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Abstract—The use of polynomial expansion in image
registration has previously been shown to be beneficial due to
fast convergence and high accuracy. However, earlier work
has only briefly out-lined how non-rigid image registration is
handled, e.g. not discussing issues like regularization of the
displacement field or how to accumulate the displacement
field. In this work, it is shown how non-rigid image regis-
tration based upon polynomial expansion can be integrated
into a generic framework for non-rigid image registration
achieving diffeomorphic displacement fields. The proposed
non-rigid image registration algorithm using diffeomorphic
field accumulation has been evaluated on both synthetically
deformed data and real image data and compared to tra-
ditional field accumulation. The results clearly demonstrate
the power of the diffeomorphic field accumulation.

I. INTRODUCTION

Image registration is a well-known concept, widely
applied in a number of different areas, for instance
geophysics, robotics and medicine. The use of image
registration within the medical image domain is vast
and includes various tasks, such as; surgical planning,
radiotherapy planning, image-guided surgery, disease pro-
gression monitoring and image fusion. The basic idea
of image registration is to find a displacement field d
that geometrically aligns a moving image, Im, with a
fixed image, If . This can be more strictly defined as
an optimization problem, where the aim is to find a
displacement field that maximizes the similarity between
the moving and the fixed images.

A commonly stated requirement for medical non-rigid
image registration is to have diffeomorphic displacement
fields, i.e. displacement fields that are invertible, dif-
ferentiable and where its inverse also is differentiable.
This is considered important, since it allows compression
and deformation of organs but prevents non-invertible
spatial transforms. Diffeomorphism is considered to be
a necessary condition for having physically plausible
displacement fields [1].

Polynomial expansion was introduced by Farnebäck [2]
as a method to locally approximate a signal with a
polynomial. In a later work by Farnebäck and Westin [3]
it was shown how polynomial expansion could be used to
perform both linear (e.g. translation and affine) and non-
rigid image registration. This idea was further developed
by Wang et al. [4]. Both Farnebäck and Westin [3] and
Wang et al. [4] showed that image registration using
polynomial expansions has some valuable qualities. Since

it is based on an analytical solution, the convergence rate
is fast, typically only needing a few iterations per scale.
Also the accuracy of the registration has been shown to be
similar or even better than the accuracy of the well-known
demons algorithm. However, thus far, previous works
have not satisfactorily dealt with questions related to the
regularization of the displacement field and accumulation
of the displacement field.

The contribution of this paper, is to present how non-
rigid image registration based upon polynomial expansion
can be integrated into a generic framework for non-rigid
registration, which enforces diffeomorphic displacement
fields. The framework also holds the possibility of includ-
ing other types of regularizers. The proposed non-rigid
image registration algorithm using diffeomorphic field
accumulation is evaluated on both synthetically deformed
data and real image data and compared to traditional field
accumulation.

II. BACKGROUND

A. Polynomial Expansion

The basic idea of polynomial expansion is to locally
approximate each signal value with a polynomial. In case
of a quadratic polynomial, this approximation can be
expressed as:

f(x) ∼ xTAx + bTx + c, (1)

where A is a symmetric matrix, b a vector and c a scalar.
In the linear case, the approximation reduces to:

f(x) ∼ bTx + c. (2)

The coefficients are determined by a weighted least
squares fit to the local signal. The weighting depends on
two factors, certainty and applicability. These terms are
the same as in normalized convolution, see [2], [5], which
forms the basis for polynomial expansion.

B. Image Registration Using Polynomial Expansion

1) Translation Estimation: Let both the fixed and the
moving images be locally approximated with a linear
polynomial expansion and assume that the moving image
is a globally translated version of the fixed image, thus,

If(x) = bT
f x + cf , (3)

Im(x) = bT
mx + cm, (4)

= If(x− d) = bT
f (x− d) + cf ,



which gives

bm = bf , (5)

cm = cf − bT
f d. (6)

Then (6) is sufficient to find the translation d.

d = (bfbT
f )

−1bf (cf − cm). (7)

Note the similarity of equation (7) with optical flow
methods and the Lucas-Kanade equation.

In practice, a point-wise polynomial expansion is es-
timated, let bf (x), cf (x), bm(x), and cm(x) be the
linear polynomial expansion coefficients for the fixed
image and the moving image. Since it cannot be expected
that bf (x) = bm(x) holds, they are replaced with their
average

b(x) =
bf (x) + bm(x)

2
. (8)

Also, set
∆c(x) = cf (x)− cm(x) (9)

and thus, the primary constraint is given by:

b(x)Td = ∆c(x) (10)

To solve (10), compute d by minimizing the squared
error in the constraint over the whole image,

ε2 =
∑
x

‖b(x)d−∆c(x)‖2, (11)

with the least squares solution given as

G =
∑
x

b(x)b(x)T , (12)

h =
∑
x

b(x)∆c(x), (13)

d = G−1h. (14)

2) Non-Rigid Registration: A non-rigid registration
algorithm can be achieved if the assumption about a
global translation is relaxed and we instead sum over a
neighborhood around each pixel in (11), thereby obtaining
an estimate for each pixel. In this case, a local translation
is assumed but it could easily be changed to a local affine
transformation, as is done in [4]. More precisely (11) is
changed to

ε2(x) =
∑
y

w(y)(‖b(x− y)Td(x)−∆c(x− y)‖2),

(15)
where w weights the points in the neighborhood around
each pixel. This weight can be any lowpass function, but
here it is assumed to be Gaussian. Clearly this equation
can be interpreted as a convolution of the pointwise
contributions to the squared error in (11) with the lowpass
filter w. The solution is given as

G(x) = b(x)b(x)T , (16)
h(x) = b(x)∆c(x), (17)

Gavg(x) = (G ∗ w)(x), (18)
havg(x) = (h ∗ w)(x), (19)

d(x) = Gavg(x)
−1havg(x). (20)

Note that in this work, we have only used a linear
polynomial expansion, but as shown in [3], [4] a quadratic
polynomial expansion along with similar derivations can
also be used for image registration. In fact, it is possible
to combine both derivations in order to obtain a more
robust solution.

III. A GENERIC FRAMEWORK FOR NON-RIGID
IMAGE REGISTRATION

An often encountered benefit of non-rigid image reg-
istration algorithms, is that they allow for a decoupling
of the optimization of the similarity measure and the
regularization of the displacement field, for instance as
shown in [6] for the demons algorithm. This makes it
very easy to create a generic framework for non-rigid
image registration, where different components can easily
be exchanged and, thus, efficient evaluations of various
components can be performed. This is, for example,
demonstrated in the work by Janssens et al. [7], where
the intensity-based demons algorithm is compared with
the phase-based Morphon. In their work, they describe
three main components of interest, field computation, field
accumulation and field regularization.

In this section and also in the rest of this work, the
focus is on the second component, field accumulation.

A. Field Accumulation

Field accumulation is most often implemented as a
traditional accumulation, i.e.

da = da + du. (21)

Here an iterative process is assumed and du refers to the
update field and da to the accumulated field. However,
considering this iterative process in image registration,
it turns out that compositive field accumulation is more
correct to use. If first defining the ”deformation” operation
of d on Im as

Id(x) = Im(x) � d(x) = Im (x + d(x)) , (22)

then compositive field accumulation can be defined as

da ⊕ du = du + da � du. (23)

This means, that the two displacements fields are accu-
mulated by first deforming da according to du and then
adding du. Since, du is estimated from Im � da it is
obvious that da +du is not valid but rather that da⊕du

is consistent with the applied spatial transformation. If
the two displacements fields are diffeomorphic, than their
composition is also diffeomorphic [8].

Assuming a smooth vector field d and a point x, the
diffeomorphic flow φd (x, t) is the solution u (t) of

d
dt

u (t) = d (u) , (24)

u (0) = x. (25)

Vercauteren et al. [6] show that the exponential of d
is the deformation obtained by the flow of d at time
t = 1. Hence, this exponential mapping of the vector
field (d) can be used as an operation for obtaining



a diffeomorphic displacement field. In [6] it is further
shown that a scaling and squaring approach can be used
as an efficient approximation, i.e.

exp (d) ≈ exp
(
2−kd

)2k
, (26)

which is implemented with the following three steps:
• Scale d with a factor 2−k to ensure that 2−kd is

small enough, for example, max 2−kd < 0.5.
• Compute a fist-order integration of the flow:
φd
(
x, 2−k

)
≈ Id (x) + 2−kd (x)

• Perform k squarings of the flow in order to obtain
the flow a time 1. This is implemented as k re-
cursive compositive field accumulations of the flow
φd
(
x, 2−k

)
.

Using the compositive field accumulation and the expo-
nentiation of the displacement field, a diffeomorphic field
accumulation can be achieved using

da = da ⊕ exp (du) (27)

IV. RESULTS

In this section, we describe the experiments performed
to evaluate how the diffeomorphic field accumulation
affects the end result for non-rigid image registration,
when compared to traditional field accumulation. Here
we have used the field computation described in (16)-
(20) along with both applying fluid-like and elastic-like
regularization, i.e.

du = du ∗ g (28)
da = da ∗ g. (29)

In all experiments σfluid = σelastic = 1 were used along
with a multi-scale strategy. Also the number of iterations
per scale was fixed, 20 iterations on the finest scale and
10 iterations on the coarser scales.

The first experiment involves the registration of a
filled O with a C, see left column of Fig. 1. These
images are often used to analyze how the registration
handles very large deformations and is here only evaluated
qualitatively. In the remaining columns of Fig. 1, we
can observe the results of the registration using the two
different accumulation methods.

In the second experiment, a 3D dimensional T1-
weighted MRI data set of the brain (size 144x144x144
and spatial resolution 1.66x1.66x1.7 mm3) has been
deformed using 20 randomly created diffeomorphic dis-
placement fields. The original data set is then registered
to synthetically deformed data sets. Since the true dis-
placement fields are know, the average displacement error
(ADE) along with the mean square error (MSE) can be
used to measure the accuracy. The smoothness of the
displacement field is analyzed using the harmonic energy
and the minimum value of the Jacobian determinant of
the displacement field. The harmonic energy refers to the
mean Frobenius norm of the Jacobian of the displacement
field.

In the third experiment, ten 3D dimensional data sets,
of the same type as in the second experiment but from ten
different subjects, have been used. In this experiment, one

Fig. 1. The results from the first experiment, where a filled O is
registered to a C. The registration is done using two different field
accumulation methods. Top row: Traditional field accumulation Bottom
row Diffeomorphic field accumulation. First column: The filled O to be
registered to the C. Second column: The difference image between the
C and the registered O. Third column: The grid used to resample the
filled O. Fourth column: The Jacobian determinant of the displacement
field, where green corresponds to expansion, red contraction and purple
to folding. The images clearly show that a similar registration accuracy
is achieved, whereas the traditional field accumulation fail to provide
an invertible displacement field.

data set acted as the fixed image and the remaining nine
data sets were registered to the fixed. The same metrics
as in the second experiment, apart from ADE, have been
used to analyze the obtained results. Also the number of
voxels with a negative Jacobian determinant were used.
The results are given in Fig. 3.

V. DISCUSSION

In this work, we have shown how non-rigid image
registration based upon polynomial expansion can be
integrated into a generic framework for diffeomorphic
non-rigid image registration. The focus of the evaluation
in this work, has been on the effects of diffeomorphic field
accumulation when compared to traditional field accumu-
lation. However, although not described in this work, this
framework also allows for various field regularizers to be
utilized.

The results from the three different experiments clearly
show the benefit of the diffeomorphic field accumulation
for obtaining diffeomorpic displacement fields, while at
the same time maintaining the registration accuracy or
even providing a superior registration accuracy. The re-
sults are clearly along the line of previous works utilizing
a similar approach for obtaining diffeomorphic displace-
ment field, for example [1] and [7]. However, a differ-
ence is that in the third experiment, we obtained some
displacement fields that contained a negative Jacobian
determinant, whereas other works have no report of this.

The diffeomorphic field accumulation comes of course
with a cost, the cost of squaring the displacement fields,
which in this case refers to recursive compositive field ac-
cumulations, where the most computationally demanding
part refers to the deformation operation, i.e. interpolation.
Instead of just performing a single deformation per iter-
ation when using traditional field accumulation, roughly
10−16 deformations had to be performed on average per
iteration in our experiments. For example, the run-time for
a registration in the second or third experiment was ap-
proximately 110 seconds for traditional field accumulation



Fig. 2. Boxplots from the second experiment, where a data set is registered to a synthetically deformed data set. For each method 20 randomly
created diffeomorphic displacement fields were used. The results show that even though the accuracy of diffeomorphic field accumulation surpasses
traditional field accumulation, the obtained displacement fields are still smoother and still invertible.

Fig. 3. Results from the third experiment, where nine subjects where registered to a tenth subject. The two different methods for field accumulation
appear to have no significance on the achieved registration accuracy but again it is obvious that diffeomorphic field accumulation display a much
better better performance in terms of estimating a smoother displacement field.

and 180 seconds for diffeomorphic field accumulation,
when using a MATLAB implementation.

An interesting aspect for future work, which was
not evaluated in our work, is the difference between
compositive field accumulation and diffeomorphic field
accumulation. Some initial experiments showed no sign of
difference in the smoothness of the obtained displacement
fields using the two different methods, and this would
also be the expected result if the maximum step length
per iteration is small enough. If this is the case, then the
extra computational burden associated with diffeomorphic
field accumulation is uncalled for.
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