

Automated Design of an FDI-System for the

Wind Turbine Benchmark

Carl Svärd and Mattias Nyberg

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Carl Svärd and Mattias Nyberg, Automated Design of an FDI-System for the Wind Turbine

Benchmark, 2012, Journal of Control Science and Engineering, (2012), 989873.

http://dx.doi.org/10.1155/2012/989873

Copyright: Hindawi Publishing Corporation

http://www.hindawi.com/

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77188

http://dx.doi.org/10.1155/2012/989873
http://www.hindawi.com/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77188
http://twitter.com/?status=OA Article: Automated Design of an FDI-System for the Wind Turbine Benchmark http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77188 via @LiU_EPress %23LiU

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2012, Article ID 989873, 13 pages
doi:10.1155/2012/989873

Research Article

Automated Design of an FDI System for
the Wind Turbine Benchmark

Carl Svärd1, 2 and Mattias Nyberg1, 2

1 Department of Electrical Engineering, Linköping University, 58183 Linköping, Sweden
2 Scania CV AB, 15187 Södertälje, Sweden

Correspondence should be addressed to Carl Svärd, carl@isy.liu.se

Received 1 July 2011; Accepted 4 October 2011

Academic Editor: Jakob Stoustrup

Copyright © 2012 C. Svärd and M. Nyberg. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose an FDI system for the wind turbine benchmark designed by the application of a generic automated method. No
specific adaptation of the method for the wind turbine benchmark is needed, and the number of required human decisions,
assumptions, as well as parameter choices is minimized. The method contains in essence three steps: generation of candidate
residual generators, residual generator selection, and diagnostic test construction. The proposed FDI system performs well in spite
of no specific adaptation or tuning to the benchmark. All faults in the predefined test sequence can be detected and all faults, except
a double fault, can also be isolated shortly thereafter. In addition, there are no false or missed detections.

1. Introduction

Wind turbines stand for a growing part of power production.
The demands for reliability are high, since wind turbines
are expensive and their off-time should be minimized. One
potential way to meet the reliability demands is to adopt
fault tolerant control (FTC), that is, prevent faults from
developing into failures by taking appropriate actions. A
typical action is reconfiguration of the control system. An
essential part of an FTC system is the fault detection and
isolation (FDI) system, see, for example, [1]. To obtain good
detection and isolation of faults, model-based FDI is often
necessary.

Design of a complete model-based FDI-system is a com-
plex task and involves by necessity several decisions, for
example, method choices, tuning of parameters, and as-
sumptions regarding noise distributions and the nature of
the faults to be diagnosed. In general, an optimal solution
requires detailed knowledge of the behavior of the considered
system, something that is rarely available for real applica-
tions. In this paper, inspired by the work with real-industrial
applications, we propose an automated design method that
minimizes the number of required human decisions and
assumptions. Furthermore, we investigate the potential of

designing an FDI system for the wind turbine benchmark,
see [2], using this automated method.

The design method is composed of three main steps. In
the first step, a large set of candidate residual generators are
generated using the algorithm described in [3]. In the second
step, the residual generators most suitable to be included in
the final FDI system are selected and realized by means of
a greedy selection algorithm, based on ideas elaborated in
[4]. The realization, or construction, of residual generators
is done by the use of the algorithms presented in [5]. In the
third and final step, we design diagnostic tests based on the
residuals obtained as output from the selected set of residual
generators. The diagnostic test relies on a novel methodology
based on a comparison of the probability distributions of no-
fault residuals, estimated offline using no-fault training data,
and the distributions of residuals estimated online using
current data.

As it turns out, the proposed FDI system performs well
when evaluated on the test sequence described in [2]. A
tailor-made FDI system perfectly tuned for the wind turbine
benchmark would probably perform better than the one we
propose. However, in relation to the minimal effort required
for application of the automated design method, and in spite
of no extra tuning or specific adaptation to the benchmark,

2 Journal of Control Science and Engineering

the performance of the FDI system is satisfactory; all faults
in the test sequence can be detected within feasible time, and
there are no false or missed detections. Further, all faults,
except a double fault, can also be isolated.

The wind turbine benchmark model and the strategy
used for modeling of faults are described in Section 2.
Section 3 presents an overview of the design method. The
method for constructing residual generators is described
in Section 4, and the approach used for selecting residual
generators is described in Section 5. The method for
design of diagnostic tests, and the fault isolation scheme
is considered in Section 6. Some implementation-specific
details are discussed in Section 7. The performance of the
designed FDI system is evaluated and discussed in Section 8,
Section 9 concludes the paper.

2. The Wind Turbine Model

The wind turbine system is described and modeled in [2],
to which is referred for details. The considered wind turbine
system has three rotor blades and the system contains four
subsystems: blade and pitch system, drive train, generator
and converter, and controller, see Figure 1 and Table 1.

2.1. State-Space Realization of Transfer Functions. The pitch
system and converter are modeled as frequency domain
transfer functions. The residual generation algorithm we
intend to apply, assumes a model described in differential
and algebraic equations. To obtain a model in this form, the
transfer functions are realized as time-domain state-space
systems.

The relation between pitch angle reference βr and pitch
angle output βi, for each of the three blades and thus for i =
1, 2, 3, can be realized in state-space form using observable
canonical form, see, for example, [6], as follows:

ẋβi1 (t) = −2ζωnxβi1 (t) + xβi2 (t), (1a)

ẋβi2 (t) = −ω2
nxβi1 (t) + ω2

nβr(t), (1b)

βi(t) = xβi1 (t), (1c)

where ζ , ωn are parameters, and xβi1 , xβi2 , state variables.
Using the same approach, the relation between converter
reference τg,r and output τg can be written as

ẋτg (t) = −αgcxτg (t) + αgcτg,r(t), (2a)

τg(t) = xτg (t), (2b)

where αgc is a parameter, and xτg is the state variable.

2.2. Fault Modeling. The set of faults to consider for the wind
turbine is specified in [2] and given by

F =
{
Δβ1,Δβ2,Δβ3,Δτg ,Δωg ,Δβ1,m1,

Δβ1,m2,Δβ2,m1,Δβ2,m2,Δβ3,m1,Δβ3,m2,

Δωr,m1,Δωr,m2,Δωg,m1,Δωg,m2

}
,

(3)

vw

βr

Blade and pitch
system

βm vw,m

ωr

τr

Drive train

ωr,m τg,m

Controller

Pr

τg

ωg

ωg,m

Pg

τg,r

Generator and
converter

Figure 1: Overview of the wind turbine system.

Table 1: Signals in the wind turbine system.

Signal Description

vw Wind speed

vw,m Wind speed measurement

βr Pitch angle reference

βm Pitch angle measurement

ωr Angular rotor speed

ωr,m Angular rotor speed measurement

ωg Generator rotor speed

ωg,m Generator rotor speed measurement

τr Rotor torque

τg Generator torque

τg,r Generator torque reference

τg,m Generator torque measurement

Pr Power reference

Pg Generator power

where Δβ1, Δβ2, Δβ3, and Δτg are actuator faults, Δωg is
a system fault, and Δβ1,m1, Δβ1,m2, Δβ2,m1, Δβ2,m2, Δβ3,m1,
Δβ3,m2, Δωr,m1, Δωr,m2, Δωg,m1, and Δωg,m2 are sensor faults.

To incorporate fault information in the nominal model,
we have chosen to model all faults as additive signals in
corresponding equations. Thus, we are not taking into
account all information regarding the nature of faults given
in [2]. Consider, for example, fault Δβ1 which represents an
actuator fault in pitch system 1, see (1a)–(1c), resulting in
changed dynamics of β1 due to dropped main line pressure
or high air content in the oil. One possible way to model
this fault would be as a deviation in parameters ωn and ζ in
(1a) and (1b). With the chosen approach, the fault is instead
modeled as an additive signal in (1c) for i = 1, that is,
β1 = xβ11 + Δβ1.

Note that the adopted fault modeling approach is general
and no assumptions are made regarding, for example, the
time-behavior of faults. Thus, the approach is able to handle,
for example, multiplicative faults even though the fault
signal is assumed to be additive. Consider, for example, a
multiplicative fault in β1 given by β1 = δ · xβ11 , where δ /= 1,
which can be equivalently described by β1 = xβ11 +Δβ1, where
Δβ1 = xβ11 (δ − 1).

Journal of Control Science and Engineering 3

The main argument for using this, more general, ap-
proach is that we consider it hard, or even impossible, to
know exactly how a faulty component behaves in reality.
Furthermore, data from all fault cases for evaluation and
validation of a more-detailed model are seldom available.
Modeling faults in this way also results in a minimum of fault
modes. This is beneficial since it gives a smaller model which
simplifies several steps in model-based diagnosis, for exam-
ple, residual generation and isolation. In addition, regarding
how diagnosis information is utilized, for example, for fault
tolerant control, it is unnecessary to distinguish between
different fault modes if they are associated with the same
action or consequence. Indeed, this applies to all sensor faults
in the wind turbine, since the system should be reconfigured
regardless of the type of sensor fault, that is, fixed value
or gain factor, see [2, Table 2]. Last, but not least, an
additional important motivator is simplicity, since extending
the nominal model with additive fault signals in this way is
straightforward and easy.

2.3. Model Extensions. According to [2], the same pitch angle
reference signal βr is fed to all three pitch systems (1a)–(1c),
that is, βi,r = βr for i = 1, 2, 3. However, according to the
provided Simulink model, see [7], the individual reference
signals are instead calculated in a control loop outside the
pitch system as

βi,r = βr + βi −
(
βi,m1 + βi,m2

2

)
, i = 1, 2, 3, (4)

where βi is given by (1a)–(1c), and βi,m1 and βi,m2 are
sensor measurements. To incorporate this information in the
design of the FDI system, the original wind turbine model is
extended with the relations between βi,r and βr given by (4).

2.4. The Model with Faults. The complete model of the wind
turbine model, with fault signals denoted by Δ, used in this
work for design of an FDI system is given below:

e1 : τr =
3∑

i=1

ρπR3Cq
(
λ,βi

)
v2
w

6
,

e2 : λ = ωrR

vw
,

e3, e5, e7 : ẋβi1 = −2ζωnxβi1 + xβi2 , i = 1, 2, 3,

e4, e6, e8 : ẋβi2 = −ω2
nxβi1 + ω2

nβi,r , i = 1, 2, 3,

e9, e10, e11 : βi = xβi1 + Δβi, i = 1, 2, 3,

e12 : ω̇g =
(
ηdtBdt

NgJg

)
ωr +

⎛
⎝−

(
ηdtBdt/N2

g

)
−Bg

Jg

⎞
⎠ωg

+

(
ηdtKdt

NgJg

)
θΔ −

(
1
Jg

)
τg + Δωg ,

e13 : ω̇r = −
(
Bdt − Br

Jr

)
ωr +

(
Bdt

NgJr

)
ωg

−
(
Kdt

Jr

)
θΔ +

(
1
Jr

)
τr ,

e14 : θ̇Δ = ωr −
(

1
Ng

)
ωg ,

e15 : ẋτg = −αgcxτg + αgcτg,r ,

e16 : τg = xτg + Δτg ,

e17 : Pg = ηgcωgτg ,

e18, e20, e22 : βi,m1 = βi + Δβi,m1, i = 1, 2, 3,

e19, e21, e23 : βi,m2 = βi + Δβi,m2, i = 1, 2, 3,

e24, e25 : ωr,mj = ωr + Δωr,mj , j = 1, 2,

e26, e27 : ωg,mj = ωg + Δωg,mj , j = 1, 2,

e28 : vw,m = vw,

e29 : τg,m = τg ,

e30 : Pg,m = Pg ,

e31, e32, e33 : βi,r = βr + βi −
(
βi,m1 + βi,m2

2

)
, i = 1, 2, 3.

(5)

3. Overview of Design Method

The proposed FDI system for the wind turbine is comprised
of three subsystems: residual generation, fault detection, and
fault isolation, see Figure 2.

Measurements, that is, sensor readings, from the wind
turbine are fed to a bank of residual generators whose output
is a set of residuals. The residuals are used as input to the
fault detection block, which contains diagnostic tests based
on the residuals. The output from this block, one signal for
each residual, indicates if a fault has been detected in the part
of the system monitored by the corresponding residual. The
result from the fault detection is fed to the fault isolation
block in which the detected fault(s) are isolated.

The proposed method supports design of the residual
generation and fault detection blocks. Design of the fault
isolation block is briefly discussed in Section 6.2. The method
contains three essential steps:

(1) generate candidate residual generators,

(2) select and realize residual generators,

(3) construct diagnostic tests,

see Figure 3. In the first step, a large set of candidate residual
generators are generated. In the second step, the residual
generators most suitable to be included in the final FDI
system are selected and realized. In the third and final step,

4 Journal of Control Science and Engineering

Residual
generation

Fault
isolation

Fault detection

Measurements Residuals Detection results Isolation results

Figure 2: Schematic overview of the FDI system.

Generate candidate
residual generators

Select and realize
residual generators

Construct
diagnostic tests

Figure 3: Overview of the design method.

we design diagnostic tests based on the residuals obtained as
output from the selected set of residual generators.

In the subsequent sections, we describe in detail the
different steps of the design method used to create the
proposed FDI system for the wind turbine benchmark
system. As input to the design method, or prerequisites, we
assume a model of the system and no-fault training data.
The data is assumed to be expressed as measurements, either
real or simulated, of the inputs and outputs of the model in
realistic and representative no-fault operating conditions.

4. Residual Generation

The set of residual generators used in the FDI system are
based upon the ideas originally described in [8], where un-
known variables in a model are computed by solving equa-
tion sets one at a time in a sequence and a residual is obtained
by evaluating a redundant equation. Similar approaches are
described and exploited in, for example, [1, 5, 9–13]. This
class of residual generation methods, referred to as sequential
residual generation, has shown to be successful for real appli-
cations and also has the potential to be automated to a high
extent.

4.1. Sequential Residual Generation. Some concepts and re-
sults of sequential residual generation given in [5], to which
we also refer for technical details, will now be briefly reca-
pitulated. We consider a model (E,X ,D,Y) to be a set of
differential and algebraic equations E = {e1, e2, . . . , enE} con-
taining unknown variables X = {x1, x2, . . . , xnX}, differential
variables D = {ẋ1, ẋ2, . . . , ẋnX}, and known variables Y =
{y1, y2, . . . , ynY }. The equations in E are, without loss of
generality, assumed to be on the form

ei : fi
(

ẋ, x, y
) = 0, i = 1, 2, . . . ,nE, (6)

where ẋ, x and y, are vectors of the variables in D, X , and
Y , respectively. Note that the model of the wind turbine
presented in Section 2.4 can trivially be cast into this form.

4.1.1. Computation Sequence. As said above, the main idea
in sequential residual generation is to compute unknown
variables in the model by solving equation sets one at a time
in a sequence and then evaluate a redundant equation to

obtain a residual. An essential component in the design of
a residual generator is therefore a computation sequence,
which describes the order in which the variables should be
computed. In [5], a computation sequence is defined as an
ordered set of variable and equation pairs:

C = ((V1,E1), (V2,E2), . . . , (Vk,Ek)), (7)

where Vi ⊆ X
⋃
D and Ei ⊆ E. The computation sequence

C implies that first the variables in V1 are computed from
equations E1, then the variables in V2 from equations E2,
possibly using the already computed variables in V1, and so
forth.

For an example, consider the computation sequence:

C =
(({

τg
}

, {e29}
)

, ({ωr}, {e24}),

({
θ̇Δ
}

, {e14}
)

,
({

ω̇g

}
, {e12}

))
,

(8)

for computation of a subset of the unknown variables in
wind turbine model presented in Section 2.4. According to
the computation sequence (8), the series of computations
begins with computation of variable τg using equation e29,
then variable ωr is computed using equation e24, and so on,
ending with computation of variable ω̇g , or in fact ωg from
equation e12.

By construction, see [5], it is guaranteed that no variable
is needed before it has been computed. Hence, the series
of computations described by the computation sequence
exhibit an upper triangular structure. For the computation
sequence (8), this series of computations is given by

τg = τg,m, (9a)

ωr = ωr,m1, (9b)

θ̇Δ = ωr −
(

1
Ng

)
ωg , (9c)

ω̇g =
(
ηdtBdt

NgJg

)
ωr +

⎛
⎝−

(
ηdtBdt/N2

g

)
− Bg

Jg

⎞
⎠ωg

+

(
ηdtKdt

NgJg

)
θΔ −

(
1
Jg

)
τg .

(9d)

Whether it is possible or not to compute the specified
variables from the corresponding equations depends natu-
rally on the properties of the equations. Equally important
are, however, prerequisites in terms of causality assumption,
that is, regarding integral and/or derivative causality, and
the properties of the computational tools, that are available
for use, for a detailed discussion, see, for example, [5].
The computation sequence (8) makes use of solely integral
causality when the variables θΔ and ωg are computed using
equations e14 and e12, respectively.

4.1.2. Sequential Residual Generator. Having computed the
unknown variables in V1

⋃
V2
⋃ · · ·⋃Vk, according to the

Journal of Control Science and Engineering 5

computation sequence C in (7), a residual can be obtained
by evaluating a redundant equation e, that is, e ∈ E \
E1
⋃
E2 · · ·

⋃
Ek with varX(e) ⊆ varX(E1

⋃
E2 · · ·

⋃
Ek),

where the operator varX(·) returns the unknown variables
that are contained in an equation set. A residual generator
based on a computation sequence C and redundant equation
e is referred to as a sequential residual generator.

The computation sequence (8) together with equation
e26 constitutes a sequential residual generator for the wind
turbine model. When all variables in the computation
sequence (8) have been computed according to (9a)–(9d),
the residual is computed as r = ωg,m1 − ωg .

4.1.3. Finding Sequential Residual Generators. Regarding
implementation aspects, for example, complexity and com-
putational load, it is unnecessary to compute variables
that are not contained in the residual equation, or not
used to compute any of the variables contained in the
residual equation. Furthermore, it is also desirable that
computation of variables in each step is performed from as
small equation sets as possible. It can be shown, see [5], that
the equations in a computation sequence fulfilling the above
properties, together with a redundant residual equation, in
fact correspond to a minimal structurally overdetermined
(MSO) set, see [3]. In other words, a necessary condition for
the existence of a sequential residual generator for a model is
that the model, or submodel, is an MSO set.

4.2. Candidate Residual Generators. As indicated above, a
first step when searching for a sequential residual generator
for a model may be to find an MSO set in the model. Thus,
an MSO set can be regarded as a candidate residual generator.
There are efficient algorithms for finding all MSO sets in
large equation sets, see, for example, [3].

Consider now the model of the wind turbine described
in Section 2.4, with equations E = {e1, e2, . . . , e33}, unknown
variables:

X =
{
τr ,β1, λ, vw,β2,β3,ωr , xβ11 , xβ12 ,β1,r , xβ21 , xβ22 ,

β2,r , xβ31 , xβ32 ,β3,r ,ωg , θΔ, τg , xτg ,Pg
}

,
(10)

and known, that is, measured, variables:

Y =
{
βr , τg,r ,β1,m1,β1,m2,β2,m1,β2,m2,β3,m1,

β3,m2,ωr,m1,ωr,m2,ωg,m1,ωg,m2, vw,m, τg,m,Pg,m

}
.

(11)

In summary, the model contains 33 equations, 21 unknown
variables, and 15 known variables. By utilizing the structure,
that is, which unknown variables are contained in which
equation, see, for example, [1], and a MATLAB implemen-
tation of the algorithm presented in [3], 1058 MSO sets were
found in total.

5. Selecting Residual Generators

It is not feasible to implement and use all 1058 candidate
residual generators, that is, MSO sets, in the final FDI system.

A more attractive approach is instead to pick, from the set
of all candidate residual generators, a smaller set of residual
generators with desired properties.

5.1. Desired Properties of Residual Generators. The desired
properties of the sought set of residual generators are as
follows:

(1) the set of residual generators should enable us to
isolate all single faults from each other;

(2) a set of residual generators of smaller cardinality is
preferred before a larger one, given that the two sets
have equal isolability properties;

(3) a residual generator based on an MSO set of smaller
cardinality is preferred before a residual generator
based on an MSO set of larger cardinality, given that
the two sets have equal detectability and isolability
properties.

Properties 2 and 3 are mainly motivated by implementation
aspects such as complexity, computational load, and numer-
ical issues.

We will base the selection of residual generators on
quantitative, structural properties of the MSO sets instead
of more qualitative or analytical properties on the actual
residual generators. The latter may result in better isolation
performance but is considered intractable since it requires
that residual generators are implemented, executed, and
evaluated, and also access to representative measurement
data for all fault cases.

5.2. Fault Detectability and Isolability. To be able to formally
state the selection problem, the notions of detectability and
isolability are needed. Assuming that each fault occurs in
only one equation, let e fi denote the equation in an equation
set E containing fault fi, for example, eΔβ1,m1 = e18, see
Section 2. Note that if a fault f j occurs in more than one
equation, the fault f j can be replaced with a new variable
x fj in these equations, and the equation x fj = f j added
to the equation set. This added equation will then be the
only equation where f j occurs. To proceed, let (·)+ denote
an operator extracting the overdetermined part of a set
of equations. According to [14], a fault fi is structurally
detectable in the equation set E if e fi ∈ (E)+ and structurally
isolable from fault f j in the equation set E if e fi ∈ (E)+ and
e fj /∈ (E)+.

For an example, consider the equation set M =
{e26, e29, e24, e14, e12} containing the residual equation and
equations from the computation sequence (7), studied in
Section 4.1.1. First, we note that the equation set M is an
MSO set due to the property of sequential residual generators
mentioned in Section 4.1.3. Further, since M is an MSO set,
it holds that (M)+ = M, see, for example, [3]. Thus, it can
for instance be deduced that fault Δωg is structurally isolable
from fault Δβ1,m1 in M, since eΔωg = e12, eΔβ1,m1 = e18, and it
holds that e12 ∈M and e18 /∈M, see Section 2.4.

By again utilizing the structure of the wind turbine
model, the structural isolability properties of the model were

6 Journal of Control Science and Engineering

calculated. All considered faults, see Section 2.2, can be
(structurally) isolated from each other in the wind turbine
model.

5.3. Selection Problem Formulation. We will now formulate
the selection problem in terms of properties on a set of MSO
sets. To this end, let M denote the set of all MSO sets in the
model, and F the set of considered faults. Let fi, f j ∈ F and
define the isolation class for (fi, f j) as

I fi, f j =
{
M ∈M : e fi ∈ (M)+ ∧ e fj /∈ (M)+

}
, (12)

that is, I fi, f j contains the MSO sets in M in which fault fi is
structurally isolable from fault f j . Further, let

I =
{
I fi , f j : ∀

(
fi, f j

)
∈ F × F, fi /= f j

}
(13)

denote the set of all isolation classes needed for full isolation
of all faults in F. For the wind turbine benchmark model
and the set of 15 faults considered in Section 2.2, the set I
contains in total 15×15−15 = 210 isolation classes for single
fault isolation of all 15 faults, that is, |I| = 210, where the
operator | · | returns the cardinality of a set.

To be able to satisfy the isolability property 1 stated
above, we want to find a set S ⊆ M with a nonempty
intersection with all isolation classes, that is,

∀I fi, f j ∈ I, S ∩ I fi, f j /=∅. (14)

The property (14) on S implies that we should find a so-
called hitting set for I. To satisfy the property 2, we want to
find an S so that |S| is minimized. Thus, the sought hitting
set for I should be of minimal cardinality and we should find
a so-called minimal cardinality hitting set (MHS) for I.

There are several possibilities for a metric that helps us
find an S that satisfies property 3. We opt for simplicity
and have, therefore, chosen to minimize

∑
M∈S|M|. As an

additional requirement, on top of 1, 2, and 3 in Section 5.1 we
require that at least one residual generator can be constructed
from every M ∈ S.

5.4. Solving the Selection Problem. The problem of finding
a minimal cardinality hitting set is known to be NP-hard,
see, for example, [15]. To overcome the complexity issues,
we have chosen to compute an approximate solution to
the problem in an iterative manner with a greedy selection
approach as elaborated in [4].

To accomplish this, we need to specify a utility function,
that is, a function that evaluates the usefulness of a given
MSO set, and also state the properties of a complete solution
to the selection problem. Following the greedy selection
approach, we add to the solution the MSO set with the largest
utility until the solution is complete. Furthermore, we only
add MSO sets from which at least one residual generator can
be constructed.

5.4.1. Characterization of a Solution. We will now character-
ize a complete solution to the selection problem for use in

the selection algorithm. First, we define the isolation class
coverage of a set of MSO sets S ⊆M as

σ(S) =
{
I fi, f j ∈ I : ∃M ∈ S,M ∈ I fi , f j

}
, (15)

which states which of the isolation classes in I that are
covered by the MSO sets in S. The property 1 in Section 5.1,
that is, the isolation or hitting set property, can with the
isolation class coverage notion be formulated as σ(S) = I.
This characterizes a complete solution of the selection prob-
lem.

5.4.2. Utility Function. To evaluate a specific MSO set, we
want to take into account the properties 1, 2, and 3, above.
For a given MSO set M, we will use the utility function:

μI(M) = γ
(|σ({M})|

|I|
)

+
(
1− γ

)
⎛
⎝1− |M|∣∣∣M̂

∣∣∣

⎞
⎠, (16)

where M̂ is the MSO set in M with the largest cardinality, and
γ, 0 ≤ γ ≤ 1, a weighting factor. The term |σ({M})|/|I| in
(16) tells how many of the isolation classes in I are covered by
the MSO set M. Since we aim at covering all isolation classes
with a minimum of MSO sets, property 2, we want to pick an
MSO set that maximizes this term. The term 1 − (|M|/|M̂|)
relates the cardinality of M to the cardinality of all other sets
in M. Picking an MSO set that maximizes this term in (16)
hence corresponds to picking the MSO set with the smallest
cardinality in M. This will help us satisfy property 3. The
weighting factor γ is used to trade between the two properties
reflected by these two terms.

Note that an MSO set maximizing one term in (16) may
minimize the other since an MSO set of larger cardinality
likely covers more isolation classes than an MSO set of
smaller cardinality.

5.5. The Selection Algorithm. The function selectResid-
ualGenerators used for selecting residual generators by
means of greedy selection is given in Algorithm 1. Input
to the function is a set of MSO sets M, that is, a set
of candidate residual generators, and a set of isolation
classes I. The output is a set of MSO sets S ⊆ M and
a set of residual generators G based on S. The function
findComputationSequence, described in [5], is used to
find a computation sequence in accordance with Section 4.1,
given a just-determined set of equations. The function
findComputationSequence can be found in Algorithm 2.

For a formal discussion regarding the qualification of
using a greedy heuristic for solving the residual generation
selection problem, as well as the complexity properties of
such algorithms, please refer to [4] and references therein.

5.5.1. Selecting Residual Equation. Note that the total num-
ber of sequential residual generators that potentially can
be constructed from an MSO set equals the number of
equations in the set. All residual generators created from the
same MSO set, however, have equal fault detectability and
isolability properties according to Section 5.2. Nevertheless,

Journal of Control Science and Engineering 7

function selectResidualGenerators(M, I)
S := ∅
G := ∅
while I /=∅ do

M := arg maxM∈MμI(M)
x := varX(M)
G := ∅
for all e ∈M do

M′ := M \ {e}
C :=findComputationSequence(M′, x)
if C /=∅ then

G := G∪ {(C, e)}
end if

end for
if G /=∅ then

S := S ∪ {M}
G := G∪ {G}

end if
M :=M \ {M}
I := I \ σ({M})

end while
return(S, G)

end function

Algorithm 1: Greedy selection of residual generators.

their actual fault detectability and isolability may differ due,
for example, different sensitivity for noise, and so forth. To
make the final selection of which of the residual generators
created from an MSO set that should be included in the final
diagnosis system, evaluation by means of execution using real
measurements from different fault cases is needed. Since we
in this work only assume that no-fault data is available, see
Section 3, this is not possible.

In this work, the selection of which residual generator to
create from a given MSO set is done so that the final deploy-
ment of the FDI system becomes as simple as possible. First
of all, findComputationSequence was configured to prefer
algebraic equations as residuals before differential equations,
if possible. Second, in order to avoid implementation issues
related to numerical differentiation, findComputationSe-
quence was configured to prefer computation sequences
using integral causality. Using this two-step heuristic, the
selection of which residual generator to create from an MSO
set, in practice, is more or less unambiguous. In those few
cases where more than one candidate remains, we make an
arbitrary selection.

5.6. Selected Residual Generators. Both functions selectRe-
sidualGenerators and findComputationSequence were
implemented in Matlab. As computational tool, see [5],
the algebraic equation solver MAPLE was utilized, which
allows symbolic solving of algebraic loops. The input to the
algorithm was the set of all 1058 MSO sets for the wind-
turbine benchmark model, see Section 4.2, and the set of all
210 isolation classes for single fault isolation of all considered
faults, see Sections 2.2 and 5.3.

(1): function findComputationSequence(E′,X ′)
(2): C := ∅
(3): S :=findAllSCCs(E′,X ′)
(4): for i = 1, 2, . . . , |S| do
(5): (Ei,Xi) := S(i)
(6): Di :=Diff(Xi)
(7): Zi := varD(Ei)∩Di

(8): Wi := Xi\unDiff(Zi)
(9): if not isInitCondKnown(Zi) then
(10): return ∅
(11): end If
(12): EZi :=getDifferentialEquations(Ei,Zi)
(13): EWi := Ei \ EZi

(14): SZi :=findAllSCCs(EZi ,Zi)
(15): for j = 1, 2, . . . , |SZi | do
(16): (E

j
Zi ,Z

j
i) := SZi (j)

(17): if isToolSolvable(Z
j
i ,E

j
Zi) then

(18): Append(C, (Z
j
i ,E

j
Zi))

(19): else
(20): return ∅
(21): end if
(22): end for
(23): if isJustDetermined(EWi ,Wi) then
(24): SWi :=findAllSCCs(EWi ,Wi)
(25): for j = 1, 2, . . . , |SWi | do
(26): (E

j
Wi

,W
j
i) := SWi (j)

(27): if isToolSolvable(W
j
i ,E

j
Wi

) then
(28): Append(C, (W

j
i ,E

j
Wi

))
(29): else
(30): return ∅
(31): end if
(32): end for
(33): else
(34): return ∅
(35): end if
(36): end for
(37): return C
(38): end function

Algorithm 2: Find a computation sequence.

To investigate the sensitivity of selectResidualGen-
erators to the parameter γ, that is, the tradeoff between
properties 2 and 3 stated in Section 5.3 and reflected by |M|
and

∑
M∈S|M|, the algorithm was run with the wind turbine

model and 0 ≤ γ ≤ 1. The result is shown in Table 2, where
S denotes the set returned by selectResidualGenerators.
When γ = 1, the aim is to fulfill the isolation property with
as few MSO sets as possible, no matter the size of the MSO
sets. As seen in Table 2 this results in few, but large, MSO
sets. The smaller the γ, the more attention is paid to the
size of the MSO sets. It turns out that 0.1 ≤ γ ≤ 0.6 gives
a decent tradeoff between |S| and

∑
M∈S|M| for the wind

turbine model.
With γ = 0.5, the algorithm selected 16 MSO sets,

that is, |S| = 16 and
∑

M∈S|M| = 61. Of the 16 selected
MSO sets, 7 contain algebraic equations only. The other 9
MSO sets contain both algebraic and differential equations.

8 Journal of Control Science and Engineering

Table 2: selectResidualGenerators sensitivity to parameter γ.

γ |S| ∑
M∈S|M|

0.0 20 82

0.1 16 61

0.2 16 61

0.3 16 61

0.4 16 61

0.5 16 61

0.6 16 61

0.7 16 65

0.8 17 72

0.9 16 87

1.0 8 108

Thus, 7 of the 16 residual generators used in the final FDI
system are static and the remaining 9 are dynamic. All 9
dynamic residual generators, due to the configuration of the
algorithm, use integral causality. The total number of found
residual generators is 34, that is, |G| = 34, see Section 5.5. Of
these 34 residual generators, 18 are static and the remaining
16 are dynamic.

5.6.1. Fault Signature Matrix. Given an MSO set M, its fault
signature F(M), with respect to the faults in F, is defined as

F(M) =
{
fi ∈ F : e fi ∈M

}
. (17)

For instance, the fault signature of the MSO set M1 =
{e26, e27} ⊆ M is F(M1) = {Δωg,m1,Δωg,m2}. A convenient
representation of the fault signature of a set of MSO sets
S = {M1,M2, . . . ,Mk} with respect to F is the fault signature
matrix (FSM) S with elements defined by

Si j =
⎧⎨
⎩

x, if f j ∈ F(Mi), Mi ∈M,

0, else.
(18)

The FSM for the 16 MSO sets on which the selected residual
generators are based is given in Table 3.

6. Fault Detection and Isolation

For fault detection and isolation, diagnostic tests based on
the output from each of the 16 residual generators are
constructed. Since no assumptions are made regarding the
nature of the faults that should be detected, see Section 2.2,
nothing is known about the fault’s temporal properties, size,
rate of occurrence, and so forth. Hence, we may not be able to
fully exploit the potential of some general method for change
detection as, for example, the CUSUM test, see, for example,
[16].

As said in Section 3, we, however, assume that no-fault
training data is available. To take advantage of this fact
and also handle uncertainties in terms of modeling errors
and measurement noise, we base our diagnostic tests on a
comparison of the estimated probability distributions of

no-fault and current residuals. The former probability
distributions are estimated offline using the available no-
fault training data and the latter online using current data.
A clear advantage with this approach is that changes in mean
and variance are handled in a unified way, since we consider
the complete distribution of the residual.

6.1. Diagnostic Test Design. Let PNF be a discrete estimate of
the probability distribution of a residual from no-fault data,
and P a discrete estimate of the distribution of the same
residual from present data, both having n bins. Then, the
Kullback-Leibler (K-L) divergence [17] between P and PNF

is given by

D
(
P‖PNF

)
=

n∑

j=1

P
(
j
)

log
P
(
j
)

PNF
(
j
) , (19)

where P(j) denotes the ith bin of the discrete distribution P.
To apply the K-L divergence for construction of a

diagnostic test, we proceed as follows. Given a representative
batch of no-fault data ZNF, that is, in our case measurements
of the variables in the set Z which contains the inputs and
outputs to the model, we run the set of residual generators
and obtain a set of residuals. For each residual ri, we then
estimate its probability distribution and obtain PNF

i , that is,
actually PNF

i ≈ P(Ri | ZNF), where Ri is a stochastic variable,
discretized in n bins, representing residual ri. As said, this
procedure can be done offline. To estimate a probability
distribution, we create a normalized histogram with n bins
for the data from which the distribution should be estimated.

Online, we continuously estimate the distribution of the
current residual ri using a sliding window containing N
samples of ri. If we by Pt

i denote the estimated distribution
of ri calculated at time t, that is, Pt

i ≈ P(Ri|Zt), where Zt

denotes the batch of data in the sliding window at time t, the
diagnostic test is designed as

Ti(t) =
⎧⎪⎨
⎪⎩

1, if D
(
Pt
i‖PNF

i

)
≥ Ji,

0, else,
(20)

where Ji is the threshold for alarm. The K-L divergence
D(Pt

i‖PNF
i) is referred to as the test quantity of the diagnostic

test Ti.

6.2. Fault Isolation Strategy. Due to uncertainties not cap-
tured by the given model nor present in the no-fault training
data, the power of diagnostic tests is not ideal for all faults.
That is, the probability of detection given a certain fault is not
always 1. To take this into account, the isolation scheme will
interpret an “x” in a certain row in Table 3 as if the test may
respond if the corresponding fault occurs and consequently
no conclusions are drawn if a test does not respond, see [18].

To obtain the total diagnosis statement from a set
of alarming diagnostic tests, we simply match their fault
signatures with the FSM given in Table 3. For example, if only
test T10 alarms, we look at the row corresponding to G10 and
conclude that either fault Δβ1 or Δβ1,m2 are present. If then
also T16 alarms, we combine the row corresponding to G16

Journal of Control Science and Engineering 9

Table 3: Fault signature matrix.

Δβ1 Δβ2 Δβ3 Δωg Δτg Δβ1,m1 Δβ1,m2 Δβ2,m1 Δβ2,m2 Δβ3,m1 Δβ3,m2 Δωr,m1 Δωr,m2 Δωg,m1 Δωg,m2

G1 (M1) x x

G2 (M2) x x

G3 (M3) x x

G4 (M4) x x

G5 (M5) x x

G6 (M8) x

G7 (M11) x x x

G8 (M27) x x

G9 (M29) x x

G10 (M31) x x

G11 (M7) x

G12 (M6) x

G13 (M14) x x x

G14 (M28) x x

G15 (M30) x x

G16 (M32) x x

with the row corresponding to G10 and conclude that fault
Δβ1 must be present.

To handle also multiple faults, we use the fault signatures
in the original FSM in Table 3 to create an extended FSM
with fault signatures also for multiple faults. This is done
by column-wise OR operations in the original FSM. For
instance, the column in the FSM for the double faultΔωg,m1∧
Δωg,m2 will get “x” in rows corresponding to G1, G7, G11, G12,
andG13 and zeros elsewhere. In the fault isolation scheme, we
first attempt to isolate all single faults using the original FSM
in Table 3. If this does not succeed, we try to isolate double
faults, and so forth.

7. Implementation Details

The final FDI system was implemented in Simulink accord-
ing to the structure in Figure 2. The 16 residual generators
were implemented as embedded MATLAB functions (EMF)
in which the code was automatically generated from the
structures obtained from the functions findComputa-
tionSequence and findResidualGenerators. The initial
conditions for the states in the dynamic residual generators
were derived from the corresponding sensor measurements,
if available, otherwise, set to zero. For instance, θΔ(t0) = 0,
xβi1 (t0) = (βi,m1(t0) + βi,m2(t0))/2, and ωg(t0) = (ωg,m1(t0) +
ωg,m2(t0))/2. This may cause transients in the residuals, but
this is not considered a problem.

7.1. Parameter Discussion. Although the aim is to keep the
number of parameters in the automated design method at a
minimum, there are nevertheless some parameters that must
be set. This section lists the needed parameters and discusses
their influence on the performance of the FDI system.

7.1.1. Number of Histogram Bins and Size of Sliding Window.
The number of bins n in the histograms used as distribution
estimates, is a tradeoff between detection time, noise sensi-
tivity, and complexity, in terms of computational power and
memory. A large n results in fast detection, but on the other
hand also in increased sensitivity for noise. Also, a large n
requires more memory and involves more computations, in
comparison with a smaller n.

The size N of the sliding window used to batch data for
creation of the histograms is a tradeoff between detection
performance, noise sensitivity, and complexity. A large N will
give the K-L test quantity lowpass characteristics, resulting in
a smoothed K-L test quantity. This makes it possible to detect
small changes in the estimated distributions. On the other
hand, a large N requires more memory. The choice of N is
also related to the number of bins n in the histograms and
vice versa, since a small N , together with a large n, will result
in a sparse histogram. Hence, the choices of N and n must
match.

For the wind turbine benchmark model, investigations,
however, indicate that the method is quite insensitive to the
values of n and N if 15 ≤ n ≤ 50 and 2000 ≤ N ≤
6000. A decent tradeoff, taking this into account and also the
complexity issues discussed above, is n = 20 and N = 3000,
which are the values used in the final FDI system.

7.1.2. Alarm Thresholds. The choice of alarm thresholds
Ji, i = 1, 2, . . . , 16, is a tradeoff between detection time and
the number of false detections. The higher the thresholds,
the longer the detection time and the lower the rate of false
alarms. The choice of alarm thresholds is related to the
choices of n and N since both affect how sensitive a K-L test
quantity is to noise, which in turn affects the rate of false

10 Journal of Control Science and Engineering

detections. We aim at choosing the alarm thresholds so that
the number of false detections is minimized, implying that
the choice of Ji must match the choices of n and N . For the
wind turbine benchmark model, the alarm thresholds were
computed as a safety factor α = 1.1 times the maximum
value of the corresponding K-L test quantities from 100
simulations with no-fault data.

7.1.3. Isolation Validation Time. The only parameter in-
volved in the fault isolation is the isolation validation time
tval
I . This parameter is used to compensate for the fact that

the power of diagnostic tests is not ideal, see Section 6.2.
This may, for example, result in that the detection times, for
the same fault, are different for different diagnostic tests. To
handle this, we demand that the output from the isolation
has been equal for tval

I samples before reporting the isolation
result. By choosing a large tval

I , we decrease the probability of
false isolation, but on the other hand, increase the isolation
time. For the wind turbine benchmark model, the isolation
validation time tval

I was set to 4 samples.

8. Evaluation and Results

To evaluate the performance of the proposed FDI system, we
use the test cases described in [2]. The test cases are based on
measured wind data and a sequence of injected faults. The set
of injected faults, their time of occurrence and description, is
specified in Table 4. The sequence contains 5 sensor faults
and 3 actuator faults. Note that two faults are injected at
1000–1100 s, that is, at this time, we have the double fault
Δωr,m2 ∧ Δωg,m2.

The no-fault distributions used in the evaluation were
estimated from residual data stemming from 100 Monte
Carlo simulations with no-fault data, that is, inputs, corre-
sponding to the measured variables in Z. Each set of no-fault
data was generated with the provided wind turbine model
with different noise realizations according to the model.

8.1. Results and Analysis. By means of Monte Carlo simu-
lations, the FDI system was simulated 100 times with data
from the provided wind turbine model setup according to
the above-described test sequence.

Based on the results from the 100 runs, the mean time of
detection TD, maximum time of detection Tmax

D , minimum
time of detection Tmin

D , mean time of isolation TI , minimum
time of isolation Tmin

I , the total number of missed detections
MD, and the total number of false detections FD, for each of
the faults in the test sequence, were computed. The results
along with the specified detection requirements [2], given in
the row Req., are shown in Table 5, where all time values
are given in seconds. Note that the specified requirements
concern detection, and not isolation.

According to the row corresponding to Tmax
D in Table 5,

all faults in the test sequence could be detected. For faults
Δωg,m2 ∧ Δωr,m2, Δβ1,m1, Δβ3,m1, detection requirements are
met, by means of both TD and Tmax

D .
All faults, except the double fault Δωg,m2 ∧ Δωr,m2 could

also be isolated. However, the mean time of isolation, TI ,

Table 4: Fault sequence.

Fault Time (s) Description

Δωr,m2 1000–1100 ωr,m2 = 1.1ωr,m2

Δωg,m2 1000–1100 ωg,m2 = 0.9ωg,m2

Δωr,m1 1500–1600 ωr,m1 = 1.4 rad/s

Δβ1,m1 2000–2100 β1,m1 = 5◦

Δβ2,m2 2300–2400 β2,m2 = 1.2β2,m2

Δβ3,m1 2600–2700 β3,m1 = 10◦

Δβ2 2900–3000 ωn = ωn2, ζ = ζ2

Δβ3 3400–3500 ωn = ωn3, ζ = ζ3

Δτg 3800–3900 τg = τg + 2000 Nm

for some faults, for example, Δβ2,m2, is substantially longer
than the corresponding mean time of detection. The main
reason for this is that some tests respond slower to faults than
other. As said, fault Δωg,m2 ∧ Δωr,m2 could not be isolated.
In fact, this fault is not uniquely isolable with the isolation
strategy described in Section 6.2 since the test response of
fault Δωg,m2 ∧ Δωr,m2 is a subset of the test response of fault
Δωg,m2 ∧ Δωr,m1, see Table 3. Both faults Δωg,m2 and Δωr,m2

are, however, contained in the diagnosis statement computed
after the faults have been detected.

It seems like sensor faults, for example, Δβ3,m1 tend to
be easier to detect than actuator faults as, for example, Δτg
and Δβ2. One possible explanation may be that actuator
faults in general cause changes in dynamics, whose effects are
attenuated by modeling errors, noise, and so forth.

As can be seen in the last two rows of Table 5, there are
no missed or false detections in any of the 100 test runs.

8.2. Case Study of Fault Δωr,m1. To study in more detail how
the FDI system handles faults, we consider the sensor fault
Δωr,m1. The fault corresponds to a fixed value of 1.4 rad/s
being measured by sensor ωr,m1 and occurs at time t =
1500 s. According to the FSM in Table 3, the residuals
sensitive to fault Δωr,m1 are r2 and r13, obtained as output
from the residual generators G2 and G13, respectively. These
residuals along with the corresponding K-L test quantities are
shown in Figure 4. As can be seen, both the residuals and the
test quantities respond distinctively to the fault.

To also illustrate the isolation procedure, we show in
Figure 5 the result of the diagnostic tests T2 and T13 (a),
the isolation result associated to faults Δωr,m1 (b) and Δωr,m2

(c), and also the signal that indicates when the isolation
procedure is done (b, c). As can be seen in Figure 5, the first
test that reacts to the fault is T2. This occurs at t = 1500.23 s.
Since T2 is sensitive to both fault Δωr,m1 and Δωr,m2 and
no other test has alarmed, the diagnosis statement is that
either Δωr,m1 or Δωr,m2 may be present, and no fault can
be isolated. At t = 1502.55 s, test T13 alarms. Test T13 is
sensitive to faults Δωg , Δωr,m1, and Δωr,m2, and the updated
total diagnosis statement based on that both T2 and T13 have
alarmed thus becomesΔωr,m1, see Table 3. This occurs at time
t = 1502.59 s.

Journal of Control Science and Engineering 11

Table 5: FDI Results. Time values in seconds.

Δωr,m2

Δωg,m2
Δωr,m1 Δβ1,m1 Δβ2,m2 Δβ3,m1 Δβ2 Δβ3 Δτg

Req. 0.1 0.1 0.1 0.1 0.1 0.08 6 0.05

TD 0.040 0.16 0.058 4.30 0.069 51.57 18.1 7.94

Tmax
D 0.04 0.27 0.07 6.10 0.07 51.88 19.05 7.98

Tmin
D 0.03 0.06 0.05 0.40 0.06 50.57 16.37 7.90

TI — 2.53 0.12 88.85 0.13 56.95 31.84 7.99

Tmax
I — 3.13 0.12 114.26 0.13 120.73 111.96 8.03

Tmin
I — 1.89 0.11 13.17 0.12 51.62 17.91 7.95

MD 0 0 0 0 0 0 0 0

FD 0 0 0 0 0 0 0 0

1450 1500 1550

−0.5

0

0.5

1

r 2

Time (s)

(a)

1450 1500 1550

−5

0

5

r 1
3

Time (s)

(b)

1450 1500 1550
0

500

1000

D
(P

2
||P

N
F

2
)

Time (s)

(c)

1450 1500 1550
0

50

100

D
(P

13
||P

N
F

13
)

Time (s)

(d)

Figure 4: Affected residuals r2 (a) and r13 (b), and the corresponding K-L test quantities D(Pt
2‖PNF

2) (c) and D(Pt
13‖PNF

13) (d) at the time of
occurrence of fault Δωr,m1.

9. Conclusions

We have proposed an FDI system for the wind turbine bench-
mark designed by application of a generic automated design
method, in which the numbers of required human decisions

and assumptions are minimized. No specific adaptation of
the method for the wind turbine benchmark was needed.
The method contains in essence three steps: generation of
candidate residual generators; residual generator selection;
diagnostic test construction. The second step is done by

12 Journal of Control Science and Engineering

1500 1501 1502 1503 1504 1505 1506
0

0.5

1
T

2
,T

13

T2

T13

Time (s)

(a)

1500 1501 1502 1503 1504 1505 1506
0

0.5

1

Isolation result

Isolation done

Time (s)

Δ
ω
r,
m

1

(b)

1500 1501 1502 1503 1504 1505 1506
0

0.5

1

Time (s)

Isolation result
Isolation done

Δ
ω
r,
m

2

(c)

Figure 5: Isolation procedure for fault Δωr,m1. (a) shows diagnostic tests T2 and T13. (b and c) show the isolation result corresponding to
faults Δωr,m1 and Δωr,m2, respectively, and when the isolation procedure is done.

means of greedy selection, and the third step is based on a
novel method utilizing the K-L divergence.

The performance of the proposed FDI system has been
evaluated using the predefined test sequence for the wind
turbine benchmark. The FDI system performs well; all
faults in the test sequence were detected within feasible
time and all faults, except a double fault, could be isolated
shortly thereafter. In addition, there are no false or missed
detections. A tailor-made, finely tuned, FDI system for the
benchmark would probably perform better. However, in
relation to the required design effort, and that no specific
adaptation or tuning of the method to the benchmark was
done, the performance is satisfactory.

Appendix

Algorithm for Finding a Computation Sequence

To make the paper more self-contained, the function find-
ComputationSequence described in [5] is given as Algo-
rithm 2. The function takes a just-determined equation
set E′ ⊆ E and a set of unknown variables X ′ ⊆ X ,
and it returns an ordered set C as output. The algorithm
assumes availability of a computational tool in the form
of a algebraic equation (AE) solver such as, for example,
Maple, see [5] for a thorough discussion regarding this. The
function findAllSCCs is assumed to return an ordered set
of equation and variable pairs, where each pair corresponds
to a strongly connected component (SCC) of the structure
of the equation set with respect to the variable set. There
are efficient algorithms for finding SCCs in directed graphs,
for example, the DM decomposition [19]. In MATLAB, the
DM decomposition is implemented in the function dmperm.

Other functions used in findComputationSequence are as
follows.

(i) Diff and unDiff takes a variable set as input
and returns its differentiated and undifferentiated
correspondence.

(ii) isInitCondKnown determines if the initial condi-
tions of the given variables are known and consistent,
and the function isDifferentiable determines if the
given variables can be differentiated with the available
differentiation tool.

(iii) isJustDetermined is used to determine if the struc-
ture of the given equation set, with respect to the
given variable set, is just determined. This is essential,
since, otherwise, the computation of SCCs makes no
sense.

(iv) getDifferentialEquations takes a set of equations
and a set of differentiated variables as input and
returns the differential equations in which the given
differentiated variables are contained.

(v) isToolSolvable determines if the available algebraic
equation solver can solve the given equations for the
given set of variables.

(vi) Append takes an ordered set and an element as input
and simply appends the element to the end of the set.

(vii) The operator | · |, taking a set as input, is assumed
to return the number of elements in the set and the
notion A(i) is used to refer to the ith element of the
ordered set A.

Journal of Control Science and Engineering 13

Acknowledgment

This work was supported by Scania CV AB, Södertälje, Swe-
den.

References

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diag-
nosis and Fault-Tolerant Control, Springer, 2nd edition, 2006.

[2] P. F. Odgaard, J. Stoustrup, and M. Kinnaert, “Fault tolerant
control of wind turbines âAS- a benchmark model,” in Pro-
ceedings of the 7th IFAC Symposium on Fault Detection, Su-
pervision and Safety of Technical Processes, pp. 155–160, Bar-
celona, Spain, 2009.

[3] M. Krysander, J. Åslund, and M. Nyberg, “An efficient algo-
rithm for finding minimal overconstrained sub-systems for
model-based diagnosis,” IEEE Trans. on Systems, Man, and Cy-
bernetics. Part A, vol. 38, no. 1, pp. 197–206, 2008.

[4] C. Svärd, M. Nyberg, and E. Frisk, “A greedy approach for
selection of residual generators,” in Proceedings of the 22nd
International Workshop on Principles of Diagnosis (DX-11),
Murnau, Germany, 2011.

[5] C. Svärd and M. Nyberg, “Residual generators for fault diag-
nosis using computation sequences with mixed causality
applied to automotive systems,” IEEE Transactions on Systems,
Man, and Cybernetics. Part A, vol. 40, no. 6, pp. 1310–1328,
2010.

[6] W. J. Rugh, Linear System Theory, Prentice Hall Information
and System Sciences, chapter 13, 1996.

[7] P. F. Odgaard, “Wind turbine benchmark model,” 2011, http://
www.kkelectronic.com/Default.aspx?ID=9385.

[8] M. Staroswiecki and P. Declerck, “Analytical redundancy in
non-linear interconnected systems by means of structural
analysis,” in Proceedings of the IFAC Advanced Information Pro-
cessing in Automatic Control, (AIPAC’89), pp. 51–55, Nancy,
France, 1989.

[9] J. P. Cassar and M. Staroswiecki, “A structural approach for
the design of failure detection and identification systems,” in
Proceedings of the IFAC Control of Industrial Systems, pp. 841–
846, Belfort, France, 1997.

[10] M. Staroswiecki, “Structural analysis for fault detection and
isolation and for fault tolerant control,” in Fault Diagnosis and
Fault Tolerant Control, Encyclopedia of Life Support Systems,
Eolss Publishers, 2002.

[11] B. Pulido and C. Alonso-González, “Possible conflicts: a
compilation technique for consistencybased diagnosis,” IEEE
Trans. on Systems, Man, and Cybernetics. Part B, vol. 34, no. 5,
pp. 2192–2206, 2004.

[12] S. Ploix, M. Désinde, and S. Touaf, “Automatic design of
detection tests in complex dynamic systems,” in Proceedings
of the 16th IFAC World Congress, vol. 16, pp. 478–483, Prague,
Czech Republic, 2005.

[13] L. Travé-Massuyès, T. Escobet, and X. Olive, “Diagnosability
analysis based on component-supported analytical redundan-
cy relations,” IEEE Transactions on Systems, Man, and Cyber-
netics. Part A, vol. 36, no. 6, pp. 1146–1160, 2006.

[14] M. Krysander and E. Frisk, “Sensor placement for fault diag-
nosis,” IEEE Transactions on Systems, Man, and Cybernetics.
Part A, vol. 38, no. 6, pp. 1398–1410, 2008.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability—
A Guide to the Theory of NPCompleteness, W. H. Freeman and
Company, 1979.

[16] F. Gustafsson, Adaptive Filtering and Change Detection, Wiley,
2000.

[17] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” Annals of Mathematical Statistics, vol. 22, no. 1, pp.
79–86, 1951.

[18] M. Nyberg, “Automatic design of diagnosis systems with appli-
cation to an automotive engine,” Control Engineering Practice,
vol. 7, no. 8, pp. 993–1005, 1999.

[19] A. L. Dulmage and N. S. Mendelsohn, “Coverings of bi-partite
graphs,” Canadian Journal of Mathematics, vol. 10, pp. 517–
534, 1958.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

	Automated Design - TP
	989873

