Synthesis of tri-, penta-, and hepta-saccharides, functionalized with Orthogonally N-Protected Amino residues at the reducing and non-reducing ends

Timmy Fyrner, Stefan C.T. Svensson and Peter Konradsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

http://dx.doi.org/10.1016/j.tet.2012.05.118

Copyright: Elsevier

http://www.elsevier.com/

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76730
Synthesis of tri-, penta-, and hepta-saccharides, functionalized with orthogonally N-protected amino residues at the reducing and non-reducing ends.

Timmy Fyrner, Stefan C.T. Svensson and Peter Konradsson*
Division of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden.

* Corresponding author: Peter Konradsson (petko@ifm.liu.se)

KEYWORDS: glycosylation, glycosidation, oligosaccharide synthesis, spacer molecules, orthogonally protected, carbohydrates, bifunctionalized.

1. Abstract
The synthesis of four bifunctionalized orthogonally N-protected oligosaccharides derived from lactose and mannose, intended as cross-linking derivatives, is described. The amino sugar at the non-reducing end is derivatized with an N-Boc-protected glycine moiety, and further connected to either a mannose (1→6) disaccharide or (1→3) lactose units (one, two or three) resulting in tri-, penta-, or heptasaccharides. All of the synthesized oligosaccharides have an N-benzyloxycarbonyl-aminoethyl residue at the reducing end. The orthogonal N-Boc/N-Cbz protection group pattern enables further conjugation/derivatization and results in a hydrophilic cross-linking molecule. It was found that the order of the final synthetic steps was crucial to avoid acyl migration. A suitable amide coupling protocol has been applied to introduce the N-Boc-protected glycine moiety in alcoholic solvent. The synthesized oligosaccharides will provide a model system to investigate the influence of length, structure and flexibility.

2. Introduction
To study biological processes, appropriate cross-linking molecules are often required to circumvent the synthesis of complex oligosaccharides. A challenge within the field of glycobiology and biotechnology is to achieve controlled immobilization of proteins onto surfaces,
while retaining their biological features and properties.1,2 The design of bifunctional spacers comprises several aspects that have to be taken into consideration; (i) the extent of the synthesis, (ii) homo-/heterobifunctionality (identical or different reactive groups) (iii) length (iv) water-solubility and (v) conformational flexibility.3-8 One of the most common classes of compounds used for bioconjugation in various biophysical or biological systems is the poly- and oligoethylene glycol (PEG/OEG) chains.9 Both are known for their protein-resistant properties10,11 and occur in numerous research fields.12-15 PEGs and OEGs have also been used as spacers to form glycoconjugates.16,17 An investigation on how the spacer length and flexibility influence the liposome-phagocyte interaction18 confirmed the importance of tuning the length of the spacer depending on the biological system.19 To resemble biomolecules and compensate for weak individual protein-carbohydrate interactions, glycodendrimers are often used, facilitating the effect of multivalency.20 Dendrimers are constructed using a poly(amido)-,21,22 ethylene(glycol)23 or polyether24 backbone. Saccharides as building blocks in dendrimers are suitable for controlling characteristics such as flexibility, surface properties and to impart biocompatibility.25 Several carbohydrate-containing surfaces have also shown protein-resistant properties26-28 i.e. an eligible feature for serving as general cross-linking molecules. Oligosaccharide-based spacer molecules, comprised of (oligo-)lactoses19 appears to be comparable with those containing OEGs, thus demonstrating possible cross-linking features of oligosaccharides in biophysical- or biosensing applications. Herein, we present the synthesis of four oligosaccharides to be used as bifunctionalized spacer molecules (1–4) (Figure 1) derived from lactose and mannose, containing an N-Boc-glycine functionalized aminosugar. The orthogonal N-Boc/N-Cbz protection group pattern allows for further conjugation and derivatization depending on the specific target, thus resulting in a potential cross-linking molecule. The results from the oligosaccharides synthesized by Schmidt and co-workers,29 suggest that oligo(lactoses) adopts linear rod-like conformations. Using the selected aminosugar from the corresponding gluco series, glycosylated in a (1→3) manner (1-3), we hypothesize that the same conformation will be retained, giving fairly rigid rod-like target molecules. Using this analogy, we also synthesized a more flexible mannose (1→6) based trisaccharide (4) with the identical terminal aminosugar moiety, allowing for investigations and tuning of the cross-linking property, i.e. length, structure and flexibility.
3. Results and discussion

The azido sugar 6 was synthesized starting from the known thioglycoside 530 using triflic anhydride followed by NaN\textsubscript{3} displacement, giving the azido functionalized derivative 6 as a crystalline compound in 85\% yield (Scheme 1).

The synthesis of the lactosides 1–3 \((n = 0, 1, 2)\) (Scheme 2) started from the commercially available lactose monohydrate. In a straightforward six-step manner \textit{i.e.} acetylation, formation of the bromosugar, phase-transfer substitution at the anomeric center, deacetylation, selective introduction of an isopropylidene group at the 3’4’-position and subsequent protection of the remaining alcohols using BzCl, afforded the crystalline building block 731 in 43\% yield over six steps. The phase-transfer conditions for introducing the phenyl thioglycosides32 and the use of TMSCl/2,2-dimethoxypropane in acetone to selectively install the 3’,4’-isopropylidene acetal provides a scalable synthetic route to donor 7 without to resort to purification by chromatography.
Scheme 2. Reagents and conditions: (i) Ac₂O, HOAc, HClO₄, 0 °C; (ii) HBr/HOAc, CH₂Cl₂, 0 °C; (iii) PhSH, Bu₄NHSO₄, 1 M Na₂CO₃ (aq.), CH₂Cl₂; (iv) NaOMe, MeOH; (v) Acetone, DMP, TMSCl; (vi) BzCl, DMAP, pyridine; (vii) N-Cbz-2-aminoethanol, NIS, AgOTf, 4 Å MS, CH₂Cl₂, 0 °C→rt.; (viii) TFA (90%), CH₂Cl₂; (ix) 7, NIS, AgOTf, 4 Å MS, CH₂Cl₂, 0 °C→rt.; (x) BzCl, pyridine; (xi) NIS, AgOTf, 4 Å MS, CH₂Cl₂, 0 °C→rt.; (xii) NaOMe, MeOH, CH₂Cl₂; (xiii) NiCl₂·6H₂O, NaBH₄, MeOH; (xiv) N-(tert-butyloxycarbonyl)-glycine, HOAt, N-methylmorpholine, EDC·HCl, MeOH.

Utilizing NIS/AgOTf promoted glycosylation of 7 with N-Cbz-2-aminoethanol afforded the crystalline glycoside 8 (n = 0) in 87% yield. Deprotection of the isopropylidene acetal of 8 followed by a regioselective glycosylation with azido sugar 6 and final benzoylation of the 4'-hydroxyl group gave the (β 1→3) azido trisaccharide 9 (n = 1) in 81% yield. Although the
regioselectivity of the 3-position on galacto-configured epitopes is known,29,31 we confirmed this by NMR spectroscopic analysis after benzoylation at the remaining 4´-position. The selectivity depends on the glycosyl donor and promotor used which was earlier found by the group of Oscarson.33 This extra benzoylation was in agreement with the protection group pattern and also used for the synthesis of compounds 10–13. The target molecule 1 \((n = 1)\) was obtained by deprotection of the benzoates using NaOMe, thereby circumventing intramolecular migration of acyls, followed by subsequent reduction of the azido functionality to the corresponding amine using NaBH\(_4\) and NiCl\(_2\)·6H\(_2\)O34,35 in MeOH. It was found that the order of addition strongly affects the outcome of the reaction. The highest yields were obtained when the NiCl\(_2\)·6H\(_2\)O was stirred with the azido sugar for 5 min followed by addition of the NaBH\(_4\) and subsequently quenching the reaction using Dowex®-H\(^+\). The amine was then coupled with N-Boc-glycine using a combination of methods36,37 with EDC·HCl in MeOH. Initially, the azido group was reduced prior to the deprotection using either PPh\(_3\) or NiCl\(_2\)·6H\(_2\)O, however, the reduction exclusively resulted in acyl migration, which is consistent with the finding made by Lin \textit{et al.}38 Tetrasaccharide 10 \((n = 1)\) was obtained by deprotection of the isopropylidene acetal of compound 8 followed by an NIS/AgOTf-promoted glycosylation with donor 7 and subsequent benzoylation to afford compound 10 in an overall yield of 69%. Applying the protocol described for 9, tetrasaccharide 10 was used to afford the protected azido pentasaccharide 11 \((n = 2)\) in 66% yield. Finally, target compound 2 \((n = 2)\) was obtained in 64%, using the previously described synthetic protocol for 1. Product 3 was synthesized in 29% yield from 10, via 12 and 13 (69% and 51% yields respectively) using the methods described above. It should be noted that H\(_2\)O had to be added in the glycine derivatization due to poor solubility of the deprotected amino heptasaccharide in MeOH. The H\(_2\)O, in combination with the increased steric hindrance of the amine, is probably the reason why a lower yield was obtained for compound 3 \((n = 3)\) (cf. 1 (65%), 2 (64%) and 3 (29%) (Scheme 3).
Scheme 3. Reagents and conditions: (i) TrCl, pyridine; (ii) BzCl, CH₂Cl₂, 0 °C.; (iii) p-TsOH, CHCl₃/MeOH; (iv) Chloroacetyl chloride, pyridine, CH₂Cl₂, −40 °C; (v) Br₂, CH₂Cl₂; (vi) AgOTf, 4 Å MS, CH₂Cl₂, −30 °C; (vii) N-Cbz-2-aminoethanol, NIS, 4 Å MS, TfOH, CH₂Cl₂, −30 °C; (viii) 2,6-lutidine, thiourea, CH₂Cl₂, MeOH; (ix) 6, NIS, AgOTf, 4 Å MS, CH₂Cl₂, 0 °C→rt.; (x) NaOMe, MeOH, CH₂Cl₂; (xi) NiCl₂·6H₂O, NaBH₄, MeOH; (xii) N-(tert-butyloxycarbonyl)-glycine, HOAt, N-methylmorpholine, EDC·HCl, MeOH.

The mannose 15 was obtained in 45% yield by well-known procedures (i.e., tritylation, benzylation, deprotection) starting from the tetraol 14 (Scheme 3). However, to the best of our knowledge the characterization of compound 15 has not been described previously. Chloroacetylation of the 6-hydroxyl mannose 15 at −40 °C gave compound 16 in 82% yield. Conversion to the corresponding bromo sugar followed Koenigs-Knorr glycosylation using AgOTf as promoter at −30 °C gave disaccharide 17 in 87% yield. A NIS/TfOH-promoted glycosylation at −30 °C with N-Cbz-2-aminoethanol afforded 18 in 82% yield. Treatment with
thiourea/2,6-lutidine removed the chloroacetyl group to afford the corresponding 6-hydroxyl acceptor, which was subsequently glycosylated with azido donor 6 using NIS/AgOTf to give compound 19 in 85% yield. The conditions for the final three-step conversion were in accordance with the protocol previously described for the synthesis of 1, 2 and 3 resulting in the target trisaccharide 4 in 62% yield.

4. Conclusions
The function of biologically conjugated motifs for e.g. biosensing strongly depends on the cross linker. We have demonstrated the synthesis of oligosaccharides, with variable lengths and flexibility, as possible bifunctional cross-linking structures (1–4). Common problems associated with the synthesis of the traditionally used PEGs/OEGs are purification and low crystallinity. Efficient synthetic protocols have been developed to produce the crystalline building blocks 6, 7 and 8. The synthetic pathway developed is straightforward, using known transformations and crystalline intermediates and may therefore be applied on larger scale providing alternative compounds to the commonly used OEGs/PEGs. Furthermore, these oligosaccharides have the potential to serve as well-defined, biocompatible spacers for biophysical model systems. Finally these oligosaccharides provide a relevant model system that enables investigations of cross-linker influence on biological studies.

5. Experimental
General procedure
CH$_2$Cl$_2$ and toluene were distilled over calcium hydride and collected onto pre-activated 4 Å MS. Thin layer chromatography (TLC) was carried out on Merck 60 F$_{254}$ plates and visualized by UV light and/or developed with PAA [EtOH (95%, 740 mL), H$_2$SO$_4$ (conc., 28 mL), AcOH (100%, 8.4 mL), p-anisaldehyde (20 mL)]. Flash column chromatography (FC) was carried out on silica gel Merck 60 (40–63 µm). Reverse phase chromatography (RP) was carried out on Merck LiChroprep® (RP-18). Proton nuclear magnetic resonance (1H NMR) were recorded on Varian 300 MHz and 600 MHz spectrometers, carbon nuclear magnetic resonance (13C NMR) was recorded on Varian 300 (75.4 MHz) spectrometer; multiplicities are quoted as apparent doublet (ad), apparent singlet (as), broad singlet (bs), singlet (s), doublet (d), doublet of doublets (dd), double doublet of doublets (ddd), triplet (t) and multiplet (m). If overlaps in carbon spectra occur
(e.g. anomeric- or carbamate carbons) this is noted. In situations where a doublet of doublets (dd) appears as a triplet (t) due to resolution, this is denoted as a (dd) with identical couplings constants. TMS or the resonances of the deuterated solvent was used as internal standard; CDCl₃ (1H NMR, δ = 7.26; 13C NMR, δ = 77.2); CD₃OD (1H NMR, δ = 3.31; 13C NMR, δ = 49.0); with D₂O, CH₃OH (1H NMR, δ = 3.34; 13C NMR, δ = 49.5) was used as reference. Matrix assisted laser desorption ionization – Time of flight (MALDI-TOF) mass spectrometry was recorded on a Voyager-DE STR Biochemistry Workstation, in a positive mode, using α-cyano-4-hydroxycinnamic acid (CHCA) or 2,4,6-tri hydroxyacetophenone (THAP) as matrices. ESI-MS (recorded at Medivir AB, Huddinge, Sweden) was performed on a Water Synapt HDMS instrument equipped with electrospray interface. Optical rotation measurements were recorded at 20 °C with a Perkin-Elmer 141 polarimeter. FT-IR was recorded on a Perkin-Elmer Spectrum 1000 using KBr pellets. Melting points were recorded on a Stuart® melting point apparatus.

Ethyl 4-deoxy-4-azido-2,3,6-tri-O-benzoyl-β-D-thioglycopyranoside (6)

To a solution of ethyl 2,3,6-tri-O-benzoyl-β-D-thiogalactopyranoside³⁰ (5) (5.00 g, 9.32 mmol) and dry pyridine (2.25 mL, 28.0 mmol) in CH₂Cl₂ (50 mL) under argon was added Tf₂O (2.35 mL, 14.0 mmol) at −20 °C. After 30 min the solution was diluted with CH₂Cl₂ (50 mL), washed with H₂O (2x50 mL), dried over MgSO₄ (s) and evaporated. The crude triflate Rf = 0.72 (toluene/EtOAc 4:1) was dissolved in DMF (50 mL) whereupon NaN₃ (2.42 g, 37.3 mmol) was added and the solution was heated to 70 °C. After 2 h the solution was diluted with toluene (100 mL), washed with brine (2x100 mL), H₂O (2x100 mL), dried over MgSO₄ (s) and evaporated. Crystallization from EtOH (99.5%) gave the azide 6 (4.44 g, 7.91 mmol, 85%) as white needles. Rf = 0.78 (toluene/EtOAc 4:1); mp 129–130 °C (EtOH); [α]D +108 (c 1, CHCl₃); ¹³C NMR (75.4 MHz, CDCl₃): δ 14.9, 24.4, 61.0, 63.6, 70.5, 74.9, 76.6, 83.9, 128.2–128.6 (several carbons), 128.9, 129.2, 129.8–130.0 (several carbons), 133.4, 133.6, 165.4, 165.7, 166.2 (note: overlaps occur in aromatic region); ¹H NMR (300 MHz, CDCl₃): δ 1.26 (t, 3H, J = 7.4 Hz), 2.63–2.81 (m, 2H), 3.80 (ddd, 1H, J = 2.3, 4.7, 10.2 Hz), 3.91 (dd, 1H, J = 9.6, 10.2 Hz), 4.60 (dd, 1H, J = 4.7, 12.2 Hz), 4.76 (dd, 1H, J = 2.3, 12.2 Hz), 4.77 (d, 1H, J = 9.8 Hz), 5.44 (dd, 1H, J = 9.6, 9.8 Hz), 5.70 (dd, 1H, J = 9.6, 9.6 Hz), 7.35–7.40 (m, 4H), 7.46–7.54 (m, 4H), 7.58–7.64 (m, 1H), 7.92–7.97 (m, 4H), 8.08–8.11 (m, 2H); HRMS (ESI): [M + NH₄]⁺ calcd for C₂⁹H₃₁N₄O₇S, 579.1835; found 579.1833.
Phenyl 2,6-di-O-benzoyl-3,4-di-O-isopropylidene-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-1-thio-β-D-glucopyranoside (7)31

To a stirred solution of lactose monohydrate (75.0 g, 208 mmol), Ac\textsubscript{2}O (190 mL, 2.01 mol), HOAc (375 mL), was added two drops of aq. HClO\textsubscript{4} (60%, aq.) with 15 min interval at 0 °C (exothermic!). After 1 h the mixture containing the per-acetylated lactose ($R_f = 0.52$, toluene/EtOAc 1:1) was diluted with CH\textsubscript{2}Cl\textsubscript{2} (200 mL) whereupon HBr in HOAc (250 mL, 33 wt%) was added (over 30 min) at 0 °C and stirred for an additional 3 h. The solution was diluted with CH\textsubscript{2}Cl\textsubscript{2} (200 mL) and washed with ice/H\textsubscript{2}O (2x300 mL), NaHCO\textsubscript{3} (sat. aq.) (2x300 mL), dried over MgSO\textsubscript{4} (s), filtered and concentrated. The crude bromosugar ($R_f = 0.58$, toluene/EtOAc 1:1) was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (250 mL) whereupon PhSH (50.9 mL, 49.6 mmol), Bu\textsubscript{4}NHSO\textsubscript{4} (56.1 g, 165 mmol) and 1 M Na\textsubscript{2}CO\textsubscript{3} (aq.) (250 mL) were added. The mixture was stirred vigorously overnight. The mixture was separated and the organic phase was washed with 1 M NaOH (aq.) (2x100 mL), H\textsubscript{2}O (2x200 mL), dried over MgSO\textsubscript{4} (s), filtered and concentrated. To a mixture of the crude thioglycoside ($R_f = 0.56$, toluene/EtOAc 1:1) in MeOH (200 mL) was added NaOMe (8.92 g, 165 mmol) and stirred overnight, whereupon the solution was neutralized with DOWEX-H+ and filtered. The solution was washed with n-heptane (200 mL) followed by evaporation and co-concentration with toluene. To a mixture of the deprotected thioglycoside ($R_f = 0.24$, chloroform/MeOH 7:2) in acetone (400 mL) and 2,2-dimethoxypropane (150 mL) was added TMSCl (150 mL, 1.18 mol) and stirred for 2 h. To the reaction mixture, EtOAc/n-heptane (500 mL, 1:1) was added and the precipitate was filtered and washed with additional n-heptane (200 mL). To a solution of pyridine (500 mL), DMAP (1.00 g, 8.19 mmol) and BzCl (112 mL, 1.24 mol) was added (over 30 min) the crude isopropylidene-protected derivative ($R_f = 0.60$, chloroform/MeOH 7:2) at 0 °C and stirred overnight at rt. The reaction mixture was diluted with CH\textsubscript{2}Cl\textsubscript{2} (300 mL) and washed with 1 M HCl (aq.) (6x1 L), NaHCO\textsubscript{3} (sat. aq.) (2x2 L), H\textsubscript{2}O (2x2 L), dried over MgSO\textsubscript{4} (s), filtered and concentrated. Crystallization followed by re-crystallization from EtOH (4 L, 99.5%, v/v) gave thiosugar 7 as white crystals (89.2 g, 89.7 mmol, 43%). $R_f = 0.73$ (toluene/EtOAc 1:1); mp 189–191 °C (EtOH); $[\alpha]_D +34$ (c 1, CHCl\textsubscript{3}); 13C NMR (75.4 MHz, CDCl\textsubscript{3}): δ 26.3, 27.6, 62.9, 63.0, 70.6, 71.5, 73.3, 73.8, 74.0, 75.5, 77.3, 77.3, 86.1, 100.4, 111.2, 128.2-130.0 (several carbons), 129.4–130.0 (several carbons), 132.0, 133.1–133.5 (several carbons), 165.0, 165.3, 165.7, 166.0, 166.1, (note: overlaps occur in aromatic region); 1H NMR
(300 MHz, CDCl$_3$): δ 1.25 (s, 3H), 1.52 (s, 3H), 3.68 (dd, 1H, $J = 7.4, 11.4$ Hz), 3.80-3.91 (m, 2H), 4.09 (dd, 1H, $J = 2.1$, 5.6 Hz), 4.12 (dd, 1H, $J = 9.6, 9.6$ Hz), 4.21-4.26 (m, 2H), 4.47 (dd, 1H, $J = 5.0, 12.1$ Hz), 4.60 (d, 1H, $J = 7.7$ Hz), 4.66 (dd, 1H, $J = 1.9, 12.1$ Hz), 4.88 (d, 1H, $J = 9.9$ Hz), 5.13 (dd, 1H, $J = 6.8, 7.7$ Hz), 5.40 (dd, 1H, $J = 9.6, 9.6$ Hz), 5.73 (dd, 1H, $J = 9.2, 9.2$ Hz), 7.07–7.12 (m, 2H), 7.17–7.20 (m, 1H), 7.25–7.62 (m, 17H), 7.91–8.01 (m, 8H), 8.05–8.08 (m, 2H); MALDI-TOF (CHCA): [M + Na]$^+$ calcd for C$_{56}$H$_{50}$NaO$_{15}$S, 1017.27; found 1017.30.

2-(N-Benzylloxycarbonyl)-aminoethyl (2,6-O-benzoyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (8)

Compound 7 (25.0 g, 25.1 mmol) and N-Cbz-2-aminoethanol (9.80 g, 50.3 mmol) were dissolved in CH$_2$Cl$_2$ (50 mL) and pre-activated 4 Å MS were added and stirred for 10 min. NIS (8.48 g, 37.7 mmol) and AgOTf (~ 0.1 eq.) were added and stirred for 4 h, 0 °C→ rt. The reaction was quenched with Et$_3$N, diluted with CH$_2$Cl$_2$ (50 mL) and filtered through Celite®, washed with Na$_2$S$_2$O$_3$ (10 wt%,aq.) (2x50 mL), 1 M HCl (aq.) (2x50 mL), NaHCO$_3$ (sat. aq.) (2x50 mL), H$_2$O (2x50 mL) dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 6:1) followed by crystallization from EtOAc/n-heptane gave glycoside 8 (23.5 g, 21.7 mmol, 87%) as white needles. R_f = 0.68 (toluene/EtOAc 1:1); mp 153-154 °C (EtOAc/n-heptane); [a]$_D$ +39 (c 1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 26.1, 27.4, 40.9, 62.4, 62.8, 66.4, 69.4, 71.3, 71.9, 72.2, 73.1, 73.2, 73.6, 75.2, 77.1, 100.1, 101.3, 110.8, 127.9–128.6 (several carbons), 129.1–129.8 (several carbons), 132.9, 133.1, 133.2, 133.3, 136.5, 156.2, 164.8, 165.3, 165.5, 165.8, 165.9; 1H NMR (300 MHz, CDCl$_3$): δ 1.25 (s, 3H), 1.52 (s, 3H), 2.92–3.10 (m, 2H), 3.45–3.53 (m, 2H), 4.28 (dd, 5H, $J = 16.4$ Hz), 4.40 (dd, 5H, $J = 16.4$ Hz), 4.50 (dd, 5H, $J = 16.4$ Hz), 4.60–4.64 (m, 3H), 4.70 (dd, 5H, $J = 16.4$ Hz), 4.80 (dd, 5H, $J = 16.4$ Hz), 4.85–4.89 (m, 3H), 4.90 (dd, 5H, $J = 16.4$ Hz), 4.95 (dd, 5H, $J = 16.4$ Hz), 5.09 (bs, 1H), 5.15 (dd, 1H, $J = 6.8, 7.7$ Hz), 5.37 (dd, 1H, $J = 7.8, 9.7$ Hz), 5.71 (dd, 1H, $J = 9.4, 9.4$ Hz), 7.22–7.37 (m, 13H), 7.42–7.60 (m, 7H), 7.91–8.02 (m, 8H), 8.07–8.11 (m, 2H); HRMS (ESI): [M + Na]$^+$ calcd for C$_{60}$H$_{57}$NNaO$_{18}$, 1102.3395; found 1102.3372.

2-(N-Benzylloxycarbonyl)-aminoethyl (4-N-azido-4-deoxy-2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (9)
Compound 8 (3.50 g, 3.24 mmol) was added to a solution of CH₂Cl₂/TFA (90% v/v, aq.) (50 mL, 4:1) and stirred for 1 h. The mixture was diluted with CH₂Cl₂ (50 mL) and washed with NaHCO₃ (sat. aq.) (2x100 mL), dried over MgSO₄ (s), filtered and concentrated. The crude acceptor \((R_f = 0.24 \text{ (toluene/EtOAc 2:1)})\) was dissolved in CH₂Cl₂ (50 mL) whereupon 6 (2.00, 3.56 mmol) and pre-activated 4 Å MS were added and stirred for 10 min. NIS (1.09 g, 4.86 mmol) and AgOTf (~0.1 eq.) were added and stirred for 1 h, \((0 \text{ °C } → \text{ rt})\). The reaction was quenched with Et₃N whereupon pyridine (10 mL) and BzCl (1.5 mL, 13 mmol) were added. After 2 h, the mixture was diluted with CH₂Cl₂ (50 mL) and washed with 1 M HCl (aq.) (2x100 mL), NaHCO₃ (sat. aq.) (2x100 mL), H₂O (2x100 mL), dried over MgSO₄ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 2:1) gave trisaccharide 9 (3.99 g, 2.62 mmol, 81%) as a colorless syrup.

\[\text{[α]}_D^{+75} \text{ (c 0.1, CHCl}_3) \]

\[^{13} \text{C NMR (75.4 MHz, CDCl}_3): \delta 40.8, 60.1, 62.0, 62.3, 62.7, 66.4, 69.3, 69.4, 71.2, 71.6, 71.9, 72.4, 72.5, 73.0, 73.4, 75.3, 78.2, 100.6, 101.2, 101.3, 127.8–128.7 \text{ (several carbons), 129.0–130.1 \text{ (several carbons), 132.6-133.4 \text{ (several carbons), 156.2, 164.1, 164.4, 165.2, 165.3, 165.4, 165.7, 165.8, 165.9.} } \]

\(^{1} \text{H NMR (600 MHz, CDCl}_3): \delta 3.16 \text{ (dd, 1H, } J = 8.1, 11.4 \text{ Hz), 3.19–3.24 \text{ (m, 1H), 3.28–3.31 \text{ (m, 1H), 3.57–3.60 \text{ (m, 1H), 3.62–3.65 \text{ (m, 2H), 3.67 \text{ (dd, 1H, } J = 5.1, 7.7 \text{ Hz), 3.74–3.77 \text{ (m, 1H), 3.78 \text{ (dd, 1H, } J = 10.1, 10.1 \text{ Hz), 3.86 \text{ (dd, 1H, } J = 4.7, 11.6 \text{ Hz), 4.00 \text{ (dd, 1H, } J = 3.3, 10.0 \text{ Hz), 4.06 \text{ (dd, 1H, } J = 9.5 \text{ Hz), 4.31 \text{ (dd, 1H, } J = 4.5, 12.0 \text{ Hz), 4.42–4.44 \text{ (m, 1H), 4.54–4.56 \text{ (m, 2H), 4.60–4.63 \text{ (m, 2H), 4.79 \text{ (d, 1H, } J = 7.7 \text{ Hz), 4.87 \text{ (d, 1H, } J = 12.3 \text{ Hz), 4.93 \text{ (d, 1H, } J = 12.3 \text{ Hz), 5.08 \text{ (bs, 1H), 5.18 \text{ (dd, 1H, } J = 7.7, 9.6 \text{ Hz), 5.36 \text{ (d, 1H, } J = 8.0, 9.8 \text{ Hz), 5.44 \text{ (dd, 1H, } J = 9.6, 9.6 \text{ Hz), 5.51 \text{ (dd, 1H, } J = 8.3, 9.5 \text{ Hz), 5.63–5.66 \text{ (m, 2H), 6.78–6.83 \text{ (m, 2H), 7.01–7.06 \text{ (m, 2H), 7.12–7.57 \text{ (m, 32H), 7.68–7.77 \text{ (m, 5H), 7.88–7.95 \text{ (m, 7H), 8.08–8.10 \text{ (m, 2H); HRMS (ESI): [M + H]}^+ \text{ calcd for C}_{91}H_{70}N_4O_{26}, 1643.4903; found 1643.4865.} } \]

2-(N-Benzoyloxycarbonyl)-aminoethyl (4-deoxy-4-N-tert-butyloxycarbonyl-glycyl-β-D-glucopyranosyl)-(1→3)-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranoside (1)

Compound 9 (1.03 g, 0.679 mmol) was added to a solution of CH₂Cl₂/MeOH (10 mL, 1:4) whereupon NaOMe (660 mg, 12.2 mmol) was added. After 3 h the solution was neutralized with Dowex®-H⁺, filtered and evaporated. The crude debenzyolated trisaccharide was dissolved in MeOH (30 mL) and washed with n-heptane (3x50 mL) and concentrated. Without further purification, the compound was dissolved in MeOH (10 mL) and NiCl₂·6H₂O (~1 mg) was added.
and stirred for 5 min followed by the addition of NaBH₄ (51 mg, 1.4 mmol). After 15 min, the mixture was neutralized with Dowex®-H⁺, filtered and concentrated. The crude amine was dissolved in MeOH (10 mL) followed by the addition of N-(tert-butyloxycarbonyl)-glycine (125 mg, 0.713 mmol), HOAt (0.5 M in DMF, 0.14 mL, 68 μmol), 4-methylmorpholine (79 μL, 0.71 mmol) and stirred for 10 min whereupon EDC·HCl (0.137 g, 0.713 mmol) was added. After 3 h the mixture was concentrated. RP chromatography (H₂O → MeOH/H₂O 1:1) gave the title compound 1 (0.370 g, 0.443 mmol, 65%) as a white solid. \(R_f = 0.80\) (chloroform/MeOH/H₂O 7:4:1); \([\alpha]_D\) –8 (c 0.1, H₂O); \(^{13}\)C NMR (75.4 MHz, CD₃OD): δ 27.3, 40.6, 41.5, 43.5, 51.1, 51.8, 60.6, 61.1, 66.1, 68.2, 68.7, 70.2, 73.2, 73.3, 74.5, 74.8, 75.0, 75.3, 79.4, 79.5, 83.1, 102.9, 103.3, 104.2, 127.5, 127.6, 128.1, 136.9, 157.1, 157.5, 172.1; \(^1\)H NMR (300 MHz, CD₃OD): δ 1.44 (s, 9H), 3.23–3.46 (m, 6H), 3.53–3.93 (m, 17H), 4.1 (d, 1H, \(J = 2.6\)), 4.32 (d, 1H, \(J = 7.8\) Hz), 4.44 (d, 1H, \(J = 7.59\) Hz), 5.07 (s, 2H), 7.27–7.35 (m, 5H); HRMS (ESI): [M + H]⁺ calcd for C₃₅H₅₆N₃O₂₀, 838.3379; found 838.3335.

2-(N-Benzylxocarbonyl)-aminoethyl (2,6-di-O-benzoyl-3,4-di-O-isopropylidene-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (10)

To a solution of CH₂Cl₂/TFA (90% v/v, aq.) (50 mL, 4:1) compound 8 (15.0 g, 13.9 mmol) was added. After 2 h the mixture was diluted with CH₂Cl₂ (50 mL) and washed with NaHCO₃ (sat. aq.) (2x100 mL), dried over MgSO₄ (s), filtered and concentrated. The crude acceptor (\(R_f = 0.23\) (toluene/EtOAc 2:1)) was dissolved in CH₂Cl₂ (50 mL) whereupon 7 (15.2 g, 15.3 mmol) and pre-activated 4 Å MS was added and the reaction mixture was stirred for 10 min. NIS (4.69 g, 20.8 mmol) and AgOTf (~ 0.1 eq.) were added and the reaction was stirred for 1.5 h, (0 °C → rt). The reaction was quenched with Et₃N, whereupon pyridine (30 mL) and BzCl (6.45 mL, 55.6 mmol) were added. After an additional 1.5 h the mixture was diluted with CH₂Cl₂, (50 mL) filtered through Celite® and washed with 1 M HCl (aq.) (2x200 mL), NaHCO₃ (sat. aq.) (2x100 mL), H₂O (2x100 mL), dried over MgSO₄ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 2:1) gave tetrasaccharide 10 (19.4 g, 9.54 mmol, 69%) as a colorless syrup. \(R_f = 0.63\) (toluene/EtOAc 2:1); \([\alpha]_D\) +38 (c 1, CHCl₃); \(^{13}\)C NMR (75.4 MHz, CDCl₃): δ 26.1, 27.4, 40.9, 62.0, 62.3, 62.7, 66.4, 69.4, 69.4, 71.2, 71.3, 71.6, 71.7, 72.0, 72.4, 72.5, 72.9, 73.0, 73.2, 73.6, 74.6, 75.3, 77.1, 78.2, 100.1, 100.7, 101.4, 110.8, 127.8–130.0 (several carbons), 132.5–
133.4 (several carbons), 136.6, 156.2, 164.1, 164.4, 164.8, 165.2, 165.3, 165.4, 165.7, 165.7, 165.8, 165.8. (Note: overlaps occur in spectra); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 1.18 (s, 3H), 1.44 (s, 3H), 3.10 (dd, 1H, \(J = 8.0, 11.4\) Hz), 3.19–3.31 (m, 2H), 3.49 (dd, 1H, \(J = 7.4, 11.4\) Hz), 3.56–3.67 (m, 4H), 3.73–3.76 (m, 2H), 3.87 (dd, 1H, \(J = 4.6, 11.6\) Hz), 3.91 (dd, 1H, \(J = 3.4, 10.1\) Hz), 3.97 (dd, 1H, \(J = 2.1, 5.5\) Hz), 4.03–4.07 (m, 2H), 4.11–4.16 (m, 2H), 4.29 (dd, 1H, \(J = 4.5, 11.9\) Hz), 4.40–4.48 (m, 4H), 4.55 (d, 1H, \(J = 7.8\) Hz), 4.58 (d, 1H, \(J = 7.9\) Hz), 4.71 (d, 1H, \(J = 7.6\) Hz), 4.87 (d, 1H, \(J = 12.3\) Hz), 4.93 (d, 1H, \(J = 12.3\) Hz), 5.04 (dd, 1H, \(J = 7.3, 7.3\) Hz), 5.07 (bs, 1H), 5.22 (dd, 1H, \(J = 7.6, 9.5\) Hz), 5.34 (dd, 1H, \(J = 7.9, 9.8\) Hz), 5.48 (dd, 1H, \(J = 9.4, 9.4\) Hz), 5.50 (dd, 1H, \(J = 8.0, 9.8\) Hz), 5.54 (ad, 1H, \(J = 3.4\) Hz), 5.63 (dd, 1H, \(J = 9.5, 9.5\) Hz), 6.76–6.78 (m, 2H), 7.02–7.05 (m, 2H), 7.11–7.53 (m, 36H), 7.66–7.68 (m, 4H), 7.77–7.89 (m, 9H), 7.93–8.10 (m, 7H); MALDI-TOF (CHCA): [M + Na]\(^{+}\) calcd for C\(_{114}H_{101}N_{34}O_{34}\), 2050.63; found 2050.61.

2-(N-Benzylxocarbonyl)-aminoethyl (4-N-azido-4-deoxy-2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (11)

Compound 10 (4.00 g, 1.97 mmol) was added to a solution of CH\(_2\)Cl\(_2\)/TFA (90%, v/v, aq.) (50 mL, 4:1). After 30 min the solution was diluted with CH\(_2\)Cl\(_2\) (50 mL) and washed with NaHCO\(_3\) (sat. aq.) (2x150 mL), dried over MgSO\(_4\) (s), filtered and concentrated. The crude acceptor (\(R_f = 0.22\) (toluene/EtOAc 2:1)) was dissolved in CH\(_2\)Cl\(_2\) (30 mL) whereupon 6 (1.28 g, 2.17 mmol) and pre-activated 4 Å MS were added and the reaction mixture was stirred for 10 min. NIS (890 mg, 3.90 mmol) and AgOTf (~0.1 eq.) were added and stirred for 1.5 h, (0 °C → rt). The reaction was quenched with Et\(_3\)N, whereupon pyridine (5 mL) and BzCl (460 µL, 3.90 mmol) were added. After an additional 1.5 h, the mixture was diluted with CH\(_2\)Cl\(_2\), (~50 mL) filtered through Celite\(^{®}\) and washed with 1 M HCl (aq.) (2x50 mL), NaHCO\(_3\) (sat. aq.) (2x100 mL), H\(_2\)O (2x200 mL), dried over MgSO\(_4\) (s), filtered and concentrated. FC (toluene → toluene/EtOAc 4:1) gave pentasaccharide 11 (3.35 g, 1.29 mmol, 66%) as a colorless syrup. \(R_f = 0.64\) (toluene/EtOAc 2:1); \([\alpha]_D^{+} +66\) (c 0.1, CHCl\(_3\)); \(^{13}\)C NMR (75.4 MHz, CDCl\(_3\)): \(\delta\) 40.9, 60.2, 61.8, 62.0, 62.3, 62.7, 66.5, 69.3, 69.4, 69.5, 71.1, 71.4, 71.6, 71.7, 71.9, 72.0, 72.4, 72.5, 72.8, 73.1, 73.5, 74.7, 75.3, 78.2, 78.2, 100.6, 100.7, 101.3, 101.4, 126.3, 127.7–128.8 (several carbons), 129.1–130.1 (several
2-(N-Benzylxycarbonyl)-aminoethyl (4-deoxy-4-N-tert-butyloxycarbonyl-glycyl-β-D-glucopyranosyl)-(1→3)-(β-D-galactopyranosyl)-(1→4)-(β-D-glucopyranosyl)-(1→3)-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranoside (2)

Compound 11 (0.782 g, 0.302 mmol) was added to a solution of CH₂Cl₂/MeOH (10 mL, 1:4) whereupon NaOMe (0.489 g, 9.05 mmol) was added and stirred overnight. The solution was neutralized with Dowex®-H⁺, filtered and evaporated. The crude debenzoylated derivative was dissolved in MeOH (30 mL) and washed with n-heptane (3x50 mL) and concentrated. Without further purification the compound was dissolved in MeOH (10 mL) and NiCl₂·6H₂O (~1 mg) was added and stirred for 5 min followed by the addition of NaBH₄ (23 mg, 0.60 mmol). After 15 min, the mixture was neutralized with Dowex®-H⁺, filtered and concentrated. The crude amine was dissolved in MeOH (10 mL) followed by the addition of N-(tert-butyloxycarbonyl)-glycine (55 mg, 0.32 mmol), HOAt (0.5 M in DMF, 60 μL, 32 μmol), 4-methylmorpholine (35 μL, 0.32 mmol) and stirred for 10 min whereupon EDC·HCl (61 mg, 0.32 mmol) was added. After 3 h the mixture was concentrated. RP chromatography (H₂O/MeOH 95:5 → MeOH/H₂O 50:50) gave the title compound 2 (0.223 g, 0.192 mmol, 64%) as a white solid. \([\alpha]_D^{+74} = 0.45 \) (chloroform/MeOH/H₂O 7:4:1); \(\Delta \) 0.1, H₂O); \(1^3C \) NMR (75.4 MHz, D₂O); \(\delta 28.2, 41.1, 42.4, 44.1, 52.1, 53.3, 60.5, 60.7, 61.3, 61.5, 67.5, 68.8, 69.6, 70.6, 70.7, 73.4, 73.6, 74.7, 74.9, 75.2, 75.3, 75.6, 78.6, 78.9, 82.2, 82.6, 82.7, 102.9, 103.1, 104.2, 104.2, 128.3, 129.0, 129.4, 137.0, 158.4, 158.9, 173.7.
2-(N-Benzyloxycarbonyl)-aminoethyl (2,6-di-O-benzoyl-3,4-di-O-isopropylidene-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (12)

To a solution of CH$_2$Cl$_2$/TFA (90% v/v, aq.) (50 mL, 4:1) compound 10 (9.25 g, 4.81 mmol) was added. After 1.5 h, the mixture was diluted with CH$_2$Cl$_2$ (~50 mL) and washed with NaHCO$_3$ (sat. aq.), dried over MgSO$_4$ (s), filtered and concentrated. The crude acceptor (R_f = 0.24 (toluene/EtOAc 2:1)) was dissolved in CH$_2$Cl$_2$ (50 mL) followed by the addition of 7 (5.26 g, 5.29 mmol) and pre-activated 4 Å MS and stirred for 10 min at 0 °C. NIS (1.62 g, 7.21 mmol) and AgOTf (~0.1 eq.) were added and stirred for 2 h, (0 °C → rt). The reaction was quenched with Et$_3$N followed by the addition of pyridine (30 mL) and BzCl (2.23 mL, 19.2 mmol). After 2 h the mixture was diluted with CH$_2$Cl$_2$ (50 mL), filtered through Celite® and washed with 1 M HCl (aq.) (2x200 mL), NaHCO$_3$ (sat. aq.) (2x150 mL), H$_2$O (2x200 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 4:1) gave hexasaccharide 12 (8.45 g, 2.84 mmol, 59%) as a white syrup. R_f = 0.62 (toluene/EtOAc 2:1); [α]$_D$ +32 (c 1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 26.1, 27.4, 40.8, 61.7–62.0 (several carbons), 62.2, 62.3, 62.7, 66.5, 69.3, 69.5, 71.0, 71.1, 71.3, 71.6, 71.7, 71.9, 72.3, 72.5, 72.7, 72.8, 72.9, 73.0, 73.1, 73.5, 73.6, 74.5, 74.6, 75.3, 100.1, 100.5, 100.6, 101.3, 101.4, 110.8, 127.6–128.8 (several carbons), 129.1–123.0 (several carbons), 132.5–133.0 (several carbons), 136.6, 156.2, 164.0, 164.3, 164.4, 164.8, 165.1, 165.3, 165.4, 165.6, 165.6, 165.7, 165.8, 165.8. (note: several overlaps occur in spectra); 1H NMR (600 MHz, CDCl$_3$): δ 1.18 (s, 3H), 1.43 (s, 3H), 2.89 (dd, 1H, $J = 8.0, 11.5$ Hz), 3.02–3.10 (m, 2H), 3.17–3.31 (m, 2H), 3.39 (dd, 1H, $J = 4.8, 8.1$ Hz), 3.45–3.80 (m, 11H), 3.85 (dd, 1H, $J = 3.5, 9.9$ Hz), 3.90–4.05 (m, 5H), 4.09–4.14 (m, 3H), 4.19–4.31 (m, 4H), 4.34–4.44 (m, 5H), 4.30 (dd, 1H, $J = 3.7, 7.8$ Hz), 4.64 (dd, 1H, $J = 6.9$ Hz), 4.46 (d, 1H, $J = 12.3$ Hz),
4.92 (d, 1H, $J = 12.3$ Hz), 5.01 (dd, 1H, $J = 7.4, 7.4$ Hz), 5.04 (bs, 1H), 5.15–5.18 (m, 2H), 5.31 (dd, 1H, $J = 8.0, 9.9$ Hz), 5.36–5.48 (m, 4H), 5.60 (dd, 1H, $J = 9.5, 9.5$ Hz), 6.60–6.65 (m, 2H), 6.74–6.80 (m, 3H), 6.94–7.58 (m, 58H), 7.61–8.05 (m, 27H); MALDI-TOF (THAP): [M + Na]$^+$ calcd for C$_{168}$H$_{145}$NNaO$_{50}$, 2998.87; found 2999.03.

2-(N-Benzoyloxycarbonyl)-aminoethyl (4-N-azido-4-deoxy-2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-(2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (13)

Compound 12 (1.02 g, 0.343 mmol) was added to a solution of CH$_2$Cl$_2$/TFA (90%, v/v, aq.) (10 mL, 4:1). After 30 min the solution was diluted with CH$_2$Cl$_2$ (25 mL) and washed with NaHCO$_3$ (sat. aq.) (2x100 mL), dried over MgSO$_4$ (s), filtered and concentrated. The crude acceptor was dissolved in CH$_2$Cl$_2$ (20 mL) whereupon 6 (0.212 g, 0.377 mmol) and pre-activated 4 Å MS were added and the reaction mixture was stirred for 10 min. NIS (0.154 g, 0.685 mmol) and AgOTf (~0.1 eq.) were added and stirred for 1.5 h, (0 °C → rt). The reaction was quenched with Et$_3$N, whereupon pyridine (5 mL) and BzCl (0.160 mL, 1.37 mmol) were added. After an additional 1.5 h, the mixture was diluted with CH$_2$Cl$_2$ (25 mL), filtered through Celite® and washed with 1 M HCl (aq.) (2x50 mL), NaHCO$_3$ (sat. aq.) (2x50 mL), H$_2$O (2x50 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene/EtOAc 9:1) gave heptasaccharide 13 (0.615 g, 0.174 mmol, 51%) as a colorless syrup. $R_f = 0.64$ (toluene/EtOAc 2:1); [α]$_D$ +55 (c 0.1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 40.8, 60.1, 61.8, 61.9, 62.2, 62.7, 66.5, 69.2, 69.2, 69.3, 69.5, 71.0, 71.2, 71.3, 71.5, 71.6, 71.9, 71.9, 72.3, 72.5, 72.7, 72.7, 73.0, 73.4, 74.6, 74.6, 75.3, 77.2, 78.1, 78.1, 100.5, 100.6, 101.2, 101.3, 101.4, 127.6–128.8 (several carbons), 129.1–130.0 (several carbons), 132.4–133.3 (several carbons), 136.5, 156.2, 163.9, 164.0, 164.3, 164.4, 165.1, 165.1, 165.1, 165.2, 165.2, 165.3, 165.4, 165.5, 165.6, 165.6, 165.8, 165.9. (note: several overlaps occur in spectra); 1H NMR (600 MHz, CDCl$_3$): δ 2.84 (dd, 1H, $J = 8.2, 11.3$ Hz), 2.90 (dd, 1H, $J = 8.0, 11.5$ Hz), 3.06 (dd, 1H, $J = 8.1, 11.1$ Hz), 3.16–3.31 (m, 2H), 3.36 (dd, 1H, $J = 5.0, 7.6$ Hz), 3.43 (dd, 1H, $J = 5.3, 7.4$ Hz), 3.48–3.63 (m, 6H), 3.67 (dd, 1H, $J = 4.4, 11.6$ Hz), 3.71–3.78 (m, 5H), 3.84–3.94 (m, 4H), 4.01 (dd, 1H, $J = 9.4, 9.4$ Hz), 4.22–4.28 (m, 5H), 4.35–4.40 (m, 4H), 4.49–4.64 (m, 7H), 4.71 (d, 1H, $J = 7.6$ Hz), 4.86 (d, 1H, $J = 12.3$ Hz), 4.92 (d, 1H, $J = 12.3$ Hz), 5.04
(bs, 1H), 5.12–5.17 (m, 3H), 5.30–5.50 (m, 8H), 5.60 (dd, 1H, J = 9.5, 9.5 Hz), 6.58–6.68 (m, 4H), 6.73–6.78 (m, 3H), 6.94–7.56 (m, 71H), 7.60–8.03 (m, 32H); MALDI-TOF (THAP): [M + Na]⁺ calcd for C₁₉₉H₁₆₆N₄NaO₅₈, 3562.01; found 3562.06.

2-(N-Benzylxycarbonyl)-aminoethyl (4-deoxy-4-N-tert-butylxycarbonyl-glycyl-β-D-glucopyranosyl)-(1→3)-(β-D-galactopyranosyl)-(1→4)-(β-D-glucopyranosyl)-(1→3)-(β-D-galactopyranosyl)-(1→4)-(β-D-glucopyranoside (3)

Compound 13 (0.500 g, 0.141 mmol) was added to a solution of CH₂Cl₂/MeOH (10 mL, 1:4) whereupon NaOMe (0.320 g, 5.92 mmol) was added and stirred overnight. The solution was neutralized with Dowex®-H⁺, filtered and evaporated. The crude debenzoylated heptasaccharide was dissolved in MeOH (20 mL) and washed with n-heptane (2x30 mL) and concentrated. Without further purification the compound was dissolved in MeOH (10 mL) and NiCl₂·6H₂O (~1 mg) was added and stirred for 5 min followed by the addition of NaBH₄ (11 mg, 0.28 mmol). After 15 min, the mixture was neutralized with Dowex®-H⁺, filtered and concentrated. The crude amine was dissolved in MeOH/H₂O (10 mL, 1:1) followed by the addition of N-(tert-butylxocarbonyl)-glycine (26 mg, 0.15 mmol), HOAt (0.5 M in DMF, 28 μL, 14 μmol), 4-methylmorpholine (16 μL, 0.15 mmol) and stirred for 10 min whereupon EDC·HCl (28 mg, 0.15 mmol) was added and stirred overnight followed by concentration. RP chromatography (H₂O/MeOH 95:5 → MeOH/H₂O 75:25) gave the title compound 3 (61 mg, 41 μmol, 29%) as a white solid. Rᶠ = 0.25 (chloroform/MeOH/H₂O 7:4:1); [α]₀D +17 (c 0.1, H₂O); ¹³C NMR (75.4 MHz, D₂O): δ 28.2, 41.1, 42.6, 44.1, 52.1, 53.3, 60.5, 60.7, 61.3, 61.6, 62.1, 67.5, 68.9, 69.6, 70.7, 73.4, 73.6, 73.7, 73.9, 74.8, 74.8, 74.9, 75.2, 75.3, 75.4, 75.6, 78.6, 78.8, 82.3, 82.6, 82.7, 102.9, 103.2, 104.2, 104.2, 104.3, 128.4, 129.0, 129.4, 137.1, 159.0, 173.8. (Note: several overlaps occur in spectra); ¹H NMR (300 MHz, D₂O): δ 1.43 (s, 9H), 3.27–3.46 (m, 8H), 3.49–3.96 (m, 37H), 4.17–4.18 (m, 3H), 4.43–4.51 (m, 4H), 4.63–4.67 (m, 3H), 5.12 (s, 2H), 7.37–7.47 (m, 5H); HRMS (ESI): [M + H]⁺ calcd for C₅₉H₉₆N₃O₄₀, 1486.5492; found 1486.5562.

Ethyl 2,3,4-tri-O-benzoyl-1-thio-α-D-mannopyranoside (15)

To a solution of 14 (24.9 g, 111 mmol) in pyridine (100 mL), TrCl (46.5 g, 167 mmol) was added. After 16 h, the reaction mixture was diluted with CH₂Cl₂ (200 mL) and BzCl (58.4 mL,
503 mmol) was added dropwise (over 30 min) at 0 °C. After 4.5 h, the solution was washed with ice/H₂O (2x500 mL), 1 M HCl (aq.) (2x200 mL), NaHCO₃ (sat. aq.) (2x200 mL), H₂O (2x200 mL), dried over MgSO₄ (s), filtered and concentrated. Without further purification, the crude monosaccharide was dissolved in CHCl₃/MeOH (300 mL, 2:1) and p-TsOH (10.5 g, 55.4 mmol) was added. After 3 h, the reaction mixture was diluted with CH₂Cl₂ (100 mL), washed with NaHCO₃ (sat. aq.) (2x150 mL), H₂O (2x150 mL), dried over MgSO₄ (s), filtered and concentrated. FC (petroleum ether/EtOAc 4:1 → EtOAc) gave 15 (27.0 g, 50.3 mmol, 45%) as a colorless oil. \(R_f = 0.30 \) (toluene/ EtOAc 9:1); [\(\alpha \)]D –82 (c 1, CHCl₃); \(^{13}\)C NMR (75.4 MHz, CDCl₃): δ 15.0, 25.8, 61.5, 67.6, 70.2, 71.6, 72.5, 82.6, 128.4, 128.7, 128.8, 128.9, 129.2, 129.5, 129.8, 130.1, 133.4, 133.7, 133.8, 165.5, 165.6, 166.7, (Note: overlap occur aromatic region); \(^1\)H NMR (300 MHz, CDCl₃): δ 1.37 (t, 3H, \(J = 7.4 \) Hz), 2.65–2.83 (m, 2H), 3.81–3.83 (m, 2H), 4.42–4.47 (m, 1H), 5.58 (d, 1H, \(J = 1.5 \) Hz), 5.79 (dd, 1H, \(J = 1.5, 2.9 \) Hz), 5.85–5.94 (m, 2H), 7.22–7.28 (m, 2H), 7.36–7.64 (m, 7H), 7.80–7.84 (m, 2H), 7.97–8.01 (m, 2H), 8.09–8.13 (m, 2H); MALDI-TOF (CHCA): [M + Na]⁺ calcd for C₂₉H₂₈NaO₈S, 559.14; found 559.18.

Ethyl 2,3,4-tri-O-benzoyl-6-O-chloroacetyl-1-thio-\(\alpha \)-D-mannopyranoside (16)

To a solution of ethyl-2,3,4-tri-O-benzoyl-\(\alpha \)-D-thio-mannopyranoside 15 (2.28 g, 4.25 mmol) in CH₂Cl₂/Pyridine (30 mL, 14:1), chloroacetyl chloride (1.70 mL, 21.3 mmol) was added at –40 °C. After 1 h, the mixture was diluted with CH₂Cl₂ (50 mL) and washed with 1 M HCl (aq.) (2x50 mL), NaHCO₃ (sat. aq.) (100 mL), H₂O (200 mL), dried over MgSO₄ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 6:1) gave chloroacetate 16 (2.15 g, 3.50 mmol, 82%) as a colorless syrup. \(R_f = 0.57 \) (toluene/EtOAc 9:1); [\(\alpha \)]D –57 (c 1, CHCl₃); \(^{13}\)C NMR (75.4 MHz, CDCl₃): δ 14.9, 25.7, 40.6, 64.2, 67.1, 69.9, 70.4, 72.1, 82.5, 128.4–128.9 (several carbons), 129.7–130.0 (several carbons), 133.3, 133.6, 133.7, 166.4, 165.4, 165.6, 166.9, (Note: several overlaps occur in spectra); \(^1\)H NMR (300 MHz, CDCl₃): δ 1.34 (t, 3H, \(J = 7.4 \) Hz), 2.64–2.83 (m, 2H), 4.09 (d, 1H, \(J = 15.0 \) Hz), 4.14 (d, 1H, \(J = 15.0 \) Hz), 4.40–4.45 (m, 1H), 4.55 (dd, 1H, \(J = 4.8, 12.2 \) Hz), 4.76–4.82 (m, 1H), 5.60 (as, 1H), 5.85–5.89 (m, 2H), 6.04 (dd, 1H, \(J = 9.7, 9.7 \) Hz), 7.18–7.23 (m, 2H), 7.31–7.36 (m, 3H), 7.44–7.49 (m, 3H), 7.55–7.60 (m, 1H), 7.81–7.84 (m, 2H), 7.96 (m, 2H), 8.11–8.14 (m, 2H); HRMS (ESI): [M + NH₄]⁺ calcd for C₃₁H₃₃ClNO₉S, 630.1565; found 630.1595.
Ethyl (2,3,4-tri-O-benzoyl-6-O-chloroacetyl-α-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-α-D-mannopyranoside (17)

To a solution of compound 16 (5.36 g, 8.75 mmol) in CH$_2$Cl$_2$ (50 mL), Br$_2$ (0.52 mL, 10.1 mmol) was added. After 30 min, the mixture was evaporated and co-concentrated with toluene. The crude bromosugar was dissolved in CH$_2$Cl$_2$ (50 mL) whereupon 15 (3.75 g, 6.99 mmol) and pre-activated 4 Å MS were added. AgOTf (4.49 g, 17.5 mmol) was added at –30 °C and the solution was stirred for 30 min. The reaction was quenched with Et$_3$N, filtered through Celite® and washed with 1 M HCl (aq.) (50 mL), NaHCO$_3$ (sat. aq.) (100 mL), H$_2$O (100 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 12:1) gave disaccharide 17 (5.82 g, 5.35 mmol, 77%) as a colorless syrup. R_f = 0.53 (toluene/EtOAc 9:1); [α]$_D$ –82 (c 1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 15.0, 25.6, 40.6, 64.2, 66.8, 66.9, 67.4, 68.7, 69.9, 70.0, 70.4, 70.7, 72.3, 82.3, 97.7, 128.3–129.2 (several carbons), 129.3, 129.4, 129.5, 129.8–130.1 (several carbons), 133.3, 133.3, 133.6, 133.7, 133.7, 133.7, 133.7, 133.7, 165.3, 165.5, 165.6, 165.7, 165.8, 165.9, (Note: several overlaps occur in spectra); 1H NMR (300 MHz, CDCl$_3$): δ 1.47 (t, 3H, J = 7.4 Hz), 2.73–2.95 (m, 2H), 3.76 (dd, 1H, J = 1.9, 10.8), 3.91 (d, 1H, J = 15.0 Hz), 3.96 (d, 1H, J = 15.0 Hz), 4.09–4.15 (m, 1H), 4.23–4.37 (m, 3H), 4.79–4.85 (m, 1H), 5.12 (d, 1H, J = 1.8 Hz), 5.63 (d, 1H, J = 1.1 Hz), 5.74 (dd, 1H, J = 1.8, 3.1 Hz), 5.84–5.92 (m, 3H), 5.96 (dd, 1H, J = 3.1, 10.3 Hz), 6.04 (dd, 1H, J = 9.9, 9.9 Hz), 7.15–7.63 (m, 18H), 7.81–7.86 (m, 4H), 7.97–8.02 (m, 2H), 8.06–8.09 (m, 2H), 8.16–8.19 (m, 2H); HRMS (ESI): [M + NH$_4$]$^+$ calcd for C$_{58}$H$_{55}$ClNO$_{17}$S, 1104.2879; found 1104.2859.

2-(N-Benzoyloxycarbonyl)-aminoethyl (2,3,4-O-benzoyl-6-O-chloroacetyl-α-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-α-D-mannopyranoside (18)

Compound 17 (1.99 g, 1.83 mmol) and N-Cbz-2-aminoethanol (720 mg, 50.0 mmol) were dissolved in CH$_2$Cl$_2$ (50 mL) and pre-activated 4 Å MS were added and the reaction mixture was stirred for 10 min. The mixture was cooled to –30 °C whereupon NIS (0.82 g, 3.7 mmol) and TfOH (~0.1 eq.) were added under nitrogen. After 2 h, the reaction was quenched with Et$_3$N, filtered through Celite® and washed with NaHCO$_3$ (sat. aq.) (100 mL), H$_2$O (100 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene/EtOAc 9:1) gave compound 18 (1.83 g, 1.50 mmol, 82%) as a colorless syrup. R_f = 0.32 (toluene/EtOAc 6:1); [α]$_D$ –82 (c 1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 40.5, 40.7, 64.1, 66.6, 66.7, 66.8, 67.1, 67.6, 68.8, 69.8, 70.1, 70.3,
70.5, 97.4, 98.0, 128.0–129.3 (several carbons), 129.8–130.0 (several carbons), 133.2, 133.3, 133.6, 133.6, 133.7, 156.6, 165.3, 165.5, 165.6, 165.6, 165.7, 165.9. (Note: several overlaps occur in spectra); 1H NMR (300 MHz, CDCl$_3$): δ 3.64–3.86 (m, 4H), 3.96 (d, 1H, $J = 15.0$ Hz), 3.99 (d, 1H, $J = 15.0$ Hz), 4.01–4.14 (m, 2H), 4.25–4.46 (m, 4H), 5.06–5.18 (m, 4H), 5.66 (bs, 1H), 5.75 (dd, 1H, $J = 1.8, 3.0$ Hz), 5.80 (dd, 1H, $J = 1.6, 2.9$ Hz), 5.90–6.04 (m, 4H), 7.13–7.62 (m, 23H), 7.82–7.87 (m, 4H), 7.97–8.01 (m, 4H), 8.07–8.11 (m, 2H), 8.15–8.18 (m, 2H); HRMS (ESI): [M + H]$^+$ calcd for C$_{66}$H$_{59}$NO$_{20}$Cl, 1220.3241; found 1220.3234.

2-(N-Benzylxoycarbonyl)-aminoethyl (4-N-azido-4-deoxy-2,3,6-tri-O-benzoyl-β-D-glucopyranosyl)-(1→6)-(2,3,4-tri-O-benzoyl-α-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-α-D-mannopyranoside (19)

To a solution of 18 (500 mg, 410 µmol) in CH$_2$Cl$_2$/MeOH (10 mL, 1:1) was added 2,6-lutidine (380 µL, 3.28 mmol) and thiourea (440 mg, 5.73 mmol). After 4 days, the mixture was diluted with CH$_2$Cl$_2$ (20 mL) and washed with 1 M HCl (aq.) (30 mL), NaHCO$_3$ (sat. aq.) (2x50 mL), H$_2$O (50 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 2:1) gave 2-(N-Benzylxoycarbonyl)-aminoethyl (2,3,4-tri-O-benzoyl-α-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-α-D-mannopyranoside (370 mg, 330 µmol, 80%). This acceptor was dissolved in CH$_2$Cl$_2$ (20 mL) followed by the addition of 6 (0.20 g, 0.36 mmol) and pre-activated 4 Å MS. NIS (0.11 g, 0.49 mmol) and AgOTf (~0.1 eq.) were added and stirred for 1 h, (0 °C → rt). After 1 h, the reaction was quenched with Et$_3$N, filtered through Celite® and washed with NaHCO$_3$ (sat. aq.) (50 mL), H$_2$O (50 mL), dried over MgSO$_4$ (s), filtered and concentrated. FC (toluene → toluene/EtOAc 6:1) gave the trisaccharide 19 (460 mg, 280 µmol, 85%) as a colorless syrup. $R_f = 0.27$ (toluene/EtOAc 9:1); [α]$_D$ = −34 (c 0.1, CHCl$_3$); 13C NMR (75.4 MHz, CDCl$_3$): δ 40.6, 61.0, 63.4, 65.9, 66.8, 67.2, 67.4, 69.4, 69.8, 70.3, 70.4, 70.4, 71.7, 72.5, 73.7, 97.0, 97.8, 101.7, 127.9–128.9 (several carbons), 129.1, 129.1, 129.1, 129.3, 129.4, 129.5, 129.7–129.9 (several carbons), 130.1, 133.1, 133.1, 133.3, 133.4, 133.5, 133.5, 133.6, 136.6, 156.5, 165.1, 165.3, 165.4, 165.5, 165.6, 166.6, 166.0. (Note: several overlaps occur in spectra); 1H NMR (600 MHz, CDCl$_3$): δ 3.26–3.28 (m, 1H), 3.61–3.77 (m, 7H), 3.84 (dd, 1H, $J = 5.7, 10.7$ Hz), 3.95–3.99 (m, 2H), 4.20–4.23 (m, 2H), 4.48 (dd, 1H, $J = 4.7, 12.0$ Hz), 4.63 (dd, 1H, $J = 2.0, 12.1$ Hz), 4.67–4.70 (m, 2H), 5.06–5.07 (m, 2H), 5.13 (d, 1H, $J = 12.2$ Hz), 5.29 (dd, 1H, $J = 8.8, 8.8$ Hz), 5.58–5.64 (m, 3H), 5.74 (as, 1H), 5.85 (dd, 1H, $J = 3.2, 10.1$ Hz), 5.89 (dd, 1H, $J = 3.3, 10.1$ Hz),...
6.01 (dd, 1H, J = 10.2, 10.2 Hz), 7.16–7.62 (m, 32H), 7.73–7.76 (m, 2H), 7.83–7.91 (m, 6H), 7.96–8.04 (m, 8H), 8.17–8.21 (m, 2H); HRMS (ESI): [M+NH₄]⁺ calcd for C₉₁H₈₂N₅O₄₆, 1660.5248; found 1660.5270.

2-(N-Benzoylcarbonyl)-aminoethyl (4-deoxy-4-N-tert-butylxycarbonyl-glycyl-β-D-glucopyranosyl)-(1→6)-(α-D-mannopyranosyl)-(1→6)-α-D-mannopyranoside (4)

Compound 19 (0.256 g, 0.156 mmol) was added to a solution of CH₂Cl₂/MeOH (10 mL, 1:4) whereupon NaOMe (150 mg, 2.80 mmol) was added and stirred overnight. The solution was neutralized with Dowex®-H⁺, filtered and evaporated. The crude debenzoylated trisaccharide was dissolved in MeOH (30 mL) and washed with n-heptane (2x40 mL) and concentrated. Without further purification the compound was dissolved in MeOH (10 mL) and NiCl₂·6H₂O (~1 mg) was added and the reaction mixture was stirred for 5 min followed by the addition of NaBH₄ (12 mg, 0.31 mmol). After 15 min, the mixture was neutralized with Dowex®-H⁺, filtered and concentrated. The crude amine was dissolved in MeOH (10 mL) followed by the addition of N-(tert-butylxycarbonyl)-glycine (27 mg, 0.16 mmol), HOAt (0.5 M in DMF, 31 μL, 16 μmol), 4-methylmorpholine (18 μL, 0.16 mmol) and stirred for 10 min whereupon EDC·HCl (31 mg, 0.164 mmol) was added and stirred overnight followed by concentration. RP chromatography (H₂O/MeOH 95:5→ MeOH/H₂O 75:25) gave the title compound 4 (81 mg, 97 μmol, 62%) as a white solid. Rf = 0.25 (chloroform/MeOH/H₂O 7:4:1); [α]D +29 (c 0.1, H₂O); ¹³C NMR (75.4 MHz, D₂O): δ 27.5, 40.1, 51.7, 52.7, 60.9, 65.8, 66.4, 66.4, 66.5, 66.8, 68.5, 69.9, 70.0, 70.5, 70.7, 71.0, 71.6, 73.1, 73.5, 74.8, 81.7, 99.7, 99.8, 102.6, 127.6, 128.3, 128.8, 136.5, 158.3, 173.2; ¹H NMR (300 MHz, D₂O): δ 1.36 (s, 9H), 3.26–3.33 (m, 3H), 3.45–3.84 (m, 20H), 4.07–4.10 (m, 1H), 4.42 (d, 1H, J = 8.0 Hz), 4.71–4.71 (m, 2H) (overlap with HDO), 5.02 (d, 1H, J = 12.3 Hz), 5.08 (d, 1H, J = 12.3 Hz), 7.30–7.41 (m, 5H); HRMS (ESI): [M + H]⁺ calcd for C₃₅H₅₆N₅O₂₀, 838.3379; found 838.3356.

6. Supplementary data

Spectroscopic data, ¹H-, ¹³C NMR and IR for all new compounds are available. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2012.05.118. These data include MOL files and InChiKeys of the most important compounds described in this article.
7. References

Graphical abstract