
Phase-Based Non-Rigid 3D Image Registration:
From Minutes to Seconds Using CUDA

Daniel Forsberg1,2,3, Anders Eklund1,2,
Mats Andersson1,2, and Hans Knutsson1,2

1 Department of Biomedical Engineering, Linköping University, Sweden
2 Center for Medical Image Science and Visualization (CMIV),

Linköping University, Sweden
3 Sectra Imtec, Linköping, Sweden

Abstract. Image registration is a well-known concept within the med-
ical image domain and has been shown to be useful in a number of
different tasks. However, due to sometimes long processing times, image
registration is not fully utilized in clinical workflows, where time is an
important factor. During the last couple of years, a number of significant
projects have been introduced to make the computational power of GPUs
available to a wider audience, where the most well known is CUDA. In
this paper we present, with the aid of CUDA, a speedup in the range
of 38-44x (from 29 minutes to 40 seconds) when implementing a phase-
based non-rigid image registration algorithm, known as the Morphon,
on a single GPU. The achieved speedup is in the same magnitude as
the speedups reported from other non-rigid registration algorithms fully
ported to the GPU. Given the impressive speedups, both reported in
this paper and other papers, we therefore consider that it is now feasible
to effectively integrate image registration into various clinical workflows,
where time is a critical factor.

1 Introduction

Image registration is a well known concept, frequently applied in a number of
different areas, for instance geophysics, robotics and medicine. The basics idea
of image registration is to find a displacement field d that geometrically aligns
one image (source image, IS) with another image (target image, IT). This can
be more strictly defined as an optimization problem, where the aim is to find
a displacement field that maximizes the similarity between the source and the
target images. A frequently applied categorization of different image registration
algorithms is to classify them as either parametric or non-parametric [8]. Para-
metric methods refers to methods, where a parameterization has been performed
to reduce the number of degrees of freedom in the estimated displacement field.
Non-parametric methods, on the other hand, independently estimate a displace-
ment vector for each voxel.

This work was funded by the Swedish Research Council, grant 2007-4786.

The use of image registration within the medical image domain is vast and
includes tasks, such as; radiotherapy planning, image-guided surgery, disease
progression monitoring and image fusion. A common need for all these tasks
is high accuracy, in terms of the actual registration result, coupled with high
performance, in terms of the speed of the registration process. Usually, there is a
trade-off between accuracy and speed, i.e. the better the accuracy is, the longer
time it will take to perform the registration. The relevance of this problem in-
creases the closer one comes to clinical usage of image registration. For instance,
the amount of time required to process data for a longitudinal group-study using
voxel based morphometry in a research project is not a major concern. However,
the amount of time required to register pre-operative MRI/CT data with live
US data for image-guided surgery or to simply register prior examinations with
current examination during clinical review, is a major limiting factor.

A large number of the existing image registration algorithms can be paral-
lelized in order to improve the performance. However, often solutions have been
proposed that either are not practically feasible in a real world scenario (due
to financial, practical or availability aspects) or available techniques for dealing
with parallelization have been too difficult to master properly (for instance us-
ing the normal graphics pipeline for GPU computing). This is a real problem
and prevents new and more advanced registration algorithms from being used
in a clinical setting, since time effective workflows are of uttermost importance
in today’s healthcare. A recent and very cost-effective trend for parallelization
is GPGPU computing (General-Purpose computation on Graphics Processing
Units), which provides tools for utilizing the computational power available on
modern graphics cards. One technique to achieve parallelization on the GPU is
CUDA (Common Unified Device Architecture) from NVIDIA [5].

The purpose of this paper is to present a CUDA based GPU implementation
of a registration algorithm, known as the Morphon, and to investigate whether
the achieved speedup is sufficient for integrating non-rigid registration into time-
constrained clinical workflows. The Morphon differs from more commonly used
registration algorithms, since it is phase-based and not intensity-based. As refer-
ence we will use a CPU based MATLAB implementation. This is relevant since
MATLAB is frequently used to implement various registration algorithms and
therefore it is relevant to investigate the speedup that can be expected when
moving from research code (MATLAB) to production code (CUDA). In the
presented implementation, the Morphon can be considered as a non-parametric
method and thus, the achieved speedup will be compared with speedups of other
CUDA based GPU implementations of non-parametric image registration algo-
rithms.

2 Related Work

In the papers [2, 9] two different CUDA based implementations of the demons
algorithm are presented, the former containing a number of implementations of
different versions of the demons algorithm. Although they differ in hardware,

CUDA version and implemented demons algorithm, they both report similar
computation times, 7-11 seconds, for an image volume of the approximate size
256x256x100. In [9] they compare the GPU implementation with two CPU im-
plementations (one single- and one multi-threaded) and achieve a speedup factor
of 55x respectively 35x, whereas in [2] they achieve a speedup factor of 40x when
compared to their CPU implementation.

Another relevant paper presents a CUDA based implementation of a mutual
information driven algorithm [3]. They report computation times of about 19
seconds for datasets of the size 256x256x128 along with a speedup factor of 25x
when compared to their CPU implementation.

A more general and complete survey of medical image registration algorithms
employing multi-core architectures (including GPUs) can be found in [1, 10].

3 CUDA

The basic building blocks of CUDA consist of kernels (functions) that are launched
by the host (CPU) but executed on the device (GPU). Each kernel is executed
by a number of threads in parallel, however, not all at the same time. All threads
are grouped into different thread blocks where each thread block is executed on a
single stream multiprocessor, which consists of a number of cores. The multipro-
cessor executes a number of the threads of the thread block in parallel, known
as a warp. All thread blocks are arranged into a structure known as a grid. The
threads, the warp, the thread blocks and the grid form the thread hierarchy. Fig.
1 shows a schematic overview of the thread hierarchy.

There is also another hierarchy in CUDA, known as the memory hierarchy.
First of all, each thread has a limited amount of local (private) memory, depen-
dent on the number of threads per thread block. Each thread block also has a
certain amount of shared memory which is accessible to all threads within the
same thread block. Then there exists the global memory which is accessible to all
threads. Alongside these memory types, there are also two read-only memories,
which are accessible by all threads, constant and texture memory. An important
aspect to consider for the different memories is that they have different read and
write latencies. See Fig. 2 for a schematic overview of the memory hierarchy.

It is by utilization of the parallel execution of the threads that the computa-
tional performance can be improved. However, care must be taken to correctly
use and understand the properties of the different hierarchies; if not, the perfor-
mance improvements will not be as significant as expected or even absent. This
includes writing and launching kernels with an optimal thread configuration to
populate all multiprocessors and keep their cores busy while for instance avoid-
ing uncoalesced global memory accesses and unnecessary branching of threads
executed in the same warp.

Although there are some other techniques for GPGPU computing, such as
OpenCL from the Khronos Group and DirectCompute from Microsoft, and that
they all share some common concepts for parallel computing on the GPU, CUDA
is still the most frequently applied. This is likely due to CUDA being a more

Host Device

Kernel 1

Kernel 2

Kernel 1

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(3,0)

Block
(4,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(3,1)

Block
(4,1)

Kernel 2

Block (1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(5,0)

Thread
(6,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(6,1)

Thread
(5,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(5,2)

Thread
(6,2)

Fig. 1. A schematic overview of the thread hierarchy.

Device

Block (0,0)

Texture Memory

Global Memory

Constant Memory

Shared Memory

Local
Memory

Local
Memory

Thread (0,0) Thread (1,0)

Block (1,0)

Shared Memory

Local
Memory

Local
Memory

Thread (0,0) Thread (1,0)

Fig. 2. A schematic overview of the memory hierarchy.

mature technique [10]. However, this is likely to change as OpenCL and Direct-
Compute will mature over the coming years.

4 The Morphon

The Morphon is an algorithm where a source image, IS(x), is iteratively de-
formed, ID(x) = IS(x + d(x)), until the phase-difference between the target
image, IS , and the deformed image, ID, has been minimized. This process is
performed over multiple scales, starting on coarser scales to register large global
displacements and moving on to finer scales to register smaller local deforma-
tions. The algorithm itself consists of the following three sub-steps: local dis-
placement estimation, displacement field accumulation, deformation. For a more
detailed review of the different sub-steps the user is referred to [6]. An overview
of the algorithm is provided in Algorithm 1.

Algorithm 1 The Morphon

for startScale to endScale do
resample IS(x), ID(x) and IT (x) to currentScale
for k = 1 to N do % N = # of filter orientations, e.g. 6 in 3D

qDk = IDsub ∗ fk % fk is a quadrature filter with orientation n̂k

qTk = ITsub ∗ fk
qqk = qDkq

∗
Tk

dk = arg (qqk)

ck = |qqk|1/2 cos2
(

dk
2

)
end

TD =
∑N

k=1 |qSk |Mk % Mk is an orientation tensor associated with n̂k

TDLP = (‖TD‖TD)∗g
‖TD‖∗g

% Average the structure tensor

T̂DLP =
TDLP

‖TDLP‖
% Normalize the structure tensor

% To estimate di solve min
d

∑N
k=1

[
ckT̂D (dkn̂k − d)

]2
↔ Adi = b

for i = 1 to M % M = # of dimensions
for j = i to M

ai,j = g ∗
∑N

k=1 cktti,j % tti,j = component i, j of T̂2
DLP

end

bi = g ∗
∑N

k=1 ckdk
∑D

l=1 nkltti,l
end
di = A−1b
ci = trace(A)

da = cada+ci(da+di)
ca+ci

% Accumulate displacement fields

ca =
c2a+c2i
ca+ci

% Accumulate certainties

da = (cada)∗g
ca∗g % Regularize accumulated displacement field

IDsub(x) = ISsub(x + da(x)) % Deform according to current displacement field
if changeScale
resample da and ca to nextScale

end
end

5 Implementation

The CPU algorithm was implemented in MATLAB 2010b from MathWorks.
With the aid of the built-in profiling tool in MATLAB, various inefficient steps
could be tracked down and handled. For instance, the function convn was re-
placed with the much more efficient imfilter and the function function interp3

was replaced with a more optimized version.
The GPU algorithm was implemented using CUDA Toolkit 3.2 and, where

available, features in compute capability 1.3 were utilized. This includes the us-
age of the extended warp size, the extended maximum number of resident threads
per multiprocessor and the improved local memory size. For instance, with the
improved local memory size, it is possible to perform more computations per ker-
nel, since the intermediate results can be temporarily stored in the local memory
instead of the global memory. To handle some of memory bandwidth limitations
associated with the global memory, the shared memory was extensively used in
the various convolution kernels. Also the GPU implementation benefited from
the built-in profiling tool in CUDA, among other things helped in improving the
access pattern to the global memory and tracking down branching threads.

Noteworthy is that the GPU and CPU implementations were exactly the
same, apart from the fact that the CPU implementation had double precision
whereas the GPU implementation had single precision. The actual coding of the
GPU implementation or the translation from MATLAB to CUDA was rather
straightforward. However, CUDA does suffer from its limited debugging options
compared to MATLAB, which caused a lot of trouble during debugging.

6 Results

The CPU and GPU implementations were executed on an HP Z400 Worksta-
tion with an Intel Xenon Quad Core 2.67 GHz processor, 8 GB RAM and Fe-
dora 14 x64. The CUDA implementation was executed on an NVIDIA GTX
285 with 240 cores and 2 GB onboard memory with NVIDIA Driver 260.19.26.
As test datasets, three datasets with different sizes (128x128x128, 196x196x196,
256x256x128 referred to as dataset 1, 2 and 3) were used, two synthetic datasets
and one MRI dataset. The synthetic datasets consisted of a cross and a man-
ually deformed cross as source and target images, whereas the MRI dataset
consisted of T1 weighted brain scans from two different patients. Since the pur-
pose of the paper is to compare the relative performance improvement, the tests
were executed with a fixed number of scales and iterations per scale to use. To
measure timing results in MATLAB, the functions tic and toc were used, and
in CUDA, the functions cutResetTimer, cutStartTimer, cutStopTimer and
cutGetTimerValue were used. The timing results were obtained by running the
registration ten times and then averaging the results.

The obtained timing results are presented in Fig. 3 and in Fig. 4, and the
relative speedups are presented in Fig. 5. The timing results for the whole algo-
rithm give an achieved speedup in the range of 38-43x. Note that in the timing

results for the GPU, the time needed to transfer the data between the CPU
and GPU has not been included. The reason for this, is that the time required
for memory transfer was negligible in our tests, since it was in the order of 0.5-
1.5 sec, depending on the size of the dataset. The timing results for different
sub-steps of the Morphon, i.e. local displacement estimation, displacement field
accumulation and deformation give relative speedups that differ between the
different sub-steps, with achieved speedups of approximately 50x, 25x and 300x
respectively. For resampling the achieved speedup is approximately 20x.

0

5

10

15

20

25

30

35

40

45

The whole
algorithm

Local disp. est. Disp. field acc. Deformation Resampling

se
co
n
d
s

Data set 1

Data set 2

Data set 3

Fig. 3. Timing results for the GPU implementation.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

The whole
algorithm

Local disp. est. Disp. field acc. Deformation Resampling

se
co
n
d
s

Data set 1

Data set 2

Data set 3

Fig. 4. Timing results for the CPU implementation.

0

50

100

150

200

250

300

350

400

450

The whole
algorithm

Local disp. est. Disp. field acc. Deformation Resampling

sp
e

e
d

u
p

 f
ac

to
r

Data set 1

Data set 2

Data set 3

Fig. 5. The relative speedup between the GPU and CPU implementations.

7 Discussion

The results in Fig. 3 and in Fig. 5 are the expected, i.e. we have an obvious per-
formance improvement with the GPU implementation and the relative speedup
is the same regardless of the size of the datasets, except for the sub-step defor-
mation. The fact that the speedup differs between the different sub-steps is to
be expected. For instance, the local displacement estimation include extensive
use of an ordinary non-separable convolution kernel, whereas the accumulation
of the displacement field includes usage of a separable convolution kernel. Thus,
it appears that the performance gain is larger for ordinary convolution than for
separable convolution.

However, the results regarding the sub-step deformation are somewhat am-
biguous. That the relative speedup would be larger for the deformation step,
than the other sub-steps, was expected since it is based on the built-in trilinear
interpolation using 3D textures, which is a highly specialized task for GPUs.
Despite this, the results for datasets 1 and 2 seem a bit too extreme. A possible
explanation could be that the utilized functions for measuring the computational
times in CUDA have a limited accuracy, something which has been indicated in
CUDA user forums. However, this cause was ruled out after timing a large num-
ber of consecutive deformations and then dividing the result with the number of
deformations, this did not alter the timing results. A more likely explanation is
that since textures have a cache that is optimized for 2D spatial locality, then
threads of the same warp that read from the same 2D region will achieve the
best performance. Thus, if two displacement fields differs in their variance of
the displacement field along the z-axis, then the displacement field with largest
variance will have more texture cache misses and therefore, a worse performance.

In our comparison, we have used a MATLAB implementation as CPU im-
plementation. Since MATLAB in general is not considered to be the most com-
putationally efficient platform for CPU implementations, it must be noted that

almost 90% of the total runtime in MATLAB was used by the function imfilter,
which is a highly optimized mex-function. Thus, the extensive usage of imfilter
vouches for that it is fair to also use the MATLAB implementation as a refer-
ence implementation for a single core, single-threaded CPU implementation. How
much an optimized multi-threaded CPU implementation would affect the results
is a highly debated question [7]. A simple way to simulate an optimized multi-
threaded CPU implementation would be to divide the results with the number of
available cores on the CPU and with the SIMD width (e.g. four in our case). In
our case this would lower the relative speedup to 2.5x instead of approximately
40x. However, this is the theoretical speedup that would be achieved by fully
exploiting the available multi-threading and SIMD support. To actually achieve
this improvement of a CPU implementation is very difficult and dependent on a
number of things, such as; cache access patterns and inter-core communication.
For instance, the multi-threaded solution in [9] only changes the speedup factor
from 55x to 35x.

We have not provided any similarity or distance measures to compare the
accuracy of the GPU and the CPU implementations, simply because there were
no evident differences in the end result of the registration process. The rela-
tive difference was less then 0.003 for all datasets when using normalized cross-
correlation as similarity measure. This is relevant to observe since the GPU im-
plementation uses single precision whereas the CPU implementation uses double.
Another interesting point when comparing the GPU and the CPU implemen-
tations is that both spend close to 90% of the total runtime in convolution
kernels/functions.

The achieved speedups are in the same magnitude as the speedups reported
in [2, 3, 9]. This further supports the notion that GPGPU computing is an easy
(and cheap) method for improving the performance of image registration algo-
rithms that support parallelization. An important observation to make here is
the difference in actual runtime when comparing the CUDA implementations
of the Morphon and the demons, where the demons is 3.5-5 times faster than
the Morphon for a dataset of the size 256x256x128. Since we have not been
able to compare the implementations on the same test data, we cannot say any-
thing about the difference in accuracy of the actual registration result and thus,
whether the actual runtime results are valid to compare. However, it is important
to note that the demons algorithm is based on the intensity differences between
two images whereas the Morphon utilizes the phase-difference, which has been
shown to be superior in cases with varying contrast between images to align [4].

One of the aims of this work was to investigate whether GPU-based image
registration algorithms can be integrated into a clinical workflow, where time ef-
fectiveness is of uttermost importance. For tasks, such as; image-guided surgery
or clinical review of medical images, a time limit of seconds to tens of seconds can
be expected. Thus, given the timing results presented in this paper, but also in
the papers by [2, 3, 9], one can conclude that we now have a performance accept-
able for integrating image registration into various clinical workflows. However,
one must note that the reported timing results are based upon data sets with

rather modest data sizes. Today a standard MR examination can easily generate
data sets with a size of 256x256x256 and a standard CT examination with a size
of 512x512x512. Although the GPU manufacturers constantly increase the num-
ber of available cores on the GPUs, there is also a need to increase the onboard
memory in order to be able to handle larger datasets and avoid time-consuming
data transfer between the host and the device. Other suggestions for dealing
with large data sets is to use solutions with multiple GPUs.

Future work includes better optimization of the convolution kernels, multiple
GPU support to handle larger data sets, better comparison with other GPU
based implementations and comparison with other GPU based parallelization
techniques such as OpenCL and DirectCompute.

References

1. Fluck, O., Vetter, C., Wein, W., Kamen, A., Preim, B., Westermann, R.: A sur-
vey of medical image registration on graphics hardware. Computer Methods and
Programs in Biomedicine In Press, Corrected Proof (2010)

2. Gu, X., Pan, H., Liang, Y., Castillo, R., Yang, D., Choi, D., Castillo, E., Ma-
jumdar, A., Guerrero, T., Jiang, S.B.: Implementation and evaluation of various
demons deformable image registration algorithms on a GPU. Physics in Medicine
and Biology 55(1), 207–219 (2010)

3. Han, X., Hibbard, L., Willcut, V.: GPU-accelerated, gradient-free MI deformable
registration for atlas-based MR brain image segmentation. Computer Vision and
Pattern Recognition Workshop pp. 141–148 (2009)

4. Janssens, G., Jacques, L., de Xivry, J.O., Geets, X., Macq, B.: Diffeomorphic reg-
istration of images with variable contrast enhancement. International Journal of
Biomedical Imaging (2010)

5. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann (2010)

6. Knutsson, H., Andersson, M.: Morphons: Segmentation using elastic canvas and
paint on priors. In: IEEE International Conference on Image Processing (ICIP’05).
Genova, Italy (September 2005)

7. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.:
Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. SIGARCH Comput. Archit. News 38(3), 451–460 (2010)

8. Modersizki, J.: Numerical Methods for Image Registration. Oxford University Press
(2004)

9. Muyan-Ozcelik, P., Owens, J.D., Xia, J., Samant, S.S.: Fast deformable registration
on the GPU: A CUDA implementation of demons. Computational Science and its
Applications, International Conference pp. 223–233 (2008)

10. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: A survey of medical image regis-
tration on multicore and the GPU. Signal Processing Magazine, IEEE 27(2), 50–60
(2010)

