
the total time required to execute all tasks allocated to the platform.

To increase the efficiency of the backtracking, the algorithm uses backjumping to
find the latest partial allocation which has a consistent allocation of the current node.
This preserves the soundness as only partial allocations that are guaranteed to violate
the constraints are skipped.

AllocateTST The AllocateTST algorithm takes a TST rooted in the nodeN as input and
finds a valid allocation of the TST if possible. To check whether a node N can be allo-
cated to a specific platform P the TryAllocateTST algorithm is used. It tries to allocate
the top node N to P and then tries to recursively find an allocation of the sub-TSTs.

AllocateTST(Node N)

1. Find the set of candidates C for N .
2. Run an auction forN among the candidates in C and order C according to the bids.
3. For each candidate c in the ordered set C:

(a) If TryAllocateTST(c, N) then return success.
4. Return failure.

TryAllocateTST(Platform P, Node N)

1. AllocateTST P to N .
2. If the allocation is inconsistent then undo the allocation and return false.
3. For each sub-TST n of N do

(a) If AllocateTST(n) fails then undo the allocation and do a backjump.

4. An allocation has been found, return true.

Node Auctions Broadcasting for candidates for a node N only returns platforms with
the required capabilities for the node. There is no information about the usefulness or
cost of allocating the node to the candidate. Blindly testing candidates for a node is an
obvious source of inefficiency. Instead, the node is auctioned out to the candidates. Each
bidding platform bids its marginal cost for executing the node. I.e., taking into account
all previous tasks the platform has been allocated, how much more would it cost the
platform to take on the extra task. The cost could for example be the total time needed
to complete all tasks. To be efficient, it is important that the cost can be computed by
the platform locally. We are currently only evaluating the cost of the current node, not
the sub-TST rooted in the node. This leaves room for interesting extensions. Low bids
are favorable and the candidates are sorted according to their bids. The bids are used as
a heuristic function that increases the chance of finding a suitable platform early in the
search.

7 Extending the FIPA Abstract Architecture for Delegation

In Section 3, we provided an overview of the software architecture being used to support
the delegation-based collaborative system. It consists of an agent layer added to a legacy
system. There are four agents in this layer with particular responsibilities, the Interface
Agent, the Resource Agent, the Delegation Agent and the Executor Agent. In previous
sections, we described the delegation process which includes recursive delegation, the
generation of TSTs, allocation of tasks in TST’s to agents, and the use of distributed
constraint solving in order to guarantee the validity of an allocation and solution of a
TST. This complex set of processes will be implemented in the software architecture
by extending the FIPA Abstract Architecture with a number of application dependent
services and protocols:

– We will define a Interface Service, Resource Service, Delegation Service and Ex-
ecutor Service, associated with each Interface, Resource, Delegation, and Executor
Agent, respectively, on each platform. These services are local to agents and not
global.

– We will also define three interaction protocols, the Capability Lookup Protocol,
Auction Protocol, and Delegation Protocol. These protocols will be used by the
agents to guide the interaction between them as the delegation process unfolds.

7.1 Services

To implement the Delegation Process the Directory Facilitator and four new services
are needed. The Delegation Service is responsible for coordinating delegations. The
Delegation Service uses the Interface Service to communicate with other platforms,
the Directory Facilitator to find platforms with appropriate capabilities, the Resource
Service to keep track of local resources and the Executor Service to execute tasks using
the legacy system.

Directory Facilitator The Directory Facilitator (DF) is part of the FIPA Abstract Ar-
chitecture. It provides a registry over services where a service name is associated with
an agent providing that service. In the collaborative architecture the DF is used to keep
track of the capabilities of platforms. Every platform should register the names of the
tasks that it has the capability to achieve. This provides a mechanism to find all plat-
forms that have the appropriate capabilities for a particular task. To check that a plat-
form also has the necessary resources a more elaborate procedure is needed which is
provided by the Resource Service. The Directory Facilitator also implements the Capa-
bility Lookup protocol described below.

The Interface Service The Interface Service, implemented by an Interface Agent, is a
clearinghouse for communication. All requests for delegation and other types of com-
munication pass through this service. Externally, it provides the interface to a specific
robotic system. The Interface Service does not implement any protocols, rather it for-
wards approved messages to the right internal service.

The Resource Service The Resource Service, implemented by a Resource Agent, is
responsible for keeping track of the local resources of a platform. It determines whether
the platform has the resources to achieve a particular task with a particular set of con-
straints. It also keeps track of the bookings of resources that are required by the tasks the
platform has committed to. When a resource is booked a booking constraint is added to
the local constraint store. During the execution of a complex task the Resource Service
is responsible for monitoring the resource constraints of the task and detecting viola-
tions as soon as possible. Since resources are modeled using constraints this reasoning
is mainly a constraint satisfaction problem (CSP) which is solved using local solvers
that are part of the service.

In the prototype implementation, constraints are expressed in ESSENCE’ which is
a sub-set of the ESSENCE high-level language for specifying constraint problems [35].
The idea behind ESSENCE is to provide a high-level, solver independent, language
which can be translated or compiled into solver specific languages. This opens up the
possibility for different platforms to use different local solvers. We use the transla-
tor Tailor [37] which can compile ESSENCE’ problems into either Minion [36] or
ECLiPSe [65]. We currently use Minion as the local CSP solver. The Resource Ser-
vice implements the Auction protocol described below.

Fig. 11. An overview of the agents involved in the Auction (A), Capability Lookup (C), and
Delegation (D) protocols.

The Delegation Service The Delegation Service, implemented by a Delegation Agent,
coordinates delegation requests to and from the platform using the Executor, Resource
and Interface Services. It does this by implementing the Delegation Process described
in Section 6. The Delegation Service implements the Delegation Protocol described
below.

The Executor Service The Executor Service, implemented by a Executor Agent, is
responsible for executing tasks using the legacy system on the platform. In the simplest
case this corresponds to calling a single function in the legacy system while in more
complicated cases the Executor Service might have to call local planners to generate a
local plan to achieve a task with a particular set of constraints.

7.2 Protocols

This section describes the three main protocols used in the collaboration framework:
the Capability Lookup Protocol, the Auction Protocol, and the Delegation Protocol. An
overview of the agents involved in the protocols is shown in Figure 11.

The Capability Lookup Protocol The Capability Lookup Protocol is based on the
FIPA Request Protocol. This protocol is used to find all platforms that have the capabil-
ities for a certain task. The content of the request message is the name of the task. The
reply is an inform message with the platforms that have the capabilities required for the
task.

The Auction Protocol The Auction Protocol is based on the FIPA Request Protocol.
The protocol is used to request bids for tasks from platforms. The bid should reflect

the cost for the platform to accept the task and is calculated by an auction strategy. An
auction strategy could for instance be the marginal cost strategy where the bid is the
marginal cost (in time) for a platform to take on the task. The content of the request
message is the task that is being auctioned out. If the platform makes a bid, then the
reply is an inform message containing the task and the bid. Otherwise, a refuse mes-
sage is returned. One reason for not making a bid could be that the platform lacks the
capabilities or resources for the task.

The Delegation Protocol The Delegation Protocol, which is an extension of the FIPA
Contract Net protocol [34, 61], implements the Delegation Process described in Sec-
tion 6. The Delegation Protocol, like the Contract Net Protocol, has two phases, each
containing the sending and receiving of a message. The first phase allocates platforms
to tasks satisfying the preconditions of the S-Delegate speech act and the second phase
executes the task satisfying the postconditions of the S-Delegate speech act.

In the first phase a call-for-proposal message is sent from the delegator, and a pro-
pose or refuse message is returned by the potential contractor. The content is a declar-
ative representation of the task in the form of a TST and a set of constraints. When a
potential contractor receives a call-for-proposal message, an instance of the Delegation
Protocol is started. When the first phase is completed, if successful, the preconditions
for the S-Delegate speech act are satisfied and all the sub-tasks in the TST have been
allocated to platforms such that all the constraints are satisfied.

In the second phase an accept-proposal is sent from the delegator to the contractor.
This starts the execution of the task. If the execution is successful, then the contractor
returns an inform message otherwise a failure message. Such failure messages will
invoke repair processes that will not be described in this article.

Fig. 12. An overview of the Delegation Protocol.

An overview of the steps in the Delegate Protocol is shown in Figure 12. When
a Delegation Agent receives a call-for-proposal message with a TST the platform be-

comes a potential contractor. To check if the platform can accept the delegation it first
updates that part of the its constraint network representing all the constraints related to
the TST. This is done by instantiating the platform specific resource constraints for the
action associated with the top node of the TST. If the resulting constraint problem is in-
consistent, then a refuse message is returned to the delegator. Otherwise, the resources
required for the node are booked through the Resource Service and the sub-tasks of the
TST are recursively delegated. When a platform books its resources, it places commit-
ments in the form of constraints in its constraint stores and schedulers which reserve
resources and schedule activities relative to the temporal constraints which are part of
the TST solution.

Fig. 13. An overview of the recursive delegation of sub-tasks part of the Delegation Protocol.

For each sub-task of the TST the Delegation Protocol goes through the steps shown
in Figure 13. First, it will use the Capability Lookup Protocol to find all the platforms
that have the capabilities, but not necessarily the resources, to achieve the task. Then
it will use the Auction Protocol to request bids from these platforms in parallel. The
bids are used to decide the order in which the platforms are tried. The platform with the
lowest bid, i.e. the lowest cost, will be allocated the task first. If that allocation fails,
then the platform with the next lowest bid will be allocated the task. Allocating a task
to a platform involves sending a call-for-proposal message with the task to the plat-
form. This will trigger the Delegation Protocol on that platform. If an allocation fails,

then backtracking starts. If backtracking has tested all the choices, then the potential
contractor returns a refuse message to the delegator.

If all sub-tasks can either be allocated to the platform or delegated to some other
platform, then a propose message with the allocated TST is returned to the delegator.

8 A Collaborative UAS Case Study

On December 26, 2004, a devastating earthquake of high magnitude occurred off the
west coast of Sumatra. This resulted in a tsunami which hit the coasts of India, Sri
Lanka, Thailand, Indonesia, and many other islands. Both the earthquake and the tsunami
caused great devastation. During the initial stages of the catastrophe, there was a great
deal of confusion and chaos in setting into motion rescue operations in such wide ge-
ographic areas. The problem was exacerbated by a shortage of manpower, supplies,
and machinery. The highest priorities in the initial stages of the disaster were searching
for survivors in many isolated areas where road systems had become inaccessible and
providing relief in the form of delivery of food, water, and medical supplies. Similar
real-life scenarios have occurred more recently in China and Haiti where devastating
earthquakes have caused tremendous material and human damage.

Let us assume that one has access to a fleet of autonomous unmanned helicopter
systems with ground operation facilities. How could such a resource be used in the
real-life scenario described?

A prerequisite for the successful operation would be the existence of a multi-agent
software infrastructure for assisting emergency services. At the very least, one would
require the system to allow mixed-initiative interaction with multiple platforms and
ground operators in a robust, safe, and dependable manner. As far as the individual
platforms are concerned, one would require a number of different capabilities, not nec-
essarily shared by each individual platform, but by the fleet in total. These capabilities
would include: the ability to scan and search for salient entities such as injured humans,
building structures, or vehicles; the ability to monitor or survey these salient points of
interest and continually collect and communicate information back to ground opera-
tors and other platforms to keep them situationally aware of current conditions; and
the ability to deliver supplies or resources to these salient points of interest if required.
For example, identified injured persons should immediately receive a relief package
containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume there are two separate
legs or parts to the emergency relief scenario in the context sketched previously.

Leg I In the first part of the scenario, it is essential that for specific geographic areas, the
unmanned aircraft platforms cooperatively scan large regions in an attempt to iden-
tify injured persons. The result of such a cooperative scan would be a saliency map
pinpointing potential victims and their geographical coordinates and associating
sensory output such as high resolution photos and thermal images with the poten-
tial victims. The saliency map could then be used directly by emergency services
or passed on to other unmanned aircrafts as a basis for additional tasks.

Leg II In the second part of the scenario, the saliency map from Leg I would be used
for generating and executing a plan for the UAS to deliver relief packages to the
injured. This should also be done in a cooperative manner.

We will now consider a particular instance of the emergency services assistance
scenario. In this instance there is a UAS consisting of two platforms (P1 and P2) and an
operator (OP1). In the first part of the scenario the UAS is given the task of searching
two areas for victims. The main capability required by the platforms is to fly a search
pattern scanning for people. In this scenario, both platforms have this capability. It is
implemented by looking for salient features in the fused video streams from color and
thermal cameras [59]. In the second part the UAS is given the task to deliver boxes
with food and medical supplies to the identified victims. To transport a box it can either
be carried directly by an unmanned aircraft or it can be loaded onto a carrier which is
then transported to a key position from where the boxes are distributed to their final
locations. In this scenario, both platforms have the capability to transport a single box
while only platform P1 has the capability to transport a carrier. Both platforms also
have the capabilities to coordinate sequential and concurrent tasks.

8.1 Leg I: The Victim Search Case Study

The victim search case study covers the first part of the emergency services assistance
scenario. In this particular scenario, see Figure 5 on page 14, the UAS should first scan
AreaA and AreaB for survivors, and then fly to Dest4 to be ready to load emergency
supplies. The TST for this mission is shown in Figure 6 on page 14.

To carry out the mission, the operator needs to delegate the TST to one of the plat-
forms. This is done by invoking the Delegation Protocol in the operator ground station.
The protocol will find a platform that can achieve the complex task and then give the
operator the option to approve the choice. If the choice is approved, then the mission
will be carried out.

The Delegation Agent of OP1 starts the process of finding a platform that can
achieve the TST by finding all platforms that have the capabilities for the top node
N0, which is both platforms. It then auctions out N0 to both platforms to find the best
initial choice. In this case, the marginal cost is the same for both platforms, so the first
platform, P1, is chosen. The Delegation Agent of OP1 then sends a call-for-proposal
message with the TST to the winner, P1. This invokes the Delegation Protocol on P1.

Fig. 14. The schedule after assigning node N0 to P1.

P1 is now responsible for N0 and for recursively delegating the nodes in the TST
that it is not able to do itself. See Figure 14 for the schedule. The allocation algorithm

traverses the TST in depth-first order. P1 will first find a platform for node N1. When
the entire sub-TST rooted in N1 is allocated then it will find an allocation for node
N4. Node N1 is a composite action node which has the same marginal cost for all plat-
forms. P1 therefore allocatesN1 to itself. The extended schedule is shown in Figure 15.
The constraints from nodes N0–N1 are added to the constraint network of P1. The net-
work is consistent because the composite action nodes describe a schedule without any
restrictions.

Fig. 15. The schedule after assigning node N1 to P1.

Platform P1 should now allocate the elementary action nodes N2 and N3. A capa-
bility lookup operation followed by an auction of node N2 determines the candidates
P1 and P2. A call-for-proposal message containing N2 is sent to platform P2.

P2 receives the call-for-proposal message, loads and instantiates the platform’s re-
source constraint for the scan action. The constraint network is connected to the con-
straint network of the TST. The network is then checked for consistency. Since the
network is consistent, node N2 is now allocated to platform P2. P2 returns a propose
message to P1. The constraint network now involves both platforms. Figure 16 shows
the schedule.

Fig. 16. The schedule after assigning node N2 to P2.

Continuing with node N3, platform P1 searches for candidates for the node. The
capability lookup and auctioning determines platform P1 as a better choice than P2

for the second scan node. P1 delegates the node to itself since the extended constraint
network is consistent. Figure 17 shows the extended schedule.

The remaining node, N4 is delegated to platform P2. The entire TST is now allo-
cated. The complete schedule is shown in Figure 18.

The operator approves the allocation and starts the mission. An accept-proposal
message is sent to P1. P1 recursively traverses the TST marking the nodes as ready for

Fig. 17. The schedule after assigning node N3 to P1.

Fig. 18. The schedule after assigning node N4 to P2, which is the complete schedule.

execution in depth-first order. Nodes allocated to another platform are marked by send-
ing a accept-proposal to the platform. P1 therefore sends accept-proposal messages to
P2 for node N2 and N4. The execution starts and the platforms scans the area creating
the saliency map shown in Figure 19.

8.2 Leg II: The Supply Delivery Case Study

The supply delivery case study covers the second part of the emergency services assis-
tance scenario. One approach to solving this type of logistics problems is to use a task
planner to generate a sequence of actions that will transport each box to its destina-
tion. Each action must then be executed by a platform. We have previously shown how
to generate pre-allocated plans and monitor their execution [21, 51]. In this paper we
show how a plan without explicit allocations expressed as a TST can be cooperatively
allocated to a set of unmanned aircraft platforms which where not known at the time of
planning.

In this particular scenario, shown in Figure 19, five survivors (S1–S5) are found in
Leg I, and there are two platforms (P1–P2) and one carrier available. At the same time
another operator OP2 is performing a mission with the platforms P3 and P4 north of
the area in Figure 19. P3 is currently idle and OP1 is therefore allowed to borrow it if
necessary.

To start Leg II, the operator creates a TST, for example using a planner, that will
achieve the goal of distributing relief packages to all survivor locations in the saliency
map. The resulting TST is shown in Figure 20. The TST contains a sub-TST (N1–
N12) for loading a carrier with four boxes (N2–N6), delivering the carrier (N7), and
unloading the packages from the carrier and delivering them to the survivors (N8–N12).
A package must also be delivered to the survivor in the right uppermost part of the

Fig. 19. The disaster area with platforms P1–P3, survivors S1–S5, and operators OP1 and OP2.

region, far away from where most of the survivors were found (N13). The delivery
of packages can be done concurrently to save time, while the loading, moving, and
unloading of the carrier is a sequential operation.

To delegate the TST, the Delegation Agent of OP1 searches for a platform that can
achieve the TST. It starts by finding all platforms that have the capabilities for the top
node N0, which is both platforms. It then auctions out N0 to both platforms to find the
best initial choice. In this case, the marginal cost is the same for both platforms and
the first platform, P1 is chosen. The Delegation Agent of OP1 then sends a call-for-
proposal message with the TST to the winner, P1. This invokes the Delegation Protocol
on P1.

P1 is now responsible for N0 and for recursively delegating the nodes in the TST
that it is not able to do itself. The allocation algorithm traverses the TST in depth-first
order. P1 will first find a platform for node N1. When the entire sub-TST rooted in N1

is allocated then it will find an allocation for nodeN13. NodesN1 andN2 are composite
action nodes which have the same marginal cost for all platforms. P1 therefore allocates
N1 and N2 to itself. The constraints from nodes N0–N2 are added to the constraint
network of P1. The network is consistent because the composite action nodes describe
a schedule without any restrictions.

Below node N2 are four elementary action nodes. Since P1 is responsible for N2,
it tries to allocate them one at the time. For elementary action nodes, the choice of
platform is the key to a successful allocation. This is because of each platform’s unique
state, constraint model for the action, and available resources. The candidates for node
N3 are platforms P1 and P2. P1 is closest to the package depot and therefore gives the
best bid for the node. P1 is allocated to N3. For node N4, platform P1 is still the best
choice, and it is allocated to N4. Given the new position of P1 after being allocated N3

Fig. 20. The TST for the supply delivery case study.

and N4, P2 is now closest to the depot resulting in the lowest bid and is allocated to N5

andN6. The schedule initially defined by nodesN0–N2 is now also constrained by how
long it takes for P1 and P2 to carry out action nodes N3–N6. The constraint network is
distributed among platforms P1 and P2.

The next node to allocate for P1 is nodeN7, the carrier delivery node. P1 is the only
platform that has the capabilities for the fly carrier task and is allocated the node. Con-
tinuing with nodes N8–N12, the platform with the lowest bid for each node is platform
P1, since it is in the area after delivering the carrier. P1, is therefore allocated all the
nodes N8–N12.

The final node, N13, is allocated to platform P2 and the allocation is complete. The
resulting schedule is shown in Figure 21.

The only non-local information used by P1 was the capabilities of the available
platforms which was gathered through a broadcast. Everything else is local. The bids are
made by each platform based on local information and the consistency of the constraint
network is checked through distributed constraint satisfaction techniques.

The total mission time is 58 minutes, which is much longer than the operator ex-
pected. Since the constraint problem defined by the allocation of the TST is distributed
between the platforms, it is possible for the operator to modify the constraint problem
by adding more constraints, and in this way modify the resulting task allocation. The
operator puts a time constraint on the mission, restricting the total time to 30 minutes.

To re-allocate the TST with the added constraint, operator OP1 sends a reject-
proposal to platform P1. The added time constraint makes the current allocation incon-
sistent. The last allocated node must therefore be re-allocated. However, no platform for
N13 can make the allocation consistent, not even the unused platform P3. Backtracking
starts. Platform P1 is in charge, since it is responsible for allocating node N13. The
N1 sub-network is disconnected. Trying different platforms for node N13, P1 discovers

Fig. 21. The complete schedule when using two platforms and no deadline.

that N13 can be allocated to P2. P1 sends a backjump-search message to the platform
in charge of the sub-TST with top-node N1, which happens to be P1. When receiv-
ing the message, P1 continues the search for the backjump point. Since removing all
constraints due to the allocation of node N1 and its children made the problem consis-
tent, the backjump point is in the sub-TST rooted in N1. Removing the allocations for
sub-tree N8 does not make the problem consistent so further backjumping is necessary.
Notice that with a single consistency check the algorithm could deduce that no possible
allocation of N8 and its children can lead to a consistent allocation of N13. Removing
the allocation for node N7 does not make a difference either. However, removing the
allocations for the sub-TST N2 makes the problem consistent. When finding an allo-
cation of N13 after removing the constraints from N6 the allocation process continues
from N6 and tries the next platform for the node, P1.

Fig. 22. The resulting schedule after adding the new time constraint.

When the allocation reaches node N11 it is discovered that since P1 has taken on
nodes N3–N8, there is not enough time left for P1 to unload the last two packages from
the carrier. Instead P3, even though it makes a higher bid for N11–N12, is allocated to
both nodes. Finally platform P2 is allocated to nodeN13. It turns out that since platform
P2 helped P1 loading the carrier, it has not enough time to deliver the final package. In-
stead, a new backjump point search starts, finding node N5. The search continues from
N5. This time, nodes N3–N9 are allocated to platform P1, platform P3 is allocated to
node N10–N12, and platform P2 is allocated to node N13. The allocation is consistent.

The resulting schedule is shown in Figure 22. The allocation algorithm finishes on plat-
form P1, by sending a propose message back to the operator. The operator inspects the
allocation and approves it, thereby confirming the delegation and starting the execution
of the mission.

9 Related Work

Due to the multi-disciplinary nature of the work considered here, there is a vast amount
of related work too numerous to mention. In addition to the work referenced in the
article, we instead consider a number of representative references from the areas of
autonomy, cooperative multi-robot systems, task allocation from a robotic perspective,
and auctions.

The concept of autonomy has a long and active history in multi-agent systems [44,
47]. One early driving force was space missions that focused on the problem of inter-
action with autonomous agents and the adjustability of this autonomy [4, 26]. Later,
Hexmoor and McLaughlan argue that reasoning about autonomy is an integral compo-
nent of collaboration among computational units [45]. Hexmoor also argues that trust
is essential for autonomy [46]. According to his definition, the autonomy of an agent A
with respect to a task t is the degree of self-determination the agent possesses to per-
form the task. This is similar to the view on autonomy in our approach, where the level
of autonomy for an agent is dependent on the strictness of the constraints on the tasks
that are delegated to the agent.

Cooperative multi-robot systems have a long history in robotics, multi-agent sys-
tems and AI in general. One early study presented a generic scheme based on a dis-
tributed plan merging process [2], where robots share plans and coordinates their own
plans to produce coordinated plans. In our approach, coordination is achieved by find-
ing solutions to a distributed constraint problem representing the complex task, rather
than by sharing and merging plans. Another early work is ALLIANCE [57], which is
a behavior-based framework for instantaneous task assignment of loosely coupled sub-
tasks with ordering dependencies. Each agent decides on its own what tasks to do based
on its observations of the world and the other agents. Compared to our approach, this
is a more reactive approach which does not consider what will happen in the future.
M+ [3] integrates mission planning, task refinement and cooperative task allocation. It
uses a task allocation protocol based on the Contract Net protocol with explicit, pre-
defined capabilities and task costs. A major difference to our approach is that in M+
there is no temporally extended allocation. Instead, robots make incremental choices
of tasks to perform from the set of executable tasks, which are tasks whose prereq-
uisite tasks are achieved or underway. The M+CTA framework [1] is an extension of
M+, where a mission is decomposed into a partially ordered set of high-level tasks.
Each task is defined as a set of goals to be achieved. The plan is distributed to each
robot and task allocation is done incrementally like in M+. When a robot is allocated
a task, it creates an individual plan for achieving the task’s goals independently of the
other agents. After the planning step, robots negotiate with each other to adapt their
plans in the multi-robot context. Like most negotiation-based approaches, M+CTA first
allocates the tasks and then negotiates to handle coordination. This is different from

our approach which finds a valid allocation of all the tasks before committing to the
allocation. ASyMTRe [58], uses a reconfigurable schema abstraction for collaborative
task execution providing sensor sharing among robots, where connections among the
schemas are dynamically formed at runtime. The properties of inputs and outputs of
each schema is defined and by determining a valid information flow through a com-
bination of schemas within, and across, robot team members a coalition for solving a
particular task can be formed. Like ALLIANCE, this is basically a reactive approach
which considers the current task, rather than a set of related tasks as in our approach.
Other Contract-Net and auction-based systems similar to those described above are
COMETS [53], MURDOCH system [39], Hoplites [49] and TAEMS [12].

Many task allocation algorithms are, as mentioned above, auction-based [13, 39, 49,
63, 71, 72]. There, tasks are auctioned out and allocated to the agent that makes the best
bid. Bids are determined by a utility function. The auction concept decentralizes the task
allocation process which is very useful especially in multi-robot systems, where cen-
tralized solutions are impractical. For tasks that have unrelated utilities, this approach
has been very successful. The reason is that unrelated utilities guarantees that each task
can be treated as an independent entity, and can be auctioned out without affecting other
parts of the allocation. This means that a robot does not have to take other tasks into
consideration when making a bid. More advanced auction protocols have been devel-
oped to handle dependencies between tasks. These are constructed to deal with com-
plementarities. Examples are sequential single item auctions [50] and combinatorial
auctions [64]. These auctions typically handle that different combinations of tasks have
different bids, which can be compared to our model where different sets of allocations
result in different restrictions to the constraint network between the platforms.

The sequential single item (SSI) auction [50] is of special interest since it is similar
to our approach. In SSI auctions, like our task allocation approach, tasks are auctioned
out in sequence, one at a time to make sure the new task fits with the previous alloca-
tions. The difference is what happens when there is no agent that can accept the next
task. In SSI auctions common strategies are to return a task in exchange for the new
task or to start exchanging tasks with other agents. This is basically a greedy approach
which is incomplete. Our approach on the other hand uses backtracking which is a com-
plete search procedure. Normally SSI auctions are applied to problems where it is easy
to find a solution but it is hard to find a good solution. When allocating the tasks in a
TST it is often hard to find any solution and SSI auctions are therefore not appropriate.

Combinatorial auctions deal with complementarities by bidding on bundles contain-
ing multiple items. Each bidder places bids on all the bundles that are of interest, which
could be exponentially many. The auctioneer must then select the best set of bids, called
the winner determination problem, which is NP-hard [64]. Since all agents have to bid
on all bundles, in our case tasks, they could accept in one round it means that even
in the best case there is a very high computational cost involved in using combinatorial
auctions. Another weakness is that they do not easily lend themselves to a recursive pro-
cess where tasks are recursively decomposed and allocated. Our approach, on the other
hand, is suitable for recursive allocation and by using heuristic search will try the most
likely allocations first which should result in much better average case performance.

10 Conclusions

Collaborative robotic systems have much to gain by leveraging results from the area
of multi-agent systems and in particular agent-oriented software engineering. Agent-
oriented software engineering has much to gain by using collaborative robotic systems
as a testbed. We have proposed and specified a formally grounded generic collaborative
system shell for robotic systems and human operated ground control systems. The soft-
ware engineering approach is based on the FIPA Abstract Architecture and uses JADE
to implement the system shell. The system shell is generic in the sense that it can be
integrated with legacy robotic systems using a limited set of assumptions. Collabora-
tion is formalized in terms of the concept of delegation and delegation is instantiated
as a speech act. The formal characterization of the Speech act has a BDI flavor and
KARO, which is an amalgam of dynamic logic and epistemic/doxastic logic, is used in
the formal characterization. Tasks are central to the delegation process. Consequently, a
flexible, specification language for tasks is introduced in the form of Task Specification
Trees. Task Specification Trees provide a formal bridge between the abstract character-
ization of delegation as a speech act and its implementation in the collaborative system
shell. Using this idea, the semantics of both delegation and tasks is grounded in the
implementation in the form of a distributed constraint problem which when solved re-
sults in the allocation of tasks and resources to agents. We show the potential of this
approach by targeting a real-life scenario consisting of UAV’s and human resources in
an emergency services application. The results described here should be considered a
mature iteration of many ideas both formal and pragmatic which will continue to be
pursued in additional iterations as future work.

References

1. Alami, R., Botelho, S.C.: Plan-based multi-robot cooperation. In: Advances in Plan-Based
Control of Robotic Agents (2001)

2. Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multirobot planning activities
and plans execution. In: Proc. ECAI (1998)

3. Botelho, S., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task
allocation and achievement. In: Proc. ICRA (1999)

4. Bradshaw, J., Sierhuis, M., Acquisti, A., Gawdiak, Y., Jeffers, R., Suri, N., Greaves, M.: Ad-
justable autonomy and teamwork for the personal satellite assistant. In: Proc. IJCAI Work-
shop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents (2001)

5. Castelfranchi, C., Falcone, R.: Toward a theory of delegation for agent-based systems. In:
Robotics and Autonomous Systems. vol. 24, pp. 141–157 (1998)

6. Cohen, P., Levesque, H.: Intention is choice with commitment. Artificial Intelligence 42(3),
213–261 (1990)

7. Cohen, P., Levesque, H.: Teamwork. Nous, Special Issue on Cognitive Science and AI 25(4),
487–512 (1991)

8. Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-
referenced information. EURASIP Journal of Advances in Signal Processing (2009)

9. Conte, G., Hempel, M., Rudol, P., Lundström, D., Duranti, S., Wzorek, M., Doherty, P.:
High accuracy ground target geo-location using autonomous micro aerial vehicle platforms.
In: Proceedings of the AIAA-08 Guidance,Navigation, and Control Conference (2008)

10. Dastani, M., Meyer, J.J.C.: A practical agent programming language. In: M. Dastani, K.
V. Hindriks, M.P.P., Sterling, L. (eds.) Proc. of the AAMAS07 Workshop on Programming
Multi-Agent Systems (ProMAS2007). pp. 72–87 (2007)

11. Davis, E., Morgenstern, L.: A first-order theory of communication and multi-agent plans.
Journal Logic and Computation 15(5), 701–749 (2005)

12. Decker, K.: TAEMS: A framework for environment centered analysis and design of co-
ordination mechanisms. In: Foundations of Distributed Artificial Intelligence. Wiley Inter-
Science (1996)

13. Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and
analysis. Proc. of IEEE 94(1), 1257 – 1270 (2006)

14. Doherty, P.: Advanced research with autonomous unmanned aerial vehicles. In: Proceedings
on the 9th International Conference on Principles of Knowledge Representation and Reason-
ing (2004), extended abstract for plenary talk

15. Doherty, P.: Knowledge representation and unmanned aerial vehicles. In: Proceedings of the
IEEE Conference on Intelligent Agent Technolology (IAT 2005) (2005)

16. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wik-
lund, J.: The WITAS unmanned aerial vehicle project. In: Proceedings of the 14th European
Conference on Artificial Intelligence. pp. 747–755 (2000)

17. Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed archi-
tecture for intelligent unmanned aerial vehicle experimentation. In: Proceedings of the 7th
International Symposium on Distributed Autonomous Robotic Systems (2004)

18. Doherty, P., Kvarnström, J.: TALplanner: A temporal logic based forward chaining planner.
Annals of Mathematics and Artificial Intelligence 30, 119–169 (2001)

19. Doherty, P., Kvarnström, J.: TALplanner: A temporal logic based planner. Artificial Intelli-
gence Magazine (Fall Issue 2001)

20. Doherty, P., Kvarnström, J.: Temporal action logics. In: Lifschitz, V., van Harmelen, F.,
Porter, F. (eds.) The Handbook of Knowledge Representation, chap. 18, pp. 709–757. El-
sevier (2008)

21. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution mon-
itoring framework for unmanned aircraft systems. Journal of Automated Agents and Multi-
Agent Systems 19(3), 332–377 (2009)

22. Doherty, P., Landén, D., Heintz, F.: A distributed task specification language for mixed-
initiative delegation. In: Proceedings of the 13th International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA) (2010)

23. Doherty, P., Łukaszewicz, W., Szałas, A.: Approximative query techniques for agents with
heterogenous ontologies and perceptual capabilities. In: Proceedings on the 7th International
Conference on Information Fusion (2004)

24. Doherty, P., Łukaszewicz, W., Szałas, A.: Communication between agents with heteroge-
neous perceptual capabilities. Journal of Information Fusion 8(1), 56–69 (January 2007)

25. Doherty, P., Meyer, J.J.C.: Towards a delegation framework for aerial robotic mission scenar-
ios. In: Proceedings of the 11th International Workshop on Cooperative Information Agents
(2007)

26. Dorais, G., Bonasso, R., Kortenkamp, D., Pell, B., Schreckenghost, D.: Adjustable autonomy
for human-centered autonomous systems on mars. In: Proc. Mars Society Conference (1998)

27. Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems. Wiley (2010)
28. Duranti, S., Conte, G., Lundström, D., Rudol, P., Wzorek, M., Doherty, P.: LinkMAV, a

prototype rotary wing micro aerial vehicle. In: Proceedings of the 17th IFAC Symposium on
Automatic Control in Aerospace (2007)

29. F. Bellifemine, G.C., Greenwood, D.: Developing Multi-Agent Systems with JADE. John
Wiley and Sons, Ltd (2007)

30. F. Bellifemine, F. Bergenti, G.C., Poggi, A.: JADE – a Java agent development framework.
In: R. H. Bordini, M. Dastani, J.D., Seghrouchni, A. (eds.) Multi-Agent Programming - Lan-
guages, Platforms and Applications. Springer (2005)

31. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: The theory of
adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics–Part A:
Systems and Humans 31(5), 406–418 (2001)

32. Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Specification.
http://www.fipa.org

33. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library Specification.
http://www.fipa.org

34. Foundation for Intelligent Physical Agents: FIPA Contract Net Interaction Protocol Specifi-
cation. http://www.fipa.org

35. Frisch, A., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The Design of ESSENCE:
A Constraint Language for Specifying Combinatorial Problems. In: IJCAI. pp. 80–87 (2007)

36. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: In: Proceed-
ings of ECAI 2006, Riva del Garda. pp. 98–102 (2006)

37. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: A case
study with essence’ and minion. In: In Proceedings of the 7th International conference on
Abstraction, reformulation, and approximation (SARA2007). pp. 184–199 (2007)

38. Gerkey, B.: On multi-robot task allocation. Ph.D. thesis (2003)
39. Gerkey, B., Mataric, M.: Sold!: Auction methods for multi-robot coordination. IEEE Trans-

actions on Robotics and Automation (2001)
40. Heintz, F., Doherty, P.: DyKnow: A knowledge processing middleware framework and its

relation to the JDL fusion model. Journal of Intelligent and Fuzzy Systems 17(4) (2006)
41. Heintz, F., Doherty, P.: DyKnow federations: Distributing and merging information among

UAVs. In: Eleventh International Conference on Information Fusion (FUSION-08) (2008)
42. Heintz, F., Kvarnström, J., Doherty, P.: A stream-based hierarchical anchoring framework.

In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS)
(2009)

43. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: DyKnow - stream-
based middleware for knowledge processing. Journal of Advanced Engineering Informatics
24(1), 14–25 (2010)

44. Hexmoor, H., Kortenkamp, D.: Autonomy control software. An introductory article and spe-
cial issue of Journal of Experimental and Theoretical Artificial Intelligence (2000)

45. Hexmoor, H., McLaughlan, B.: Computationally adjustable autonomy. Journal of Scalable
Computing: Practive and Experience 8(1), 41–48 (2007)

46. Hexmoor, H., Rahimi, S., Chandran, R.: Delegations guided by trust and autonomy. Web
Intelligence and Agent Systems 6(2), 137–155 (2008)

47. Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.): Agent Autonomy. Springer Verlag (2003)
48. W. van der Hoek, B.v.L., Meyer, J.J.C.: An integrated modal approach to rational agents.

In: Wooldridge, M., Rao, A. (eds.) Foundations of Foundations of Rational Agency, Applied
Logic Series, vol. 14. An Integrated Modal Approach to Rational Agents (1998)

49. Kaldra, N., Ferguson, D., Stentz, A.: Hoplites: A market-based framework for planned tight
coordination in multirobot teams. In: Proc. ICRA (2005)

50. Koenig, S., Keskinocak, P., Tovey, C.: Progress on agent coordination with cooperative auc-
tions. In: Proc. AAAI (2010)

51. Kvarnström, J., Doherty, P.: Automated planning for collaborative systems. In: Proceedings
of the International Conference on Control, Automation, Robotics and Vision (ICARCV)
(2010)

52. Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative delegation:
A UAV case study (early innovation). In: Proceedings of the 13th International Conference
on Principles and Practice of Multi-Agent Systems (PRIMA) (2010)

53. Lemaire, T., Alami, R., Lacroix, S.: A distributed tasks allocation scheme in multi-uav con-
text. In: Proc. ICRA (2004)

54. Magnusson, M., Landen, D., Doherty, P.: Planning, executing, and monitoring communica-
tion in a logic-based multi-agent system. In: 18th European Conference on Artificial Intelli-
gence (ECAI 2008) (2008)

55. Merz, T., Rudol, P., Wzorek, M.: Control System Framework for Autonomous Robots Based
on Extended State Machines. In: Proceedings of the International Conference on Autonomic
and Autonomous Systems (2006)

56. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint
optimization with quality guarantees. AI 161 (2006)

57. Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Trans.
Robot. Automat 14(2), 220–240 (1998)

58. Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution syn-
thesis. Proceeding of the IEEE, Special Issue on Multi-Robot Systems (2006)

59. Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and res-
cue missions using color and thermal imagery. In: Proc. of the IEEE Aerospace Conference
(2008)

60. Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servo-
ing for cooperative indoor exploration. In: Proceedings of the IEEE Aerospace Conference
(2008)

61. Smith, R.: The contract net protocol. IEEE Transactions on Computers C-29(12) (1980)
62. Telecom Italia Lab: The Java Agent Development Framework (JADE). http://jade.tilab.com
63. Viguria, A., Maza, I., Ollero, A.: Distributed service-based cooperation in aerial/ground

robot teams applied to fire detection and extinguishing missions. Advanced Robotics 24,
1–23 (2010)

64. de Vries, S., Vohra, R.: Combinatorial auctions: A survey. Journal on Computing 15(3), 284–
309 (2003)

65. Wallace, M.G., Schimpf, J., Novello, S.: A Platform for Constraint Logic Programming. ICL
System Journal 12(1), 159–200 (1997)

66. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning
to control – a navigation framework for an unmanned aerial vehicle. In: Proceedings of the
21st Bristol International Conference on UAV Systems (2006)

67. Wzorek, M., Doherty, P.: Reconfigurable path planning for an autonomous unmanned aerial
vehicle. In: Proceedings of the 16th International Conference on Automated Planning and
Scheduling. pp. 438–441 (2006)

68. Wzorek, M., Kvarnström, J., Doherty, P.: Choosing path replanning strategies for unmanned
aircraft systems. In: Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS) (2010)

69. Wzorek, M., Landen, D., Doherty, P.: GSM technology as a communication media for an
autonomous unmanned aerial vehicle. In: Proceedings of the 21st Bristol International Con-
ference on UAV Systems (2006)

70. Yokoo, M.: Asynchronous weak-commitment search for solving distributed constraint satis-
faction problems. In: Proc. CP (1995)

71. Zlot, R.: An auction-based approach to complex task allocation for multirobot teams. Ph.D.
thesis (2006)

72. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: Proc. ICRA (2005)

	A Delegation-TitlePage.pdf
	FULLTEXT01 (1)

