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ON THE CONNECTEDNESS OF THE BRANCH LOCUS OF THE

MODULI SPACE OF RIEMANN SURFACES OF LOW GENUS

GABRIEL BARTOLINI AND MILAGROS IZQUIERDO

(Communicated by Martin Lorenz)

Abstract. Let g be an integer ≥ 3 and let Bg = {X ∈ Mg |Aut(X) �= 1d},
where Mg denotes the moduli space of compact Riemann surfaces of genus
g. Using uniformization of Riemann surfaces by Fuchsian groups and the

equisymmetric stratification of the branch locus of the moduli space, we prove
that the subloci corresponding to Riemann surfaces with automorphism groups
isomorphic to cyclic groups of order 2 and 3 belong to the same connected
component. We also prove the connectedness of Bg for g = 5, 6, 7 and 8 with
the exception of the isolated points given by Kulkarni.

1. Introduction

In this article we study the topology of moduli spaces of Riemann surfaces.
More concretely we study the connectedness of the branch locus of moduli spaces
of Riemann surfaces. The connectedness of subloci of moduli spaces of Riemann
surfaces has been widely studied, among others, by [20], [7], [9], [10], [11], [12].
Other subloci of moduli spaces have been studied; see [8] and [16].

Let g ≥ 3. Then the branch locus Bg of the moduli space Mg consists of the sur-
faces of genus g admitting non-trivial automorphism groups. Two closed Riemann
surfaces are called equisymmetric if their automorphism groups determine conju-
gate finite subgroups of the modular group. Harvey [17] alluded to the existence
of the equisymmetric stratification of the moduli space. Broughton [2] defined the

stratification of Mg by closed irreducible subvarieties MG,θ

g with interior MG,θ
g , if

non-empty, as a connected, Zariski dense subvariety in MG,θ

g . Each equisymmetric

stratum MG,θ
g consists of surfaces with full automorphism group conjugated to the

finite group G in the modular group, and MG,θ

g is formed by surfaces such that the
automorphism group contains a subgroup of the modular group in the conjugacy
class defined by G.

In section three we consider the equisymmetric strata corresponding to auto-
morphism groups of order 2 and 3 for the moduli space of Riemann surfaces of an
arbitrary genus g ≥ 3. We show that all the strata MG,θ

g , where G is a cyclic group
of order 2 or 3, belong to the same connected component.
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In section four we consider the moduli spaces of Riemann surfaces of genus g = 5,
6, 7, 8 and 9. Each equisymmetric stratum corresponds to a conjugacy class of finite
subgroups of the modular group represented as the full group of automorphisms of
some Riemann surface of genus g. To find the full groups of automorphisms, we use
the list of maximal signatures found by Singerman [23]. We shall show, using the
equisymmetric stratification, that the branch locus Bg is connected with exception
to the isolated points corresponding to surfaces with full automorphism group of
prime order 2g+1 as found by Kulkarni [20]. The results in section four have been
announced in [1].

2. Riemann surfaces and Fuchsian groups

A Riemann surface can be realized as the quotient space D/Γ of the hyperbolic
plane D, where Γ ∈ PSL(2,R) is a Fuchsian group. If the Fuchsian group Γ is
isomorphic to an abstract group with presentation

(1)
〈
a1, b1, . . . , ag, bg, x1 . . . xk|xm1

1 = . . . = xmk

k =
∏

xi

∏
[ai, bi] = 1

〉
,

we say that Γ has signature

(2) s(Γ) = (g;m1, . . . ,mk).

If s(Γ) = (g;−), i.e. it has no elliptic generators, we call Γ a surface group. The
relationship between the signatures of a Fuchsian group and subgroups is given in
the following theorem of Singerman:

Theorem 1 ([22]). Let Γ be a Fuchsian group with signature (2) and canonical
presentation (1). Then Γ contains a subgroup Γ′ of index N with signature

s(Γ′) = (h;m′
11,m

′
12, ...,m

′
1s1 , ...,m

′
r1, ...,m

′
rsr)

if and only if there exists a transitive permutation representation θ : Γ → ΣN

satisfying the following conditions:
1. The permutation θ(xi) has precisely si cycles of lengths less than mi, the

lengths of these cycles being mi/m
′
i1, ...,mi/m

′
isi

.
2. The Riemann-Hurwitz formula

μ(Γ′)/μ(Γ) = N,

where μ(Γ), μ(Γ′) are the hyperbolic areas of the surfaces D/Γ, D/Γ′.

Given a Riemann surface X = D/Γ, with Γ a surface Fuchsian group, a finite
group G is a group of automorphisms of X if and only if there exists a Fuchsian
group Δ and an epimorphism θ : Δ → G with ker(θ) = Γ.

A Fuchsian group Γ that is not contained in any other Fuchsian group with finite
index is called a finitely maximal Fuchsian group (see [23]). To determine if a given
finite group is the full automorphism group of some Riemann surface, we need to
consider all pairs of signatures s(Γ) and s(Γ′) for Fuchsian groups Γ′ ≤ Γ. All such
pairs were found by Singerman [23]. See also [15].

Let Γ be a group with signature (2). The Teichmüller space T (Γ) is homeomor-
phic to a ball of complex dimension d(Γ) = 3g − 3 + r (see [21]). Let M(Γ) denote
the group of outer automorphisms of Γ. M(Γ), which is also called the modular
group of Γ, acts on T (Γ) as [r] → [r ◦α] where α ∈ M(Γ). The moduli space of Γ is
the quotient space M(Γ) = T (Γ)/M(Γ). If Γ is a surface group of genus g, we will
denote M(Γ) by Mg. We will study the branch locus Bg of the covering Tg → Mg;
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see [17] and [21]. As an application of Nielsen Realization Theorem one can identify
the branch locus of the action of M(Γ) as the set Bg = {X ∈ Mg|Aut(X) �= 1d},
for g ≥ 3. See also [2], [3].

An (effective and orientable) action of a finite group G on a Riemann surface X
is a representation ε : G → Aut(X). Two actions ε, ε′ of G on a Riemann surface
X are (weakly) topologically equivalent if there is an w ∈ Aut(G) and an h ∈
Hom+(X) such that ε′(g) = hεw(g)h−1; see [2] and [3]. The equisymmetric strata
are in correspondence with topological equivalence classes of orientation preserving
actions of a finite group G on a surface X. See [2]; see also [10].

Let Γ be a surface Fuchsian group. Each action of G on the surface X =
D/Γ is determined by an epimorphism θ : Δ → G such that ker(θ) = Γ. Two
epimorphisms θ1, θ2 : Δ → G determine two topologically equivalent actions of
G if and only if there exist automorphisms φ ∈ Aut(Δ) and w ∈ Aut(G) such
that θ2 = w ◦ θ1 ◦ φ; see [3]. We classify actions of a finite group using methods
found in [3]. Kimura [18] found all actions on surfaces of genus 4, and Kimura and
Kuribayashi [19] found all actions on surfaces of genus 5.

Following Broughton [2], let MG,θ
g denote the stratum of surfaces with full au-

tomorphism group in the conjugacy class of the finite group G in the modular

group and let MG,θ

g denote the set of surfaces such that the automorphisms group
contains a subgroup in the class defined by G. We have the following theorem by
Broughton:

Theorem 2 ([2]). Let Mg be the moduli space of Riemann surfaces of genus g,
and let G be a finite subgroup of the corresponding modular group Mg. Then:

(1) MG,θ

g is a closed, irreducible algebraic subvariety of Mg.

(2) MG,θ
g , if it is non-empty, is a smooth, connected, locally closed algebraic

subvariety of Mg, Zariski dense in MG,θ

g .

Remark 3. The condition of Γ to be a surface Fuchsian group imposes that the
order of the image under θ of an elliptic generator xi of Δ is the same as the order
of xi and θ(x1)θ(x2) . . . θ(xr−1) = θ(xr)

−1.

Riemann surfaces and related surfaces with cyclic and abelian groups of auto-
morphisms have been studied recently, e.g. [4], [5], [6] and [13]. For us cyclic groups
of automorphisms are of particular interest due to the following lemma.

Lemma 4 ([10]). The branch locus consists of the union Bg =
⋃
MCp,θ

g , where the
pair Cp, θ runs over all classes of actions of cyclic groups Cp of prime order p.

Proof. Every group G contains a subgroup of prime order p where p is a divisor of

|G|. This subgroup is isomorphic to Cp; thus MG,α
g ⊂ MCp,θ

g for some actions α of
G and θ of Cp, where α|Cp

= θ. �

Kulkarni [20] determined conditions for the existence of isolated points stated in
the following theorem:

Theorem 5 ([20]). The number of isolated points in Bg is 1 if g = 2, 	(g − 2)/3

if q = 2g + 1 is a prime > 7 and 0 otherwise.
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3. Strata corresponding to cyclic groups

of order 2 or 3

We will show that all the strata given by actions of cyclic groups of order 2
or 3 belong to the same connected component by finding the appropriate surface
epimorphisms θ : Δ → G where G = C2 × C2, C6 or D3.

The possible actions of C2 on surfaces of genus g are determined by the signatures
(i; 2, 2g+2−4i. . . , 2), i = 0, . . . , 	 g+1

2 
. Each signature gives one action, yielding the

stratum MC2,i
g .

Theorem 6. Let g ≥ 3. Then the strata MC2,i
g , i = 0, . . . , 	 g+1

2 
, belong to the

same connected component. In particular, MC2,i

g ∩MC2,� g+1
2 �

g �= ∅.

Proof. Consider groups of automorphisms isomorphic to C2 ×C2 = 〈a, b|a2 = b2 =
(ab)2 = 1〉. By the Riemann-Hurwitz formula we find that a surface kernel epimor-

phism θ : Δ → C2 × C2 exists if s(Δ) = (γ; 2, g−4γ+3. . . , 2). Now let γ = 0 so that

s(Δ) = (0; 2, g+3. . . , 2) We have two cases depending as g is odd or even.
(1) g odd. Define θj : Δ → C2 × C2, 0 ≤ j ≤ 	 g−1

4 
, by θj(xi) = a, 1 ≤ i ≤
g+1−2j, θj(xi) = b, g+2−2j ≤ i ≤ g+3. By applying Theorem 1 we get subgroups

with signatures s(θ−1
0 〈a〉) = (j; 2, 2g+2−4j. . . , 2), s(θ−1

0 〈b〉) = ( g−1
2 − j; 2, 4+4j. . . , 2) and

s(θ−1
0 〈ab〉) = ( g+1

2 ;−). Thus

MC2,j

g ∩MC2,
g−1
2 −j

g ∩MC2,
g+1
2

g �= ∅.

Therefore, MC2,j

g ∩MC2,
g+1
2

g �= ∅, as desired.
(2) g even. Define epimorphisms θj : Δ → C2 × C2 by θj(xi) = a, 1 ≤ i ≤

g+1− 2j, θj(xi) = ab, g+2− 2j ≤ i ≤ g+2 and θj(xg+3) = b. By Theorem 1 the

epimorphisms induce subgroups with signature (j; 2, 2g+2−4j. . . , 2), ( g2 − j; 2, 2+4j. . . , 2)
and ( g2 ; 2, 2). Thus

MC2,j

g ∩MC2,
g
2−j

g ∩MC2,
g
2

g �= ∅.

Therefore, MC2,j

g ∩MC2,
g
2

g �= ∅, and thus MC2,j

g ∩MC2,� g+1
2 �

g �= ∅. �

The actions of C3 =
〈
a|a3 = 1

〉
on surfaces of genus g are induced by signatures

(γ; 3, g+2−3γ. . . , 3). An epimorphism θ : Δ(γ; 3, g+2−3γ. . . , 3) → C3 is equivalent to one
of the following epimorphisms:

θj,k :

{
xi → a, 1 ≤ i ≤ g + 2− 3γ − 3j − k

xi → a2, g + 3− 3γ − 3j − k ≤ i ≤ g + 2− 3γ
, g + 2 ≡ −k mod 3.

The actions θj,k : Δ(γ; 3, g+2−3γ. . . , 3) → C3 induce the strata MC3,γj
g .

Theorem 7. Let g ≥ 4. Then for each stratum MC3,γj
g there exists a stratum

MC2,i
g such that MC3,γj

g ∩MC2,i

g �= ∅.

Proof. We will look at epimorphisms φ : Δ′ → C6 =
〈
b|b6 = 1

〉
for groups Δ′ with

signature defined below. We begin with the epimorphisms induced by (0; 3, g+2. . . , 3).
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(1) g odd. Observe that g + 2 ≡ 0, 1, 2 mod 3 implies g + 1 ≡ 2, 0, 4 mod 6

respectively. Let Δ′ have signature (0; 2, 3,
g+1
2. . . , 3, 6) and φj,k be defined as

φ2n,0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g + 1

2
+ 1− 3n

xi → b4,
g + 1

2
+ 2− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b

φ2n+1,0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g + 1

2
− 3n

xi → b4,
g + 1

2
+ 1− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b5

φ2n,1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g + 1

2
+ 1− 3n

xi → b4,
g + 1

2
+ 2− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b5

φ2n+1,1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g − 1

2
− 3n

xi → b4,
g + 1

2
− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b

φ2n,2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g + 1

2
− 3n

xi → b4,
g + 1

2
+ 1− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b

φ2n+1,2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 → b3

xi → b2, 2 ≤ i ≤ g − 1

2
− 3n

xi → b4,
g + 1

2
− 3n ≤ i ≤ g + 1

2
+ 1

x g+1
2 +2 → b5

It is easy to see that θj,k extends to φj,k and that by Theorem 1

s(φ−1
j,k

〈
b3
〉
) = (

g − 1

2
; 2, 2, 2, 2).
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(2) g even. Again g+2 ≡ 0, 1, 2 mod 3 implies g+2 ≡ 0, 4, 2 mod 6 respectively.

Let Δ′ have signature (0; 3,
g
2. . ., 3, 6, 6) and φj,k be defined as

φ2n,0 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 3n

xi → b4,
g

2
+ 1− 3n ≤ i ≤ g

2
x g

2+1 → b

x g
2+2 → b

φ2n+1,0 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 1− 3n

xi → b4,
g

2
− 3n ≤ i ≤ g

2
x g

2+1 → b

x g
2+2 → b5

φ2n,1 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 3n

xi → b4,
g

2
+ 1− 3n ≤ i ≤ g

2
x g

2+1 → b

x g
2+2 → b5

φ2n+1,1 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 1− 3n

xi → b4,
g

2
− 3n ≤ i ≤ g

2

x g
2+1 → b5

x g
2+2 → b5

φ2n,2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 1− 3n

xi → b4,
g

2
− 3n ≤ i ≤ g

2
x g

2+1 → b

x g
2+2 → b

φ2n+1,2 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi → b2, 1 ≤ i ≤ g

2
− 2− 3n

xi → b4,
g

2
− 1− 3n ≤ i ≤ g

2
x g

2+1 → b

x g
2+2 → b5

It is easy to see that θj,k extends to φj,k. s(φ−1
j,k

〈
b3
〉
) = ( g2 ; 2, 2) and we have

MC3,0j

g ∩MC2,� g
2 �

g �= ∅.
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(3) Now assume that Δ has signature (γ; 3, g+2−3γ. . . , 3), 0 < γ < g+2
3 . Also note

that g + 2 − 3γ ≡ g + 2 mod 3. Thus, if g + 2 − 3γ is odd, we can consider Δ′

with signature (0; 2, 2γ+1. . . , 2, 3,
g+1−3γ

2. . . , 3, 6). Since 3(1+2γ) ≡ 3 mod 6 and g+1−3γ
2 ≡

0, 2 or 4 mod 6, θ : Δ → C3 extends to an epimorphism φ : Δ′ → C6 as above. Sim-

ilarly, if g+2− 3γ is even, we consider the signature (0; 2, 2γ. . ., 2, 3,
g−3γ

2. . . , 3, 6, 6) and

an epimorphism φ : Δ′ → C6 as above. Thus we see that MC3,γj

g ∩MC2,� g−3γ
2 �

g �= ∅.
(4) Finally we need to consider groups Δ with signature ( g+2

3 ;−). In this case

there exist a group Δ′ with signature (0; 2, 2(
g+2
3 +1). . . , 2) and an epimorphism φ :

Δ′ → D3 =
〈
s, t|s2 = t2 = (st)3 = 1

〉
defined by

φ :

⎧⎪⎨
⎪⎩

xi → s, 1 ≤i ≤ 2(g + 2)

3
,

xi → t,
2(g + 2)

3
+ 1 ≤i ≤ 2(g + 2)

3
+ 2

and s(φ−1 〈s〉) = ( g−1
3 ; 2,

2(g+2)
3 +2. . . , 2). Thus MC3,

g+2
3

g ∩MC2,
g−1
3

g �= ∅. �

4. On the connectedness of the branch locus of the moduli space

of Riemann surfaces of low genus

It is well known that the branch loci of M2, with the exception of one isolated
point given by a pentagonal curve, and M3 are connected; see also [1]. Costa and
Izquierdo [10] showed that B4 is connected. Kulkarni [20] found for which genera
the branch locus Bg contains isolated points, and Costa and Izquierdo [14] listed
the genera of which Bg contains isolated strata of dimension one.

Here we shall show that the branch loci of M5 and M6 are connected with the
exception of one isolated point in each, the branch locus ofM7 is connected, and the
branch locus of M8 is connected with the exception of 2 isolated points. Theorems
6 and 7 prove the connectedness of the strata of surfaces with automorphisms of
order 2 and 3; thus we will only regard automorphisms of higher order. By Lemma 4
we know that the branch locus is the union of equisymmetric strata determined by
actions of cyclic groups of prime order. For each genus we will consider prime orders
satisfying the Riemann-Hurwitz formula (Theorem 1).

Proposition 8. The branch locus B5 of M5 is the union

MC2,0

5 ∪MC2,1

5 ∪MC2,2

5 ∪MC2,3

5 ∪MC3,0

5 ∪MC3,1

5 ∪MC11,01

5 .

Proof. (1) MC2,0
5 , MC2,1

5 , MC2,2
5 and MC2,3

5 correspond to epimorphisms θ : Δ →
C2 with signatures s(Δ0) = (0; 2, 12. . ., 2), s(Δ1) = (1; 2, 8. . ., 2), s(Δ2) = (2; 2, 2, 2, 2)
and s(Δ3) = (3;−) respectively.

(2) The strata MC3,0
5 and MC3,1

5 correspond to epimorphisms θ : Δ → C3

where s(Δ0) = (0; 3, 7. . ., 3) and s(Δ1) = (1; 3, 3, 3, 3) respectively. Note that by the
construction in the proof of Theorem 7 there exists only one class of epimorphisms
of each type.
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(3) MC5,1

5 is induced by non-maximal epimorphisms θ : Δ → C5, s(Δ) =
(1; 5, 5). They extend to surface kernel epimorphism φ : Δ′ → D5 = 〈a, s|a5 = s2 =
(sa)2 = 1〉, s(Δ′) = (0; 2, 2, 2, 2, 5), defined by φ(xi) = s, i = 1, 2, 3, and φ(x4) =

sa. We see that s(φ−1 〈a〉) = (1; 5, 5) and s(φ−1 〈s〉) = (2; 2, 2, 2, 2). Thus MC5,1

5 ≡
MD5,θ

5 ⊂ MC2,2

5 .
(4) Signature (0; 11, 11, 11). There are two classes of actions of C11 with rep-

resentatives θ1 : Δ → C11, defined by θ1(x1) = a, θ1(x2) = a2 and θ1(x3) = a−3,
and θ2 : Δ → C11, defined by θ2(x1) = a, θ2(x2) = a and θ2(x3) = a−2. Now
θ2 extends to φ : Δ(0; 2, 11, 22) → C22, defined by φ(x1) = b11 and φ(x2) = b10.
By Theorem 1 φ−1

〈
b2
〉
is a group with signature (0; 11, 11, 11), and the images

of the elliptic generators by φ (with the isomorphism b2 → a) are a, a and a−2.

MC11,02

5 ≡ MC22

5 . By Theorem 1 s(φ−1
2

〈
b11

〉
) = (0; 2, 12. . ., 2), thus MC22

5 ⊂ MC2,0

5 .
The epimorphism θ1 yields a maximal action of C11 in M5 producing an isolated

point MC11,01

5 . �

Theorem 9. The branch locus of M5 is connected with the exception of one isolated
point.

Proof. It follows from Theorem 6 and Theorem 7, together with the results in the
proof of Proposition 8. �

Theorem 10. The branch locus of M6 is connected with the exception of one
isolated point.

Proof. (1) By Theorem 6 and Theorem 7 the strata corresponding to the actions
of C2 and C3 belong to the same connected component of B6.

(2) s(Δ) = (0; 5, 5, 5, 5, 5). There are three classes of epimorphisms θ(Δ) → C5

defined by θ1(xi) = a, i = 1, . . . , 5, θ2(xi) = a, i = 1, . . . , 3, θ2(x4) = a3 and
θ3(xi) = a, i = 1, 2, θ3(xi) = a2, i = 3, 4. θ1 and θ3 extends to epimorphisms
φ1, φ3 : Δ(0; 2, 5, 5, 10) → C10 defined by φ1(xi) = b2, i = 2, 3, and φ3(x2) = b2,
φ3(x3) = b4. θ2 extends to an epimorphism φ2 : Δ(0; 5, 15, 15) → C15 defined by
φ2(x1) = b3, φ2(x2) = b4 and φ2(x3) = b8. By Theorem 1 φ−1

1

〈
b5
〉
= (2; 2, 6. . ., 2),

φ−1
2

〈
b5
〉
= (2; 3, 3) and φ−1

3

〈
b5
〉
= (2; 2, 6. . ., 2), i.e. MC5,0i

6 ∩MC2,2

6 �= ∅ for i = 1, 3

and MC5,02

6 ∩MC3,2

6 �= ∅.
(3) s(Δ) = (0; 7, 7, 7, 7). There are the following four classes of epimorphisms

θ : Δ → C7 defined by θ1(xi) = a, i = 1, 2, 3, θ2(xi) = a, i = 1, 2, θ2(x3) = a−1,
θ3(xi) = a, i = 1, 2, θ3(x3) = a2 and θ4(x1) = a, θ4(x2) = a2, θ4(x3) = a5. θ1 is
induced by φ1 : Δ(0; 3, 7, 21) → C21, defined by φ1(x1) = b7, φ1(x2) = b3. We find

by Theorem 1 that φ−1
1

〈
b7
〉
= (0; 3, 8. . ., 3) and MC7,01

6 ∩MC3,01

6 �= ∅. θ2 extends

to an epimorphism φ2 : Δ(0; 2, 2, 7, 7) → C14 defined by φ2(xi) = b7, i = 1, 2,
and φ2(x3) = b2. θ4 extends to an epimorphism φ4 : Δ(0; 2, 2, 7, 7) → D7 =〈
a, s|a7 = s2 = (sa)2 = 1

〉
defined by φ4(x1) = s, φ4(x2) = sa and φ4(x3) = a.

Finally assume s(Δ) = (0; 7, 14, 14) and let the epimorphism φ3 : Δ → C14 be
defined by φ3(x1) = b2 and φ3(x2) = b3. Then φ3 induces θ3. By Theorem 1
it follows that φ−1

2

〈
b7
〉
= (0; 2, 14. . ., 2), φ−1

3

〈
b7
〉
= (3; 2, 2) and φ−1

4 〈s〉 = (3; 2, 2).

MC7,02

6 ∩MC2,0

6 �= ∅, MC7,03

6 ∩MC2,3

6 �= ∅ and MC7,04

6 ∩MC2,3

6 �= ∅.
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(4) s(Δ) = (0; 13, 13, 13). We have three possible epimorphisms θ : Δ → C13

which are defined by θ1(xi) = a, i = 1, 2, θ2(x1) = a, θ2(x2) = a2 and θ3(x1) = a,
θ2(x2) = a3. θ1 extends to φ1 : Δ(0; 2, 13, 26) → C26, defined by φ1(x1) = b13,
φ1(x2) = b2 and φ−1

1

〈
b13

〉
= (0; 2, 14. . ., 2). θ3 extends to an epimorphism φ3 :

Δ(0; 3, 3, 13) → C13 � C3 = C13 � C3 =
〈
a, b|a13 = b3 = bab2a10 = 1

〉
, defined by

φ3(x1) = b, φ1(x2) = b2a12. φ−1
3 〈b〉 = (2; 3, 3). By Theorem 5 we know that

θ2 yields a maximal action of C13 in M6 producing an isolated point of B6 (see
[20]). �

Theorem 11. The branch locus of M7 is connected.

Proof. (1) By Theorem 6 and Theorem 7 the strata corresponding to the actions
of C2 and C3 belong to the same connected component of B7.

(2) s(Δ) = (1; 5, 5, 5). There is only one class of epimorphisms θ : Δ → C5,
and it is defined by θ(xi) = a, i = 1, 2, θ(α) = 1. This class extends to φ :
Δ′(0; 2, 10, 10, 10) → C10, defined by φ(x1) = b5, φ(xi) = b, i = 2, 3. By Theorem

1 s(φ−1
〈
b5
〉
) = (2; 2, 8. . ., 2). Therefore, MC5,1

7 ∩MC2,2
7 �= ∅.

(3) s(Δ) = (1; 7, 7). Let the surface kernel epimorphism φ : Δ(0; 2, 2, 2, 2, 7) →
D7 =

〈
a, s|a7 = s2 = (sa)2 = 1,

〉
be defined by θ(xi) = s, i = 1, 2, 3, and θ(x4) =

sa. We see that s(θ−1 〈a〉) = (1; 7, 7) and s(θ−1 〈s〉) = (3; 2, 2, 2, 2). Therefore,

MC7,1

7 ≡ MD7,θ

7 ⊂ MC2,3

7 . �

Theorem 12. The branch locus of M8 is connected with the exception of two
isolated points.

Proof. (1) By Theorem 6 and Theorem 7 the strata corresponding to the actions
of C2 and C3 belong to the same connected component of B8.

(2) s(Δ) = (0; 5, 5, 5, 5, 5, 5). There exist five classes of epimorphisms θ : Δ → C5

defined by θ1(xi) = a, i = 1, 2, 3, 4, θ1(x5) = a3, θ2(xi) = a, i = 1, 2, 3, 4, θ2(x5) =
a2, θ3(xi) = a, i = 1, 2, 3, θ3(xi) = a4, i = 4, 5, 6, θ4(xi) = a, i = 1, 2, 3, θ4(xi) = a2,
i = 4, 5, and θ5(xi) = a, i = 1, 2, θ5(xi) = a4, i = 3, 4, θ5(x5) = a2. Each θi extends
to an epimorphism φi : Δ

′(0; 5, 5, 10, 10) → C10 defined by φ1(xi) = b2, i = 1, 2,
φ1(xi) = b3, i = 3, 4, φ2(xi) = b2, i = 1, 2, φ2(x3) = b7, φ3(x1) = b2, φ3(x2) = b8,
φ3(x3) = b, φ4(x1) = b2, φ4(x2) = b4, φ4(x3) = b and φ5(x1) = b2, φ5(x2) = b8,

φ3(x3) = b3. By Theorem 1 s(φ−1
i

〈
b5
〉
) = (4; 2, 2), i = 1, . . . , 5. ThusMC5

8 ∩MC2,4

8 .
(3) s(Δ) = (2;−). The single class of epimorphisms is non-maximal and extends

to φ : Δ′(0; 2, 2, 2, 2, 2, 2) → D7 =
〈
s, t|s2 = t2 = (st)7 = 1

〉
defined by φ(xi) = s,

i = 1, 2, 3, 4, φ(xi) = t, i = 5, 6. s(φ−1 〈s〉) = (3; 2, 6. . ., 2) and MC7

8 ≡ MD7

8 ⊂
MC2,3

8 .
(4) s(Δ) = (0; 17, 17, 17). There are three classes of epimorphisms θ : Δ → C17.

One non-maximal defined by θ1(xi) = a, i = 1, 2, extending to φ : Δ′(2, 17, 34) →
C34 which is defined by φ(x1) = b17 and φ(x2) = b2, and MC17,01

8 ≡ MC34

8 ⊂
MC2,0

8 . The other two classes are maximal and produce one isolated point each
(see [20]). �
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Remark 13. The branch locus of M9 contains two isolated strata of dimension 2.
Indeed, consider the signature s(Δ) = (0; 7, 7, 7, 7, 7) and epimorphisms θ1, θ2 : Δ →
C7, defined by θ1(xi) = a, i = 1, 2, θ1(x3) = a3, θ1(x4) = a4 and θ2(xi) = a, i = 1, 2,
θ2(x3) = a2, θ2(x4) = a4. The only possibilities to extend an epimorphism θ : Δ →
C7 are to epimorphisms φ1 : Λ(0; 2, 7, 7, 14) → C14 or φ2 : Λ(0; 7, 21, 21) → C21.
However, if φ1(x2) = b2m and φ1(x3) = b2n, then φ1 induces a class of epimorphisms
θ̄1 : Δ → C7 defined by θ̄1(xi) = am, i = 1, 2, and θ1(xi) = an, i = 3, 4. Similarly
if φ2(x1) = b3m, then φ2 induce a class of epimorphisms θ̄2 : Δ → C7, defined by
θ̄2(xi) = am, i = 1, 2, 3. Clearly θ1 and θ2 are in neither of these classes, thus
producing isolated strata of dimension 2.
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