

Low-rank exploitation in semidefinite

programming for control

Rikard Falkeborn, Johan Löfberg and Anders Hansson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

This is an electronic version of an article published in:

Rikard Falkeborn, Johan Löfberg and Anders Hansson, Low-rank exploitation in semidefinite

programming for control, 2011, International Journal of Control, (84), 12, 1975-1982.

International Journal of Control is available online at informaworldTM:

http://dx.doi.org/10.1080/00207179.2011.631148

Copyright: Taylor & Francis

http://www.tandf.co.uk/journals/default.asp

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73358

http://dx.doi.org/10.1080/00207179.2011.631148
http://www.tandf.co.uk/journals/default.asp
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73358

August 19, 2011 8:21 International Journal of Control revised

RESEARCH ARTICLE

Low-rank exploitation in semidefinite programming for control

Rikard Falkeborn, Johan Löfberg and Anders Hansson

Division of Automatic Control, Department of Electrical Engineering

Linköping University, SE-581 83 Sweden,

{falkeborn,johanl,hansson}@isy.liu.se
(Received 00 Month 200x; final version received 00 Month 200x)

Many control related problems can be cast as semidefinite programs. Even though there exist polynomial time
algorithms and excellent publicly available solvers, the time it takes to solve these problems can be excessive.
What many of these problems have in common, in particular in control, is that some of the variables enter
as matrix valued variables. This leads to a low-rank structure in the basis matrices which can be exploited
when forming the Newton equations. In this paper, we describe how this can be done, and show how our code,
called STRUL, can be used in conjunction with the semidefinite programming solver SDPT3. The idea behind
the structure exploitation is classical and is implemented in LMI Lab, but we show that when using a modern
semidefinite programming framework such as SDPT3, the computational time can be significantly reduced.
Finally, we describe how the modeling language YALMIP has been changed in such a way that our code,
which can be freely downloaded, can be interfaced using standard YALMIP commands. This greatly simplifies
modeling and usage.

1 Introduction

Semidefinite programming (SDP) (Wolkowicz et al. 2000) has gained significant interest within
the control community, and is now a well established mathematical tool in the field. Many
fundamental control problems can be cast as semidefinite programs (Boyd et al. 1994), with
robust stability analysis being one of the most common application (Gahinet et al. 1996, Iwasaki
and Shibata 2001, Megretski and Rantzer 1997, Ben-Tal and Nemirovski 2001).

Moreover, since the beginning of the 90s, there exist efficient algorithms to solve these SDPs
in a time which is polynomial in the number of variables and constraints (Nesterov and Ne-
mirovsky 1994). Today, there are several solvers freely available, such as SeDuMi (Sturm 1999),
SDPT3 (Tütüncü et al. 2003) and SDPA (Yamashita et al. 2003).

Although SDPs can be solved in polynomial time, the number of variables in the problems
are often huge and the time needed to solve the problems can be substantial, even though the
plant size is modest. Because of this fact, tailor-made solvers for various types of problems have
been developed, for example for programs derived from the Kalman-Yakubovic-Popov lemma
(Wallin et al. 2008, 2009, Kao et al. 2004, Liu and Vandenberghe 2007, Vandenberghe et al.
2004). However, a problem with these tailor-made solvers is that they often are limited to very
particular control problems, thus making them non-applicable for more complex problems where
only some part of the problem specification happens to have the structure that can be exploited.
Additionally, these solvers are typically hard to interface with user-friendly modeling languages,
such as YALMIP (Löfberg 2004). It ultimately means that few users actually will benefit from
them.

This paper describes the implementation STRUL (STRUctured LMIs), a structure exploiting
assembler for the Schur matrix that can be used in for example SDPT3. The assembler utilizes the
fact that many problems in systems and control theory have matrix valued variables which lead to
low rank structure in the basis matrices. Additionally, we present a new version of YALMIP which
will allow the user to describe control problems in a very natural standard YALMIP format, and

1

August 19, 2011 8:21 International Journal of Control revised

take care of the intricate communication between SDPT3 and the structure exploiting code in
STRUL.

To be fair, it should be pointed out that the theoretical idea exploited in this paper was
incorporated already in LMI Lab (Gahinet et al. 1995), which was one of the first public im-
plementations of an SDP solver, tailored specifically for control problems. However, many years
of active research in the SDP field has led to much more efficient algorithms, and it is our goal
to leverage on this. A major reason for pursuing the idea in this paper is that it is slightly em-
barrassing for people coming from the SDP field, that the now over 15 year old LMI Lab solver
actually outperforms state-of-the-art general purpose SDP solvers on some small- to medium-
scale control problems. It is our goal to eliminate this performance discrepancy, while at the
same time leverage on the intuitive modelling capabilities of YALMIP.

The notation is standard. We let A � B(A � B) denote that A−B is positive (semi)definite,
Rn denotes the set of real vectors of dimension n, Rm×n denotes the set of real matrices of
dimension m by n and Sm denotes the set of real symmetric matrices of dimension m. The inner
product for matrices is denoted by 〈A,B〉 and is defined as Tr

(
ATB

)
.

2 Semidefinite programming

A semidefinite program can be written as1

min
x

cTx

s.t. F0 +

n∑
i=1

Fixi � 0
(1)

where c, x ∈ Rn and Fi ∈ Sm. The constraint (1) in the SDP is called a linear matrix inequality
(LMI).

Almost all modern SDP-solvers today use interior-point methods. The main parts of these
algorithms consist of forming a system of equations to solve for the search directions needed,
solve that system of equations and then do a line search in order to find out the appropriate
step size. This procedure is then repeated until a stopping criterion is fulfilled. This stopping
criterion may for example be that the decrease in objective value is sufficiently small.

Forming the system of equations can be computationally expensive, and is in some cases by
far the most time-consuming part of the algorithm. Let the system of equations to be solved in
order to find the search directions be

H∆x = b, (2)

where H is the so called Schur matrix (usually symmetric) and ∆x is the search direction. The
elements are given by

Hij = 〈Fi, UFjV 〉 (3)

when using the Helmberg-Kojima-Monteiro (HKM) direction (Helmberg et al. 1996, Kojima
et al. 1997, Monteiro 1997), and by

Hij = 〈Fi,WFjW 〉 (4)

1This form is most often used in the control community. It should be mentioned that it is a slight variation of what normally
is called the dual form in the semidefinite programming community.

2

August 19, 2011 8:21 International Journal of Control revised

when using the Nesterov-Todd direction (Nesterov and Todd 1997). Here, Hij denotes the ijth
element of the matrix H, and U , V and W are scaling matrices.

In LMIs encountered in systems and control, the majority of variables xi in (1) do not come
from scalar entities but rather as parts of a matrix variable, as described in detail below. However,
there is no way to inform any of the public solvers about this fact, so that they can exploit this
when forming (4). Instead, we will use an approach where we supply the solver with the code
to assemble the Schur matrix.

To illustrate the basic idea, let us consider a Lyapunov inequality as an example. The Lyapunov
inequality is

ATP + PA+Q � 0, (5)

where A ∈ Rn×n, P,Q ∈ Sn with Q � 0, and P being the sought variable. In order to put this
inequality on the form (1), we let F0 = −Q, Fi = −ATEi −EiA where E1, . . . , Em is a basis for
Sn, m = n (n+ 1) /2. However, by doing so, we lose a lot of information that can be used in the
formulation of the Schur matrix.

We can exploit the fact that we can choose Ei as any basis for Sn. This means we can choose
Ei = eke

T
l + ele

T
k , if the variable xi corresponds to the off-diagonal element at position (k, l) and

(l, k) and Ei = eke
T
k if xi is the kth diagonal element, where ei is a unit vector in Rn. Now, let

us compute one element of the resulting Schur matrix for the Lyapunov inequality (5), assuming
the HKM direction is used. If Er = eke

T
l + ele

T
k and Ep = eie

T
j + eje

T
i , the element in the Schur

matrix corresponding to the variables xr and xp evaluates to

Hrp =
〈
AT
(
eie

T
j + eje

T
i

)
+
(
eie

T
j + eje

T
i

)
A,

U
(
AT
(
eke

T
l + ele

T
k

)
+
(
eke

T
l + ele

T
k

)
A
)
V
〉

=

eTkAUA
T eie

T
j V el + eTkAUA

T eje
T
i V el+

eTl AUA
T eie

T
j V ek + eTl AUA

T eje
T
i V ek+

eTkAUeie
T
j AV el + eTkAUeje

T
i AV el+

eTl AUeie
T
j AV ek + eTl AUeje

T
i AV ek+

eTi AUele
T
kAV ej + eTj AUele

T
kAV ei+

eTi AUeke
T
l AV ej + eTj AUeke

T
l AV ei+

eTl Ueie
T
j AV A

T ej + eTl Ueje
T
i AV A

T ek+

eTkUeie
T
j AV A

T el + eTkUeje
T
i AV A

T el.

(6)

Since eTi Bej is just the ijth element of B, the element Hrp is just a sum of products of elements
from the matrices AUAT , AU , AV AT , AV , U and V . Moreover, the matrices involved are the
same for all the positions in the Schur matrix. Hence they can be precomputed once in each
iteration. This is the structure exploiting idea that was incorporated already in LMI Lab for a
projective method. The reason they could exploit it, while modern general purpose solvers fail
to, is that the user has to specify the matrices and their position in the constraints in a very
detailed, by many regarded cumbersome, fashion.

In this paper we present an extension to the modeling language YALMIP which allows users
to utilize this structure for interior-point methods using the semidefinite programming solver
SDPT3 (Tütüncü et al. 2003). Initial results were reported in Falkeborn et al. (2010).

We remark that this is not limited to symmetric matrix variables and a single Lyapunov
inequality, but more general constraints and variables can be used, as will be described in the
following section.

3

August 19, 2011 8:21 International Journal of Control revised

3 SDPs considered

In the paper, we consider SDPs where the constraints are of the following form.

Nim∑
i=1

Njm∑
j=1

(
LijmPjR

T
ijm +RijmP

T
j L

T
ijm

)
+

Nim∑
i=1

Njm∑
j=1

ATijmPjAijm +M0m+

p∑
k=1

Mkmxk � 0, m = 1, . . . , N, (7)

where Pj and xk are the optimization variables, and all the matrices are assumed to have suitable
dimensions. This structure arise in a large number of stability analysis and synthesis problems
in control and systems theory.

We assume the basis matrices for Pj can be written as

Ej =

αj∑
h=1

εhjδ
T
hj , (8)

where εhj and δhj are assumed to be unit vectors (columns of the identity matrix) in appropriate
vector spaces.

This implies that Pj can be a symmetric matrix, rectangular matrix, matrix with block diag-
onal structure, tridiagonal structure, skew-symmetric and many more. We assume Mkm has no
exploitable structure.

For easier presentation, we will drop the indices m, i.e. the indices that indicate which con-
straint the matrices belong to, and the indices i.

We now show what the elements in the Schur matrix with respect to the elements in Pj
corresponding to the basis matrices Ej1 and Ej2 in (8), for the first term in (7). The corresponding
element in the Schur matrix is

Hj1j2 =

〈
Lj

αj1∑
h=1

εhj1δ
T
hj1R

T
j , ULj

αj2∑
h=1

εhj2δ
T
hj2R

T
j V

〉
=

αj1∑
h=1

αj2∑
h=1

δThj1R
T
j ULjεhj2δ

T
hj2R

T
j V Ljεhj1 .

(9)

It is clear that for the other terms in (7), the expression will be similar. As an example, for the
second term in (7), just interchange Lj and Rj , and εhj and δhj . We remark that the entry in
the Schur matrix for the jth element in Pj with respect to the first term in (7) and xk with
respect to the last term in (7) can be written as

Hjk =

〈
Lj

aj∑
h=1

εhjδ
T
hjR

T
j , UMkV

〉
=

aj∑
h=1

〈
δThjR

T
j UMkV Ljεhj

〉
. (10)

Also in this case, the contribution from the other terms in (7) is very similar. In this case,
RTj UMkV Lj is the same for all the elements in H with respect to Pj and xk. Finally, we remark

4

August 19, 2011 8:21 International Journal of Control revised

that for the unstructured matrices, Mk, the entry in the Schur matrix will be

Hk1k2 = 〈Mk1 , UMk2V 〉 , (11)

just as it is implemented in e.g. SDPT3.
As a last remark in this section, we mention that since sparsity in the basis matrices Mk1

and Mk2 in (11) is exploited by solvers, the more sparsity in the basis matrices, the faster will
the computations in (11) be, using a standard compilation scheme. The computations in (9)
however will not be affected by sparsity in the basis matrices. Hence, the more full the basis
matrices are, the better it will be to use (9) in order to assemble the Schur matrix. We also
mention that a continuous time Lyapunov inequality, where the basis matrices have the form
ATEi + EiA will be relatively sparse and have roughly 4n non-zero elements out of n2, while a
discrete time Lyapunov inequality, where the basis matrices are on the form ATEiA − Ei will
have all n2 elements full, unless there is some sparsity in A. This indicates that the proposed
method will be relatively better for discrete time systems than continuous time systems, since a
sparsity exploiting solver will have nothing to exploit.

4 Comparison with other assembling schemes

Consider again the Lyapunov problem (5). We will now compare the standard method with using
the lowrank properties, another lowrank technique which is already implemented in SDPT3, and
similar to what is used in DSDP (Benson and Ye 2005) (note that DSDP primarily is intended
for problems with a sparse dual, which typically not is the case in our targeted applications).

First let us estimate the number of flops that is needed to compute the Schur matrix using
the technique described in the previous section.

• All matrix products AUAT , AV AT , AU and AV can be computed once in each iteration at
a cost of O(n3) flops.

• Each element in H in (6) can be computed in 31 flops.

• Since there are roughly n4/8 unique entries inH, the total cost is approximately 31∗n4/8 ≈ 4n4

flops in total for assembling H.

The unstructured way of doing this, as in (3), cost O(n6) operations (each of the O(n4)
elements in H requires an inner product between two matrices of dimension n). However, we
remark that this estimation assumes the basis matrices to be full. If the basis matrices are sparse,
which is often the case in applications, then the time needed to compute the Schur matrix can
be lowered substantially (Fujisawa et al. 1997).

The third way to compute the entries of the Schur matrix is to use the fact that the basis
matrices can be factored as Fi = ViDiV

T
i with Vi ∈ Rn×r and Di ∈ Rr×r where r is the rank

of Fi. This way, each element of the Schur matrix can be formed using TrV T
j V DiV

T
i UVjDj ,

something that can be done in O(n4) if the rank of Fi and Fj is small. Note that factorization
of the matrices is left out from this analysis.

5 Implementation

The solver SDPT3 allows for the user to provide the solver with a function that handles the
assembly of the Schur matrix, or parts of it. To leverage on this, we have developed a software
module called STRUL, which computes the Schur matrix as described in Section 3. As input,
the function takes the matrices Rijk, Lijk, Aijk, M0k, Mijk from (7) and information about
the basis matrices in (8). The computations of the elements in the matrix H in (9) are done
using mex-files to increase performance. Entries related to unstructured data is left to SDPT3 to

5

August 19, 2011 8:21 International Journal of Control revised

handle. To manipulate all this data and specify arguments in the solver would be cumbersome
and impractical to do manually. Instead, the modeling language YALMIP has been extended
to keep track of structured variables, and communicate this information to the solver, and our
Schur assembler, automatically.

6 Extension of the YALMIP modeling framework

One of the most important contribution of the presented work is to make the whole framework
easily accessible to casual users. An efficient solver with a cumbersome interface has little im-
pact in practice. A first step towards incorporation of an efficient structure-exploiting solver
for control was the YALMIP interface to the solver KYPD (Wallin et al. 2009). Although this
interface allowed users to describe problems to KYPD in a fairly straightforward fashion, it still
required special-purpose commands specific to this solver. Additionally, the KYPD solver is only
applicable to very restricted LMI problems arising in control theory.

While new solvers typically are easy to add to the list of supported solvers in YALMIP, it is a
somewhat more involved project to add support for solvers which exploit structure arising from
matrix variables. The reason for this is that the core idea in YALMIP is that all expressions
are evaluated on the fly, and only the basis-matrices and scalar decision variables are kept. In
other words, all expressions are immediately disaggregated and knowledge of underlying matrix
variables is lost.

To circumvent this, a new version of YALMIP has been developed. To be able to use the
efficient method described in this paper, it is essential that YALMIP keeps track of aggregated
matrix variables. Hence, when an expression is evaluated, YALMIP saves information internally
about the factors that constitute the constraints, essentially corresponding to the matrices L
and R in (7). These factors are also tracked when some basic operations are performed, such
as concatenation, addition, subtraction, multiplication and lifting from complex-valued LMIs to
real-valued LMIs. The factors are not guaranteed to be kept in highly complex manipulations. If
we use an operator for which the factor-tracking is not supported, the expression will be disag-
gregated, and constraints involving this expression will be handled as a standard unstructured
SDP constraint by the underlying solver, in our case SDPT3.

To summarize, for the user, standard YALMIP code applies and nothing has changed, the
only difference is that in some problems its structure is automatically detected and exploited.
As an example, the extended balanced truncation example described in (13) would be coded as1

P = blkdiag(sdpvar(n/3),sdpvar(n/3),sdpvar(n/3));

S = sdpvar(n,n,’full’)

Constraints = [P A*S B;

S’*A’ S+S’-P zeros(n,m);

B’ zeros(m,n) eye(m)]>0

Objective = trace(P)

options = sdpsettings(’solver’,’strul’)

solvesdp(Constraints,Objective,options)

Knowledge about the way the matrix variables P and R enters the problem will be tracked by
YALMIP and exploited. For reference, the following code implements the same algorithm using
LMI Lab.

setlmis([]);

P = lmivar(1,[n/3 1;n/3 1;n/3 1]);

S = lmivar(2,[n n]);

lmiterm([-1 1 1 P],1,1);

1For a complete on-line manual, please see http://users.isy.liu.se/johanl/yalmip/

6

August 19, 2011 8:21 International Journal of Control revised

lmiterm([-1 1 2 S],A,1);

lmiterm([-1 1 3 0],B);

lmiterm([-1 2 2 S],1,1,’s’);

lmiterm([-1 2 2 P],-1,1);

lmiterm([-1 3 3 0],eye(m));

lmisys = getlmis

c = mat2dec(lmisys,eye(n),zeros(n))

[copt,xopt] = mincx(lmisys,c);

7 Computational Results

In this section, we give some computational results that illustrate that in many cases in control
theory, it is advantageous to use the proposed way of computing the Schur matrix in combination
with a modern SDP framework. All computations were performed on a 3GHz desktop PC with
2Gb memory, using MATLAB 7.9 and SDPT3 4.

The first example is taken from (Johansson and Hansson 2010). The SDPs we solve have the
following structure

min
x,P

〈C,P 〉+ cTx

s.t.

[
ATi P + PAi PBi

BT
i P 0

]
+Mi,0 +

nx∑
k=1

xkMi,k � 0, i = 1, . . . , ni,
(12)

where the decision variables are P ∈ Sn and x ∈ Rnx . All data matrices were generated randomly,
but certain care was taken in order for the optimization problems to be feasible. See (Johansson
and Hansson 2010) for exact details on how the matrices were generated. This type of LMIs
appear in a vast number of analysis problems for linear differential inclusions (Boyd et al. 1994).

The optimization problem (12) can easily be put on the form (7) with Li =

[
ATi
BT
i

]
and Ri =[

I
0

]
. These are the factors that are automatically extracted and used by YALMIP when it

communicates with SDPT3 and STRUL. We solve the problem (12) for increasing numbers of
states n. We keep ni = 3 and nx = 3 constant for all the problems. The problem was solved
10 times for each n and the average solution times are reported in Figure 1. As can be seen in
Figure 1, the solution times decrease significantly if we use the tailor made code for the Schur
compilation.

Our second example implements the balanced truncation algorithm for discrete-time systems
in (Sandberg 2010). In the paper, the following SDP is introduced

min
S,P

TrP

s.t.

 P AS B
STAT S + ST − P 0
BT 0 I

 � 0,
(13)

Compared to standard LMIs arising in balanced truncation, the constraint in the SDP above
introduces a new set of variables S ∈ Rn×n, and it is argued that this extra degree of freedom
can be beneficial if the extended Gramian P ∈ Sn is forced to have structure for some reason. To
test our solver, we create random problem instances with growing dimensions of A ∈ Rn×n with
B ∈ Rn×1. The extended Gramian P is defined as a block-diagonal matrix with three blocks P1,
P2 and P3 of equal size (hence we only generate instances of size multiples of 3). The structure

7

August 19, 2011 8:21 International Journal of Control revised

10 16 25 35 50 75 100
10

−1

10
0

10
1

10
2

10
3

10
4

n

t [
s]

LMI Lab
SeDuMi
SDPT3
SDPT3+STRUL

Figure 1. Averaged computational times for the random KYP example. For medium- to large-scale problems, the proposed
solver is roughly an order of magnitude faster than LMI Lab, and a couple of factors faster than the general-purpose
state-of-the-art SDP solvers SDPT3 and SeDuMi.

our solver and YALMIP has to track and exploit is thus the block-diagonal concatenation of the
matrix variables Pi, and the full matrix S.

9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
10

−1

10
0

10
1

10
2

10
3

n

t [
s]

LMI Lab
SeDuMi
SDPT3
SDPT3+STRUL

Figure 2. Averaged computational times for the extended balanced truncation example. For increasing problem sizes, the
proposed solver is signficantly faster than both LMI Lab and the general-purpose state-of-the-art SDP solvers SDPT3 and
SeDuMi. For n > 45, LMI Lab failed to compute solutions (out of memory).

Finally, we study a slightly more involved scenario. The example is based on a model reduction
algorithm by (Helmersson 1994) where semidefinite programming is used to reduce the order of
a linear time-invariant (LTI) system. A short description of the algorithm now follows.

It is well known that the H∞-norm γ of a continuous-time LTI system can be computed as

min
γ,P

γ

s.t.

ATP + PA PB C
BTP −γI D
CT DT −γI

 � 0, P � 0. (14)

We also know that the difference of two systems G̃ = G− Ĝ can be written on state space form

8

August 19, 2011 8:21 International Journal of Control revised

with the matrices, where (Ã, B̃, C̃, D̃) are the state-space matrices of a realization of G̃, and

analogously with G and Ĝ,

G̃ =

[
Ã B̃

C̃ D̃

]
=

A 0 B

0 Â B̂

C −Ĉ D − D̂

 , G =

[
A B
C D

]
, Ĝ =

[
Â B̂

Ĉ D̂

]
. (15)

Now, using G̃ in (14), and by partitioning the matrix P into

P =

[
P11 P12

P T12 P22

]
� 0, (16)

and using this in (14), we obtain an optimization problem to minimize the H∞-norm of the

model error G− Ĝ.

min
Â,B̂,Ĉ,D̂,P,γ

γ

s.t.


ATP + PA ATP12 + P12Â P11B − P12B̂ CT

ÂTP T12 + P T12A ÂTP22 + P22Â P T12B − P22B̂ ĈT

BTP11 − B̂TP T12 B
TP12 − B̂TP22 −γI DT − D̂T

C Ĉ D − D̂ −γI

 � 0, P � 0. (17)

Since this is a bilinear matrix inequality (BMI), the approach taken in (Helmersson 1994) is to
fix some matrices to be constant to make it an LMI, solve that optimization problem, and then
fix other matrices. This is best described in the following algorithm from (Helmersson 1994).

i Start with a Ĝ obtained from, for example a truncated balanced realization
ii Keeping (Â, B̂) constant, solve (17) subject to (16) with respect to (P, Ĉ, D̂).

iii Keeping (P12, P22) constant, solve (17) subject to (16) with respect to (P11, Â, B̂, Ĉ, D̂).
iv Repeat ii and iii until some given convergence criterion is met.

Our numerical experience with this algorithm indicates that the numerical properties of the
LMIs we need to solve is improved, in terms of numerical accuracy and convergence, if we let
(A,B,C,D) be a balanced realization of G.

We test the algorithm using SDPT3 both with and without our Schur assembler. The systems
we test it on are from the COMPleib library (Leibfritz 2004). We remark that for the H∞-norm
to be well defined, the systems must be stable, i.e. all eigenvalues of the A-matrix must have
strictly negative real parts. Unfortunately, this is not the case for most of the models in the
COMPleib library. In an attempt to increase the number of models we can experiment with,
we shift the spectrum of the A-matrices in some models such that no eigenvalue has larger real
part than −1. Results from the tests are summarized in Table 1. In the table, nx is the number
of states in the original model A ∈ Rnx×nx , nred is the number of states in the reduced system
A ∈ Rnred×nred , nu is the number of inputs B ∈ Rnx×nu , ny is the number of outputs C ∈ Rny×nx ,
tSDPT3+STRUL and tSDPT3 is the time (averaged per iteration in the algorithm above) used by
SDPT3 with and without the Schur assembler. The models LAH and JE1 are used without any
shifting of the spectrum, while the other models where first shifted in order to obtain stable
models. As can be seen in the table, the computational times can be reduced by the use of our
code, also on these relatively small problems.

9

August 19, 2011 8:21 International Journal of Control revised

Table 1. Comparison of solution times in the model reduction example. The time reported is the average time to solve the problems

(ii) and (iii) in each iteration of the algorithm. By using the proposed Schur assembler, the computation time can be reduced by

a factor of 2 on most problems.

Name nx nred nu ny tSDPT3+STRUL tSDPT3 Improvement
LAH 48 18 1 1 209 472 2.26
JE1 24 4 3 5 12.3 26.7 2.17

AC10 48 10 2 2 127 221 1.74
AC13 24 8 3 4 19.8 31.4 1.58
JE2 21 4 3 3 8.81 22.7 2.58
IH 20 10 11 10 22.5 54.2 2.4

CSE1 19 4 2 10 12.3 21.3 1.73

8 Conclusions

A dedicated Schur assembler used in conjunction with SDPT3 has been developed. The Schur
matrix is the coefficient matrix that defines the system of equations for the search directions.
The assembler utilizes the fact that many semidefinite programs in systems and control theory
involve large matrix variables. This implies that the basis matrices have a special low rank
structure that is exploited in order to reduce the computational burden. We also presented a
related extension to the modeling language YALMIP which allows us to keep track of aggregated
matrix variables, and exploit these in our solver, something which can be done automatically
without any extra input from the user. In three examples, it was demonstrated that the proposed
framework can be beneficial. The first example was an academic example where the SDP has
a so called KYP structure. In this example, the speedup using our code was about five times
compared to SDPT3, SeDuMi and LMI Lab for large-scale problems. In the second example, we
illustrated how the proposed approach was up to an order of magnitude faster than the other
compared solvers, and without problems managed to solve problems where LMI Lab suffered
from memory problems. In the final example, we tested the code on a model reduction algorithm
on models from the COMPleib library. The speed up here was not as striking as in the previous
examples, but still more than half of the problems are solved at least twice as fast compared to
standard SDPT3.

Finally, we remark that since sparsity in the basis matrices is exploited efficiently in SDPT3,
our code would be even more beneficial on discrete time problems since these types of problems
often have full basis matrices.

References

A Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications. MPS-SIAM series on Optimization. SIAM, Philadelphia, Penn-
sylvania, 2001.

S.J. Benson and Y. Ye. DSDP5: Software for semidefinite programming. ACM Trans. Math.
Software, 2005.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and
control theory, volume 15 of Studies in Applied Mathematics. SIAM, 1994.

R. Falkeborn, J. Löfberg, and A. Hansson. Lowrank exploitation in semidefinite programming
for control. In Proceedings of the 15th IEEE International Symposium on Computer Aided
Control System Design, Yokohama, Japan, 2010.

K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point meth-
ods for semidefinite programming. Mathematical Programming, 79(1):235–253, 1997.

P. Gahinet, A. Nemirovski, AJ Laub, and M. Chilali. LMI control toolbox. The MathWorks
Inc, 1995.

P. Gahinet, P. Apkarian, and M. Chilali. Affine parameter-dependent Lyapunov functions and

10

August 19, 2011 8:21 International Journal of Control revised

real parametric uncertainty. IEEE Transactions on Automatic Control, 41(3):436 – 442, 1996.
C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz. An interior-point method for semidef-

inite programming. SIAM Journal on Optimization, 6:342–361, 1996.
A. Helmersson. Model reduction using LMIs. In Proceedings of the 33rd IEEE Conference on

Decision and Control, pages 3217–3222, Orlando, Florida, February 1994.
T. Iwasaki and G. Shibata. LPV system analysis via quadratic separator for uncertain implicit

systems. IEEE Transactions on Automatic Control, 46(8):1195 – 1208, August 2001.
J. H. Johansson and A. Hansson. An inexact interior-point method for system analysis. Inter-

national Journal of Control, 83(3):601–616, March 2010.
C.-Y. Kao, A. Megretski, and U. Jönsson. Specialized fast algorithms for IQC feasibility and

optimization problems. Automatica, 40(2):239 – 252, February 2004.
M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite

linear complementarity problem in symmetric matrices. SIAM Journal on Optimization, 7:
86, 1997.

F. Leibfritz. COMPleib, COnstraint Matrix-optimization Problem LIbrary-a collection of test
examples for nonlinear semidefinite programs, control system design and related problems.
Technical report, Technical report, Universität Trier, 2004.

Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived from the
KYP lemma. In Proceedings of the 46th IEEE Conference on Decision and Control, 2007.

J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. Computer Aided
Control Systems Design, 2004 IEEE International Symposium on, pages 284–289, 2004.

A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Trans-
actions on Automatic Control, 42(6):819 – 830, June 1997.

R.D.C. Monteiro. Primal–dual path-following algorithms for semidefinite programming. SIAM
Journal on Optimization, 7(3):663–678, 1997.

Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex programming.
Studies in applied mathematics, 13, 1994.

Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22(1):1–42, 1997.

H. Sandberg. An Extension to Balanced Truncation With Application to Structured Model
Reduction. IEEE Transactions on Automatic Control, 55(4):1038–1043, April 2010. .

J.F. Sturm. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11(1):625–653, 1999.

R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear programs using
SDPT3. Mathematical Programming, 95(2):189–217, 2003.

L. Vandenberghe, V.R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh. Interior-point al-
gorithms for semidefinite programming problems derived from the KYP lemma. Positive
Polynomials in Control, Lectures Notes in Control and Information Science. Springer, 2004.

R. Wallin, C.-Y. Kao, and A. Hansson. A cutting plane method for solving KYP-SDPs. Auto-
matica, 44(2):418 – 429, February 2008.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor for semidef-
inite programs derived from the Kalman-Yakubovich-Popov lemma. IEEE Transactions on
Automatic Control, 54(4):697–704, April 2009.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Programming: Theory,
Algorithms, and Applications. Kluwer Academic Publishers, 2000.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA 6.0
(semidefinite programming algorithm 6.0). Optimization Methods and Software, 18(4):491–
505, 2003.

11

	Low-TitlePage.pdf
	revised

