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Data-Driven and Adaptive Statistical Residual
Evaluation for Fault Detection with an Automotive

Application

Carl Svärda, Mattias Nyberga, Erik Friskb, Mattias Krysanderb

aSystems Development, Scania CV AB, SE-15187 Södertälje, Sweden
bDepartment of Electrical Engineering, Linköping University, SE-58183 Linköping, Sweden

Abstract

An important step in model-based fault detection is residual evaluation, where
residuals are evaluated with the aim to detect changes in their behavior caused
by faults. To handle residuals subject to time-varying uncertainties and dis-
turbances, which indeed are present in practice, a novel statistical residual
evaluation approach is presented. The main contribution is to base the residual
evaluation on an explicit comparison of the probability distribution of the resid-
ual, estimated online using current data, with a no-fault residual distribution.
The no-fault distribution is based on a set of a-priori known no-fault residual
distributions, and is continuously adapted to the current situation. As a second
contribution, a method is proposed for estimating the required set of no-fault
residual distributions off-line from no-fault training data. The proposed residual
evaluation approach is evaluated with measurement data on a residual for fault
detection in the gas-flow system of a Scania truck diesel engine. Results show
that small faults can be reliable detected with the proposed approach in cases
where regular methods fail.

Keywords: fault diagnosis, fault detection, residual evaluation, statistical
hypothesis testing, automotive diesel engine

1. Introduction

Fault diagnosis is becoming more and more important with the increasing
demand for dependable technical systems, driven mostly by economical, envi-
ronmental, and safety, incentives. One example is automotive systems, where
good fault diagnosis is essential in order to meet customer demands regarding
up-time, efficient repair and maintenance, and also to fulfill on-board diagnosis
(OBD) legislative regulations.
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Model-based fault diagnosis typically comprises fault detection and isola-
tion [13], and the fault detection part contains the essential steps residual
generation and residual evaluation. In the first step, a model of the system is
used together with measurements to generate residuals. In the second step, the
residuals are evaluated with the aim to detect changes in the residual behavior
caused by faults in the system. This works concerns the second step, residual
evaluation.

Ideally, residuals are signals that are zero when no faults are present in
the system, and non-zero otherwise. Due to the presence of uncertainties and
disturbances, caused by for instance modeling errors, measurement noise, and
unmodeled phenomena, residuals typically however deviate from zero even in the
no-fault case. Moreover, due to changes in the operating mode of the system, the
magnitude of these uncertainties and disturbances is time-varying, causing the
behavior of residuals to be non-stationary. An illustration is given by Figure 1,
where a residual for fault detection in the gas-flow system of a truck diesel engine
is shown. Clearly, the residual is not zero in the no-fault case, and it is obvious
that the residual exhibit non-stationary features. It can also be noted that the
difference between the residual in the no-fault and fault cases is time-varying.
Nevertheless, the fact that there is a difference implies that the present fault is
potentially detectable. Note also that the residual does not exhibit any periodic
time-variations.

There are two main approaches [22] for residual evaluation; statistical [60, 27,
7, 50, 3, 14, 59, 30, 48] and norm-based [23, 25, 26, 53, 18, 62, 63, 33, 4, 36, 1].
Statistical approaches exploits the framework of statistical hypothesis testing
in order to detect changes in some parameter of the probability distribution
of the residual, typically by means of likelihood ratio testing [28]. In norm-
based approaches, residual evaluation is typically done by adaptive or constant
thresholding of some norm of the residual.

Apparently, when encountering a residual as the one depicted in Figure 1,
neither statistical-based approaches assuming stationary probability distributions,
nor norm-based approaches using constant thresholds, would be successful.
A potential solution is to consider adaptive thresholds [19, 24], and use a-
priori knowledge, either qualitative [33, 62, 31, 23] or quantitative [53, 25, 47],
to derive non-constant thresholds to take the time-varying uncertainties and
disturbances into account. Furthermore since the residual depicted in Figure 1
is non-periodic, diagnosis approaches for machines working in non-stationary
operating conditions [16, 52, 43, 51] are not applicable.

This paper instead proposes an adaptive statistical residual evaluation method,
which exploits quantitative a-priori knowledge in the form of data.

The main contribution is to base the residual evaluation on an explicit com-
parison of the probability distribution of the residual, estimated on-line using
current data, with a no-fault residual distribution. The no-fault distribution is
based on a set of a-priori known no-fault distributions and to handle changes in
the operating mode of the system, and thus time-varying residual features, it is
continuously adapted to the current operating mode of the system. The compar-
ison is done in the framework of statistical hypothesis testing by application of
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Figure 1: A residual for fault detection in the gas-flow system of a heavy-duty truck diesel
engine in the no-fault (solid) and fault (dashed) cases.

the Generalized Likelihood Ratio (GLR). As a second contribution, a method
is proposed for estimating the required set of no-fault residual distributions
off-line from no-fault training data. Thus, using the method for distribution
estimation, the overall residual evaluation method becomes fully data-driven
and no assumptions regarding the properties of the probability distribution of
the residual, nor the properties of the faults to be detected, are made.

The paper is organized as follows. Section 2 discusses and formalizes the
problem setup and the residual evaluation problem is formulated in the framework
of statistical hypothesis testing. In Section 3, the GLR is utilized to design a
preliminary test statistic for the residual evaluation hypotheses, and the emerging
likelihood maximization problems are considered. In Section 4, the preliminary
test statistic is improved in terms of required computational effort, and a residual
evaluation algorithm suitable for implementation in an online environment is
given. Section 5 presents an off-line algorithm for learning no-fault residual
distributions from no-fault training data. In Section 6 the proposed residual
evaluation approach is applied to a residual for fault detection in the gas-flow
system of a real Scania truck diesel engine. Finally, Section 7 concludes the
paper.

2. Problem Formulation

The residual evaluation problem, as considered in this work, is formally stated
in this section.

2.1. Prerequisites
A residual, r, is considered to be the output from a residual generator, taking

measurements from a system as input. Typically, the measurements consists of
the input and output of the system.

The system is considered to be subject to faults, and the intention is to detect
if any fault is present in the system by monitoring the behavior of the residual.
Note that if a set of residuals sensitive to different faults is used, faults can also
be isolated, see for example [13].

The system typically operates in a number of different operating modes,
and normal operation usually involves several of these modes. For an example,
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consider a heavy-duty truck diesel engine, for which a residual is shown in
Figure 1. Naturally, this system is designed to operate in a number of different
operating modes typically characterized by engine torque, engine speed, ambient
temperature, ambient pressure, etc.

The considered setup most often contains uncertainties in the form of mea-
surement noise or, in the case of a model-based residual generator, modeling
errors. Typically, the magnitudes and nature of the uncertainties are different
for different operating modes of the system. For example, a sensor may be more
or less sensitive to noise in different operating modes, and a model may be more
accurate in one operating mode than another. Since the operating mode of the
system varies in time, so does the magnitudes and nature of the uncertainties.
This is the cause of the non-ideal residual behavior illustrated in Figure 1.

It is assumed that during on-line operation, the current operating mode of
the system is unknown. In addition, it is also assumed that the probability
that the system is in a specific mode is unknown. In this sense, the system can
be considered to be subject to an unknown, i.e., unmeasurable, input signal,
determining the current operating mode. Regarding in particular the first
assumption, it is considered to be hard to quantify and measure all factors,
internal and external, that determine the current operating mode of a system.
Furthermore, these factors may be different for different individuals of the system,
or may change over time. However, even if its is possible to determine a set of
measured signals that determines the operating mode, all signals may not be
available for the residual evaluation scheme due to for example fault decoupling
principles, or architectural constraints in the control system software. In addition,
even if all signals are available, they may as well be subject to faults. The second
assumption is mainly motivated by the fact that the operation of a system differs
between different individuals of the same system, and may change over time or
due to external unmeasurable factors.

2.2. Probabilistic Framework
To handle the uncertain environment described above, a probabilistic frame-

work is adopted. Let the discrete random variableR with range X = {x1, x2, . . . , xM},
represent the discretized and sampled value of the residual, and let r denote a
particular outcome of R.

For a given specific operating mode i of the system, the probability that
R = r is assumed to be characterized by the probability mass function (pmf)

p (r|θi) = Pr (R = r|θi) = θij , if r = xj , (1)

for j = 1, . . . ,M . The pmf (1) is fully parametrized by θi = (θi1, θi2, . . . , θiM ),
where the θij are required to fulfill

θij ≥ 0, j = 1, 2, . . . ,M and
M∑
j=1

θij = 1. (2)
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Figure 2: Example of a sample from a mixture distribution in the form (3) with 3 components
θ1, θ2, and θ3, and mixture weights α1 = α2 = α3 = 1

3
.

Under the assumption that there is in totalK operating modes, the probability
that R = r can be characterized by the K-component mixture distribution given
by the pmf

p (r|α, θ) =

K∑
i=1

αi p (r|θi) (3)

with α = (α1, α2, . . . , αK) and

θ =


θ1

θ2

...
θK

 =


θ11 θ12 · · · θ1M

θ21 θ22 · · · θ2M

...
...

...
...

θK1 θK2 · · · θKM

 , (4)

where αi, i = 1, 2, . . . ,K, are referred to as mixture weights required to fulfill

αi ≥ 0, i = 1, 2, . . . ,K, and
K∑
i=1

αi = 1. (5)

In the context of this work, the mixture weight αi specifies the probability that
the system is in mode i. As said in Section 2.1, the probability that the system
is in a specified operating mode is considered to be unknown. Consequently,
αi, i = 1, 2, . . . ,K, are assumed to be unknown and will in the following be
considered as nuisance parameters.

Figure 2(a) shows a set of residual samples with underlying distributions
described by the pmf (3), with 3 components θ1, θ2, and θ3, and mixture weights
α1 = α2 = α3 = 1

3 shown in Figure 2(b).
In the context of residual evaluation, it is assumed that the distribution of the

residual is known in the no-fault case. Let θNF denote the no-fault distribution
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parameter, where the i-th row θNF
i describes the distribution of the residual in

operating mode i of the no-fault system. Section 5 describes how the required
parameters θNF

i can be learned from no-fault training data, without the need of
any detailed a-priori knowledge of the system. For a different approach, utilizing
expert knowledge regarding the system, see [57].

Typically, the distribution of the residual is different for all K operating
modes of the no-fault system, which implies that the matrix θNF has full row
rank. For the model (3) to make sense it is required thatM > K, since otherwise
θNF can be used to describe any residual distribution, including ones originating
from faulty cases.

2.3. Residual Evaluation in the Framework of Hypothesis Testing
Consider now a set R = {r1, r2, . . . , rN} of sampled residual values. Given

θNF and R, the residual evaluation problem is, in the context of this work, to
determine if the probability distribution of the residual samples in R can be
characterized by the pmf (3) with θ = θNF for some α ∈ Υ, where

Υ =

{
α ∈ RK : αi ≥ 0,

K∑
i=1

αi = 1

}
, (6)

denotes the space of α as specified by (5).
The residual evaluation problem as described above can be formulated by

means of the hypotheses

H0 : θ = θNF, α ∈ Υ

H1 : θ 6= θNF, α ∈ Υ
(7)

where the null hypothesis H0 corresponds to the no-fault case, i.e., when no fault
is present in the system, and the alternative hypothesis H1 to the faulty case,
i.e., when one or several faults are present in the system. Next section deals
with the problem of designing a test statistic for the hypotheses (7).

3. GLR Test Statistic

A standard approach when encountering composite hypotheses, is to utilize
the Generalized Likelihood Ratio (GLR), see, e.g., [17, 7]. For testing hypothesis
H0 versus H1 in (7), the GLR is

Λ (R) =
max
α∈Υ

L
(
α, θNF|R

)
max

α∈Υ, θ∈Θ
L (α, θ|R)

, (8)

where L (θ, α|R) = p(R|θ, α) is the likelihood function of α and θ, given the set
R of residual samples, and

Θ =

θ ∈ RK×M : θij ≥ 0,

M∑
j=1

θij = 1

 , (9)

6



denotes the space of the distribution parameter θ as specified by (2).
Let cj denote how many of the samples in R that have value xj , i.e.,

cj = |{rk ∈ R : rk = xj , xj ∈ X}| , j = 1, 2, . . . ,M. (10)

By definition, it holds that
∑M
j=1 cj = N . It is worth noting that the quantities

c1, c2, . . . , cM can be obtained from a regular histogram, with M bins, calculated
from R.

By assuming that samples from (3) are independent and identically distributed
(iid), the log-likelihood can be expressed as

` (α, θ|R) = log [L (α, θ|R)] =

M∑
j=1

cj log

[
K∑
i=1

αi θij

]
. (11)

Before proceeding, the following is assumed without loss of generality [55]
regarding c1, c2, . . . , cM , as specified by (10).

Assumption 1. cj > 0, j = 1, 2, . . . ,M .

3.1. Likelihood Maximizations
This section is devoted to explore in detail how to solve the two maximization

problems in the GLR (8). Both problems correspond to finding parameter values
that maximize the log-likelihood function (11), given the residual samples in R,
i.e., finding Maximum Likelihood Estimators (MLE’s).

3.1.1. Denominator MLE Problem
Consider first the MLE problem

max
α∈Υ, θ∈Θ

L (α, θ|R) , (12)

in the denominator of (8). Under the iid assumption and by using the log-
likelihood function (11) as well as the structure of the parameter spaces (9)
and (6), the MLE problem (12) can be equivalently stated as

max
α∈RK , θ∈RK×M

M∑
j=1

cj log

[
K∑
i=1

αi θij

]
subject to αi ≥ 0, i = 1, 2, . . . ,K,

θij ≥ 0, i = 1, 2, . . . ,K, j = 1, 2, . . . ,M,

K∑
i=1

αi = 1,

M∑
j=1

θij = 1, i = 1, 2, . . . ,K,

(13)

which is a general non-linear constrained maximization problem. It turns out
that (13), and equivalently the MLE problem (12), can be solved explicitly. For
a formal proof, see [55, Paper C].
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Theorem 1. Let R be a set of residual samples, define c1, c2, . . . , cM according
to (10), and let Assumption 1 be valid. Then, any α? ∈ Υ and θ? ∈ Θ such that

K∑
i=1

α?i θ
?
ij =

cj
N
, j = 1, 2, . . . ,M, (14)

is a solution to the MLE problem (12).

3.1.2. Numerator MLE Problem
Consider now the MLE problem

max
α∈Υ

L
(
α, θNF|R

)
, (15)

in the numerator of the GLR (8). Note that (15) and (12) differs by that θ is
fixed to θNF in (15).

With the notion of Section 2, the parameter θNF characterizes the set of
distributions of the no-fault residual for all operating modes of the system. In
this sense, the MLE problem (15) corresponds to finding a no-fault distribution
that is most likely to fit the residual samples in R.

By again using the iid assumption, the log-likelihood function (11), and
exploiting the structure of the space (6) of the parameter α, the MLE problem (15)
can be equivalently stated as the non-linear constrained maximization problem

max
α∈RK

M∑
j=1

cj log

[
K∑
i=1

αi θ
NF
ij

]
subject to αi ≥ 0, i = 1, 2, . . . ,K,

K∑
i=1

αi = 1.

(16)

In the general case, it is unfortunately not possible to find an explicit expres-
sion for a solution to the maximization problem (16), or equivalently the MLE
problem (15), as was the case with the MLE problem (12). There are however
several efficient numerical approaches, see, e.g., [46].

By using similar arguments as in the proof of Theorem 1, it can be shown that
also (16) is a concave maximization problem. The concavity property facilitates
the numerical solving since it implies that if a local maximum can be found,
then it is also a global maximum.

4. Online Residual Evaluation Algorithm

Typically, residual evaluation is to be done in an online environment subject to
real-time constraints, i.e., computational times in order of micro- or milliseconds
with strict deadlines. Unfortunately, it is in general not feasible to solve the
non-linear MLE problem (15), or equivalently (16), under such conditions. In
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this section, a relaxed version of the MLE problem (15) is proposed. The relaxed
problem requires less computational effort and results in a residual evaluation
test that under certain conditions performs better than the residual evaluation
test based on the original MLE problem.

4.1. Relaxed Problem
In light of Theorem 1, and since the problems (16) and (13) exhibit significant

similarities, an intuitive solution to problem (16) is to, if possible, choose α ∈ Υ
so that

K∑
i=1

αi θ
NF
ij =

cj
N
, j = 1, 2, . . . ,M. (17)

However, since K < M , see Section 2.2, (17) corresponds to an overdetermined
set of equations which in general has no solution. Motivated by this discussion,
it makes sense to chose α so that each

∑K
i=1 αi θ

NF
ij is as close as possible to

cj
N for j = 1, 2, . . . ,M . Thus, the following relaxation of the problem (16) is
considered

min
α∈RK

1

2
‖
K∑
i=1

αiθ
NF
i − φ?‖22

subject to αi ≥ 0, i = 1, 2, . . . ,K,

K∑
i=1

αi = 1,

(18)

where φ? = (φ?1, φ
?
2, . . . , φ

?
M ) with φ?j =

cj
N for j = 1, 2, . . . ,M .

The relaxed problem (18) is equivalent to a linear least squares problem with
equality and non-negative constraints. Solving (18) therefore typically requires
less computational effort than solving the original general non-linear maximiza-
tion problem (16). Solving of (18) will be further discussed in Section 4.3.

In order to compare the fault detection properties of the residual evaluation
tests based on the relaxed problem (18) and the original MLE problem (16), the
following result is given.

Lemma 1. Let c1, c2, . . . , cM fulfill Assumption 1, let θNF ∈ Θ, and

ΦNF =

{
φ : φ =

K∑
i=1

αi θ
NF
i , ∀α ∈ Υ

}
. (19)

Further, let φ? ∈ ΦNF, and let αO and αR be solutions to the original problem (16)
and relaxed problem (18), respectively. Then, it holds that

K∑
i=1

αO
i θNF

i =

K∑
i=1

αR
i θ

NF
i = φ?. (20)
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Proof. First note that φ? ∈ ΦNF is equivalent to that the set

ΥNF =

{
α ∈ Υ : φ? =

K∑
i=1

αi θ
NF
i

}
, (21)

is non-empty. Assume that ΥNF 6= ∅ and consider first the optimization prob-
lem (16). Since ΥNF 6= ∅, it follows from [55, Paper C, Lemma 1], and the
fact that log [·] is an increasing function, that any optimal solution to (16) is
contained in ΥNF. In particular, this holds for αO and thus φ? =

∑K
i=1 α

O
i θ

NF
i .

Consider next the optimization problem (18). Again ΥNF 6= ∅ implies that
any optimal solution to (18), in particular αO, is contained in ΥNF. Hence,
φ? =

∑K
i=1 α

R
i θ

NF
i and the proof is complete.

Consider the hypotheses in (7) and the GLR test statistic λ (R) = −2 log Λ (R)
with Λ (R) defined by (8). Define the test statistic

λR (R) = −2 log
L
(
αR, θNF|R

)
L (α?, θ?|R)

, (22)

where (α?, θ?) is a solution to the original MLE problem (12) as present in (8),
but where αR is a solution to the relaxed numerator MLE problem (18).

The power of the residual evaluation test λ (R) > J can be quantified by the
power function [17]

βλ (α, θ) = Pr (reject H0|α, θ)
= Pr (λ (R) > J |α, θ) , (23)

where J is a fixed threshold. If α ∈ Υ and θ = θNF in (23), i.e., under H0,
the power function gives the probability of false detection, or Type I error.
Otherwise, the power function gives the probability of detection for fixed α
and θ, or equivalently the probability of missed detection or Type II error, by
1− βλ (α, θ).

Consider now the power function

βλR (α, θ) = Pr (λR (R) > J |α, θ) , (24)

for the residual evaluation test λR (R) > J , based on the relaxed problem (18).
The relation between the power functions (23) and (24) is given by the following
result.

Theorem 2. It holds that

βλR (α, θ) ≥ βλ (α, θ) . (25)

Proof. It is first noted that according to Theorem 1, it holds that φ?j =
cj
N ,

j = 1, 2, . . . ,M , and thus Lemma 1 is applicable. According to Lemma 1, it
holds that φ? =

∑K
i=1 α

O
i θNF

i =
∑K
i=1 α

R
i θNF

i if φ? ∈ ΦNF. This implies that

10



L
(
αO, θNF|R

)
= L

(
αR, θNF|R

)
if φ? ∈ ΦNF. Due to the concavity property of

the likelihood function L (α, θ|R), and the fact that αO is a solution to the MLE
problem (15), it follows that

L
(
αR, θNF|R

)
≤ L

(
αO, θNF|R

)
,

with equality if φ? ∈ ΦNF. Thus, it holds that

L
(
αR, θNF|R

)
L (α?, θ?|R)

≤ L
(
αO, θNF|R

)
L (α?, θ?|R)

, (26)

and equivalent that λR (R) ≥ λ (R), due to (22) and the definition of λ (R), again
with equality if φ? ∈ ΦNF. The claim (25) then follows directly by definitions (23)
and (24).

The implication of Theorem 2 is that the residual evaluation test λR (R) > J ,
based on the relaxed problem (18), gives greater or equal probability for detection
than the test λ (R) > J , based on the original problem (16). Or equivalently,
that the Type II error, i.e., the probability for missed detection, for the test
λR (R) > J always is smaller than, or equal to, the Type II error for the test
λ (R) > J .

In general, unfortunately, the test λR (R) > J gives larger probability for
false detection, i.e., Type I error, than the test λ (R) > J . This is a direct
consequence of Theorem 2. However, asymptotically the condition φ? ∈ ΦNF

holds under hypothesis H0, i.e., in the no-fault case, which implies that also the
probabilities for false detection becomes equal for the two tests. This fact is
formalized in the following result.

Theorem 3. Let N denote the number of residual samples in R, and let H0

in (7) be valid. Then, it holds that

lim
N→∞

βλR (α, θ)− βλ (α, θ) = 0. (27)

Proof. Define φ =
∑K
i=1 αi θi and note that from (7), it can be deduced that

φ ∈ ΦNF is equivalent to that α ∈ Υ and θ = θNF, i.e., that H0 in (7) is valid.
Thus, by assumption, it holds that φ ∈ ΦNF. Consider now φ? and note that
due to the invariance property [17] of maximum likelihood estimates it holds
that if (α?, θ?) are the MLE of (α, θ), which indeed is true by assumption, then
φ? =

∑K
i=1 α

?
i θ

?
i is the MLE of φ. Due to the consistenty properties of MLEs [17,

Theorem 10.1.6] it can then be shown [55, Paper C, Lemma 5] that

lim
N→∞

Pr (|φ? − φ| ≥ ε) = 0,

for all ε > 0 and φ ∈ Φ′, with

Φ′ =

φ ∈ RM : φj > 0,

M∑
j=1

φj = 1

 . (28)
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Figure 3: Comparison of test quantities λR(R) and λ(R) under hypothesis H0, by means of
the quantity λ(R)

λR(R)
, for different values of the size N of the residual sample R.

Since it holds that φ ∈ ΦNF by assumption, it therefore holds that φ? ∈ ΦNF when
N →∞. Since φ? ∈ ΦNF holds, (26) holds with equality which is equivalent to
that λR (R) = λ (R). By (23) and (24) this is equivalent to βλR (α, θ) = βλ (α, θ),
and thus (27) holds.

Theorem 3 is empirically illustrated in Figure 3, which shows a comparison
of the test statistics λR(R) and λ(R), under hypothesis H0, as the size N of the
residual sample R grows. In this particular case, the parameters M = 80 and
K = 25 was used. The comparison is done by means of the quantity λ(R)

λR(R) , and
Figure 3 shows the average of 10,000 Monte Carlo simulations using synthetic
data. It is clear that the test quantities λR(R) and λ(R) are almost equal when
N is large, in this case for N > 1000. Since both test λR(R) > J and λ(R) > J
are based on the same threshold J , the situation in Figure 3 implies that the
power functions βλR (α, θ) and βλ (α, θ) are almost identical under H0 when N
is sufficiently large.

To summarize, Theorem 2 implies that the test λR (R) > J , based on the
relaxed problem (18), will result in greater or equal probability for detection than
the GLR test λ (R) > J , based on the original MLE problem (16). Moreover,
according to Theorem 3, if N is sufficiently large, then also the probabilities for
false detection will be almost equal for two tests.

In an application where computational effort is crucial, and when implemen-
tation matters limit usage of a “sufficiently large” N , a switch from the original
MLE problem (16) to the relaxed problem (18), means trading probability of
false detection against computational feasibility.

4.2. Residual Evaluation Algorithm
The proposed method for residual evaluation is summarized as an algorithm

below. Input to the algorithm is a set of residual samples R = {r1, r2, . . . , rN},
a no-fault residual distribution parameter θNF, and a detection threshold J .
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Output is a decision whether to reject hypothesis H0 in (7) or not, i.e., whether
a fault is present in the system or not.

Step 1: Compute c1, c2, . . . , cM according to (10).

Step 2: Obtain αR by solving (18).

Step 3: Obtain (22) by computing

λR = −2 log

∏M
j=1

(∑K
i=1 α

R
i θ

NF
ij

)cj
∏M
j=1

( cj
N

)cj . (29)

Step 4: Reject H0 if λR > J .

Note that for use with sequential residual data, the samples in R may be
collected by using a sliding window, i.e., at sampling instant t the set of residual
samples Rt = {rt−N+1, rt−N+2, . . . , rt} is used, where rt denotes the residual
sample collected at instant t.

4.2.1. Parameter Choices
The parameters involved in the residual evaluation are the number N of

residual samples in R, the detection threshold J , and the no-fault distribution
parameter θNF. The first two parameters, N and J , are discussed below. The
parameter θNF is the topic of Section 5.

According to Theorem 3, the relaxation (18) of the MLE problem (15) is
justified in terms of the probability for false detection if N is sufficiently large.
The actual meaning of “sufficiently large” is application dependent and must be
evaluated from case to case. This can for example be done by comparing the
test quantities λR(R) and λ(R), under hypothesis H0, for different values of N
in the same manner as in Figure 3.

In general, given that N is large enough to justify the relaxation, the choice
of N is a trade-off between detection performance and complexity. A large N
will give the test statistic smoothed, low-pass, characteristics. This makes it
possible to detect small changes in the residual, but on the other hand a large
N may increase the detection time. Computational and memory aspects will be
discussed in Section 4.3.

The choice of detection threshold J is a trade-off between detection time, and
test power, in terms of probability of false detection and probability of missed
detection. The higher the threshold, the longer the detection time, the lower the
probability of false detections but the higher the probability of missed detection.
The actual selection of threshold may be aided by the fact that the test statistic
based on the GLR, ideally, is Chi-squared distributed [60].

4.3. Implementation Issues and Computational Complexity
Typically, the residual evaluation algorithm outlined in Section 4.2 is im-

plemented and executed in real-time in an online environment. This poses
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strict restrictions on the computational complexity of the algorithm, in terms of
requirements of computing time and storage.

The main potential computational pitfall of the algorithm is related to
Step 2, i.e., solving the equality and inequality constrained linear least square
problem (18). A variety of numerical methods have been developed for solving
this kind of problems, see, e.g., [29, 35, 12, 64]. Most methods are based on
convex optimization [15], where primal-dual methods, including interior point
methods [61] and the active set method [12], are of particular interest.

Convex optimization problems can be efficiently solved [15, 61], using for
example algorithms with worst-case polynomial complexity [45]. State-of-the-
art algorithms often exploits code-generation, where solvers are customized to
a specific problem class. One such example is CVXGEN [42], which enables
real-time, i.e., solving time scales in microseconds or milliseconds with strict
deadlines, solving of modest-sized quadratic optimization problems [41].

The absolute requirements on memory and computation time for solving the
linear least square problem (18) by using any of the above methods, depends
on the dimension and structure of the K ×M matrix θNF, where K denotes
the number of considered operating modes of the system, and M the number of
bins in the above mentioned histogram. The most crucial parameter of these
two is K, which in this sense should be kept as low as possible. Implications of
the value of this quantity, in the context of residual evaluation performance, is
further discussed in Section 5.

It is worth noting that the complexity of the problem (18) does not depend
on the number N of residual samples in R. This is favorable since it is only
justified to consider the relaxed problem (18) instead of the MLE problem (15)
if N is sufficiently large, see Section 4.1.

5. Learning No-Fault Distribution Parameters

In previous sections, it was assumed that the distribution of the residual was
known, by means of the parameter θNF, for K operating modes of the no-fault
system. Given a set of residual samples, the problem was to determine if the
set of samples originated from the distribution (3) with θ fixed to θNF. In the
context of this section, however, the parameter θNF, as well as K, are considered
to be unknown and the task at hand is to learn, i.e., estimate, these using a
large set of residual samples, denoted training data.

It is important to stress that the learning is done in an off-line environment
with less restrictions on computational complexity, while the actual residual
evaluation, as considered in Section 4, typically, is performed online.

5.1. Problem Characterization
With the notion of Section 2, the distribution parameter θNF

i , i.e., the i-th
row of the K×M matrix which constitutes the parameter θNF, characterizes the
distribution of the no-fault residual when the considered system is in operating
mode i. Thus, the value of K determines the number of considered operating
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modes of the system and θNF the set of no-fault residual distributions associated
with these operating modes.

If the total number of operating modes of the system is known, this knowledge
can be exploited and K set accordingly. In general, however, K is unknown and
must be learned from the training data. The importance and meaning of the
value of K is discussed next.

A large K allows for a complete description of the set of no-fault residual
distributions as specified by θNF, which may be desirable. However, if K is
too large, the set of distributions may become too large in the sense that any
distribution in the form (3) can be characterized by θNF. This may reduce the
fault detection performance of the residual evaluation test developed in previous
sections, since almost any set of residual samples will be considered as generated
from a no-fault system, which means no alarm, even if there is a fault present.
In addition, a large K results in a θNF of large dimension, which affects the
computational issues addressed in Section 4.3. So in this sense, K should be kept
as low as possible. A too small K, on the other hand, may give an insufficient
description of the set of all no-fault distributions. This typically also leads to
decreased fault detection performance, either in the form of missed detections or
false alarms, depending on the strategy used when setting the alarm threshold.

In conclusion, the choice of K and θNF is a trade-off between fault detection
performance and computational effort. However, in order to take the fault
detection performance into account, training data from a set of representative
fault cases is needed. In the context of this work it is however assumed that
only no-fault training data is available due to a number of reasons. First of all,
the amount of available no-fault data is typically substantially larger than the
available amount of fault data, since faults are rare. To create fault data, one
alternative is to inject faults in the real system. This is however considered to be
expensive, both in terms of time and money, since it typically require hardware
modifications and active usage of the system. Another alternative is to create
fault data by simulation. To give realistic results, this on the other hand requires
models capable of describing the faulty system, which in turn require detailed
knowledge regarding the behavior of the faulty system and possibly also its
environment. This kind of information is seldom available for real applications.

Motivated by this discussion, fault detection performance will not be explicitly
considered in the learning of K and θNF. Instead, the learning problem will
be formulated as a trade-off between the ability of K and θNF to characterize
the set of all no-fault residual distributions, i.e., model fit, and computational
effort. The main motivation for this choice is that a good characterization of
the no-fault case will hopefully make it possible to detect deviations from the
no-fault case, meaning good fault detection performance. The resulting fault
detection performance is however empirically studied in Section 6.
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5.2. Problem Formulation
Consider a set D = (r1, r2, . . . , rND ) of ND residual samples ordered according

to time. The residual samples in D will now be split into residual sample sets

Rk =
{
r(k−1)n+1, r(k−1)n+2, . . . , rk−n

}
, (30)

containing n consecutive residual samples from D. To this end, let n < ND, and
define

T = (R1,R2, . . . ,RNT ) , (31)

where NT =
⌊
ND
n

⌋
, and Rk is given by (30) for k = 1, 2, . . . , NT . The collection

T of residual sample sets Rk, will henceforth be referred to as the training data.
In the following, it is assumed that each Rk ∈ T contains residual samples

from only one operating mode. In practice, this can be achieved by choosing n
such that the time it takes to collect a set of n residual samples is shorter than
the time the system spends in one operating mode, as well as longer than the
transition time between any two operating modes.

5.2.1. Formalization of Learning Problem
Let V (T , θ) denote a metric that quantifies model fit, i.e., how well the set

of distributions characterized by a given parameter θ is able to describe a data
set T in the form (31). A general approach for enabling a trade-off between
goodness of model fit and model complexity when identifying parameters in a
model is to combine the model fit metric, in the present case V (T , θ), with some
metric that reflects the model complexity [37, 54].

In the context of this work, required computational effort rather than model
complexity is of direct interest. As said in Section 4.2.1, the required compu-
tational effort for the residual evaluation algorithm presented in Section 4.2 is
strongly dependent on the dimension K×M of θNF, and in particular the value of
K. Since the larger the value of K, the higher the computational requirements,
a function C (K) that increases with K is suitable for quantification of the
computational effort. Typically, the actual choice of C (K) is implementation
dependent. In general, there are many options, see, e.g., [37, 54]. One alternative
is to exploit the information criteria due to Akaike [2].

Given V (T , θ) and C (K), the learning problem as stated in Section 5.1 can
be formulated as the problem(

K?, θNF) = arg max
K, θ∈Θ(K)

(V (θ, T )− C (K)) , (32)

where the notation Θ(K) for the space defined in (9) is introduced to stress the
dependency between the space and K. The topic of the remaining of this section
is to derive a suitable metric V (T , θ) for quantification of model fit.
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5.2.2. Quantification of Model Fit
To be able to exploit the developments in previous sections, a likelihood-based

framework is adopted for quantification of model fit, and an expression for the
(log)-likelihood ` (θ|T ) is sought.

To this end, consider (31) and let ckj denote the total number of residual
samples in Rk that takes value xj , c.f. (10). Similiar to (11), the log-likelihood
of θ and αk, k = 1, 2, . . . , NT , given T , can then be written as

` (θ, α1, α2, . . . , αNT |T ) = log p (T |θ, α1, α2, . . . , αNT )

=

NT∑
k=1

M∑
j=1

ckj log

[
K∑
i=1

αkiθij

]
.

(33)

The likelihood function ` (θ, α1, α2, . . . , αNT |T ) in (33) contains both the
parameter of interest θ, and the nuisance parameters αk, k = 1, 2, . . . , NT .
Thus, the nuisance parameters αk must be eliminated from (33). There are
mainly two standard approaches [8] for doing this. The first approach is to
fix a prior probability distribution for the nuisance parameters, compute the
posterior, and then integrate out the nuisance parameter from the posterior to
arrive at the posterior marginal distribution of the parameter of interest, see for
example [9]. The second approach is to replace the nuisance parameters in the
original likelihood function with their conditional maximum likelihood estimates.
The resulting function, which not indeed is a pure likelihood function anymore,
is referred to as a profile likelihood or maximized likelihood, see, e.g., [49, 44].

In the context of this section, the mixture weight αki specifies the probability
that the samples in Rk were collected when operating mode i was present.
As said Section 2.1, this probability, and all other probabilities related to the
nuisance parameters αk are assumed to be unknown, which complicates the
usage of the first approach mentioned above.

Motivated by this discussion, the second approach is adopted for elimination
of αk, k = 1, 2, . . . , NT , from (33). The resulting profile likelihood of θ, given T ,
takes the form

ˆ̀(θ|T ) = max
α1,α2,...,αNT ∈Υ

` (θ, α1, α2, . . . , αNT |T )

= max
α1,α2,...,αNT ∈Υ

NT∑
k=1

M∑
j=1

ckj log

[
K∑
i=1

αkiθij

]

=

NT∑
k=1

max
αk∈Υ

M∑
j=1

ckj log

[
K∑
i=1

αkiθij

] (34)

Under the assumption that each Rk ∈ T contains residual samples from only
one operating mode, it holds that each αk, k = 1, 2, . . . , NT , contains one and
only one non-zero element, equal to one. In this case,

max
αk∈Υ

M∑
j=1

ckj log

[
K∑
i=1

αkiθij

]
= max
i∈{1,2,...,K}

M∑
j=1

ckj log θij ,
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and thus the (profile) likelihood (34) of θ, given T , can be written as

ˆ̀(θ|T ) =

NT∑
k=1

max
i∈{1,2,...,K}

M∑
j=1

ckj log θij . (35)

Motivated by these developments, the metric

V (T , θ) = ˆ̀(θ|T ) =

NT∑
k=1

max
i∈{1,2,...,K}

M∑
j=1

ckj log θij , (36)

will be used to quantify how well the set of distributions characterized by a given
parameter θ is able to describe a data set T .

5.3. Learning Algorithm
Consider now the learning problem as formulated in (32). According to

Section 2.2 and the fact that it is required that K < M , the feasible set of K?

is bounded. Moreover, the quantity C (K) is not dependent on θ. Thus, given
that the problem maxθ∈Θ(K) V (T , θ) can be solved for a given K, the learning
problem (32) can be solved by an exhaustive search over the feasible set of K?.

The key step when searching for K? and θNF that solve (32), is therefore to
find, for a given K, a θ(K) that satisfies

θ(K) = arg max
θ∈Θ(K)

V (T , θ) . (37)

This is the topic of the remainder of this section.

5.3.1. Method Outline
The basic idea of the proposed approach for finding θ(K) is to first calculate

a distribution parameter θk ∈ Θ(1) for each Rk ∈ T by exploiting Theorem 1
and form the set

Ψ = (θ1, θ2, . . . , θNT ) , (38)

where

θk = arg max
θ∈Θ(1)

` (θ|Rk) , (39)

for k = 1, 2, . . . , NT . Then group the distribution parameters in Ψ into K
clusters P1,P2, . . . ,PK according to their similarity, and finally calculate the
distribution parameter θ?i , which constitute the i-th row of θ(K), from the
distribution parameters in cluster Pi.

For an illustration of the approach, consider the residual sample sets T =
(R1,R2, . . .R9) defined according to Figure 4(a). Note that the sets Rk in
Figure 4(a) have been generated in an ideal way for the purpose of illustration.
The set of corresponding distribution parameters Ψ = (θ1, θ2, . . . θ9) is illustrated
in Figure 4(b), and the sought clusters are P1 = {θ1, θ2, θ3}, P2 = {θ4, θ5, θ6}, and
P3 = {θ7, θ8, θ9}. The resulting distribution parameters θ?1 , θ?2 , and θ?3 , calculated
as the mean of the parameters in the clusters P1, P2, and P3, respectively, are
shown in Figure 5. Note the similarity between Figure 5 and Figure 2(b), where
the latter in fact shows the true distribution parameters.
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R1 R2 R3 R4 R5 R6 R7 R8 R9

(a) Residual sample sets in T

θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

(b) Distribution parameters in Ψ

Figure 4: Illustration of the proposed learning algorithm. Figure 4(a) shows the residual
sample sets in T and Figure 4(b) the corresponding distribution parameters in Ψ.
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Figure 5: The distribution parameters learned from the training data set shown in Figure 4(a).
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5.3.2. Algorithm
The general algorithm for finding a solution to (37) is given below. The input

to the algorithm is a set of residual samples D and constants n and K. The
output is a distribution parameter θ(K).

In the algorithm, D (p (r|θk) ‖p (r|θ?i )) denotes the Kullback-Leibler (KL)
divergence [34] between the probability distributions characterized by p (r|θk) and
p (r|θ?i ). The KL-divergence is one way to quantify the similarity of probability
distributions and is properly defined in Section 5.4.

Step 1: Let T be defined by (31).

Step 2: Let Ψ be defined by (38).

Step 3: Partition Ψ into P? = (P1,P2, . . . ,PK) such that

P? = arg min
P

K∑
i=1

∑
θk∈Pi

D (p (r|θk) ‖p (r|θ?i )) , (40)

where

θ?i =
1

|Pi|
∑
θk∈Pi

θk, i = 1, 2, . . . ,K. (41)

Step 4: Let

θ(K) =


θ?1
θ?2
...
θ?K

 =


θ?11 θ?12 · · · θ?1M
θ?21 θ?22 · · · θ?2M
...

...
...

...
θ?K1 θ?K2 · · · θ?KM

 . (42)

The most crucial part of the above algorithm is Step 3, in which a particular
partition of the set Ψ should be computed. This problem in fact corresponds to
a hard K-means clustering problem [11], for which efficient heuristic methods
exists [38]. Implementation issues are discussed in Section 5.5.

The justification of the algorithm, in terms of its ability to provide a solution
to the problem (37), is given in next section.

5.4. Justification of Learning Algorithm
This section contains technical developments necessary for proving that the

algorithm defined by Steps 1-4 in Section 5.3.2 indeed gives a solution to the
problem (37) as output. This is done in the following manner. First, a sufficient
condition for a solution to the problem (37) is given. The condition is given
in terms of properties of a partition of the set T , computed in Step 1 of the
algorithm. Next, the sufficient condition is transformed into a condition on a
partition of the set Ψ, defined in Step 2. Finally, it is verified that the partition
of Ψ computed by means of K-means clustering in Step 3 satisfies this condition.

A sufficient condition for a solution to the problem (37) is given below.
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Theorem 4. Let D be a set of ND iid residual samples, let n < ND, and let T
be defined by (31). For a given positive integer K, if T = (T1,T2, . . . ,TK) is a
partition of T such that for each block Ti ∈ T and for each element Rk ∈ Ti, it
holds that

` (θ?i |Rk) ≥ `
(
θ?p|Rk

)
, p = 1, 2, . . . ,K, (43)

where

θ?i = arg max
θ∈Θ(1)

∑
Rk∈Ti

` (θ|Rk) , i = 1, 2, . . . ,K, (44)

then

V
(
T , θ(K)

)
= max
θ∈Θ(K)

V (T , θ) , (45)

with V (T , θ) and θ(K) defined by (36) and (42), respectively.

Proof. From (11), and the fact that θ ∈ Θ(1) due to (44), which implies that
K = 1 and α1 = 1 in (11), it holds that

` (θ|Rk) =

M∑
j=1

ckj log θj , (46)

where ckj , j = 1, 2, . . . ,M , denotes the total number of samples in Rk that
takes value xj . Given is that T = (T1,T2, . . . ,TK) is a partition of T , such
that (43) is satisfied for each block Ti ∈ T and for each element Rk ∈ Ti, with
θ?i , i = 1, 2, . . . ,K, defined according to (44). From (43) and (46) it follows that
for each Ti ∈ T and for each Rk ∈ Ti, it holds that

M∑
j=1

ckj log θ?ij ≥
M∑
j=1

ckj log θ?pj , (47)

for p = 1, 2, . . . ,K. Due to (47) it holds that for each Ti ∈ T and for each
Rk ∈ Ti

max
p∈{1,2,...,K}

M∑
j=1

ckj log θ?pj =

M∑
j=1

ckj log θ?ij . (48)

Due to (48) and the fact that T = (T1,T2, . . . ,TK) is a partition of T =
(R1,R2, . . . ,RNT ), it holds that

V (T , θ?) =

NT∑
k=1

max
p∈{1,2,...,K}

M∑
j=1

ckj log θ?pj

=

K∑
i=1

∑
Rk∈Ti

max
p∈{1,2,...,K}

M∑
j=1

ckj log θ?pj

=

K∑
i=1

∑
Rk∈Ti

M∑
j=1

ckj log θ?ij

(49)
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By definition (44), it holds that θ?i ∈ Θ(1), i = 1, 2, . . . ,K, and therefore that
θ(K) ∈ Θ(K) with θ(K) defined by (45). To show that (45) is satisfied, it is suffi-
cient to show that V (T , θ?) is a maximum value. Since θ?i = (θ?i1, θ

?
i2, . . . , θ

?
iM )

only is present in the term ∑
Rk∈Ti

M∑
j=1

ckj log θ?ij , (50)

in (49), it follows that V (T , θ?) as given by (49) is a maximum if (50) is a
maximum, for each i = 1, 2, . . . ,M . It is now noted that, due to (46), (44) is
equivalent to

θ?i = arg max
θ∈Θ(1)

∑
Rk∈Ti

M∑
j=1

ckj log θj , i = 1, 2, . . . ,K,

which completes the proof.

The implication of Theorem 4, is that the solving of (37) can be reduced to
finding a partition T = (T1,T2, . . . ,TK) of the set T , defined according to (31),
that fulfills (43). Next result, establishes a relation between the sought partition
T of T and a partition P of the set Ψ computed in Step 2 of the algorithm.

To this end, KL-divergence needs to be properly defined. In general, for two
distributions of a discrete random variable R with range X that are characterized
by the pmf’s f1(r) and f2(r), the KL-divergence between f1(r) and f2(r) is
defined as

D (f1(r)‖f2(r)) =
∑
xk∈X

f1(xk) log
f1(xk)

f2(xk)
. (51)

It follows that D (f1(r)‖f2(r)) ≥ 0, with equality if and only if f1(r) ≡ f2(r).
A transformation of the sufficient condition in Theorem 4 on a partition T of

T to a partition P of the set Ψ is given by the following lemma. Proof of the
result can be found in [55, Paper C, Lemma 3].

Lemma 2. Let Pi ⊆ Ψ, let

Ti = {Rk ∈ T : θk ∈ Pi} (52)

and let all residual samples in all Rk ∈ Ti be iid. Then, for any θp, θq ∈ Θ(1)

and for each Rk ∈ Ti it holds that

` (θp|Rk) ≥ ` (θq|Rk) , (53)

if and only if for each θk ∈ Pi it holds that

D (p (r|θk) ||p (r|θq)) ≤ D (p (r|θk) ||p (r|θq)) . (54)

Moreover, it holds that

arg max
θ∈Θ(1)

∑
Rk∈Ti

` (θ|Rk) = arg min
θ∈Θ(1)

∑
θk∈Pi

D (p (r|θk) ||p (r|θ)) . (55)
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The problem of finding a partition T of T fulfilling the sufficient condition in
Theorem 4 can with aid of Lemma 2 be equivalently stated as the problem of
finding a partition P of Ψ fulfilling the condition (54). Next result verifies that a
partition of Ψ computed in Step 3 of the algorithm indeed satisfies (54). Proof
of the result can be found in [55, Paper C, Lemma 4].

Lemma 3. Let D be a set of ND residual samples fulfilling Assumption 1, let
n < ND, let T be defined by (31), let Ψ be defined by (38), and let K be a positive
integer. Further, let P? = (P1,P2, . . . ,PK) be a partition of Ψ such that (40)
holds and θ?i , i = 1, 2, . . . ,K, satisfies (41). Then, it holds that

θ?i = arg min
θ∈Θ(1)

∑
θk∈Pi

D (p (r|θk) ||p (r|θ)) , (56)

for i = 1, 2, . . . ,K. Moreover, for each block Pi ∈ P? and for each element
θk ∈ Pi it holds that

D (p (r|θk) ||p (r|θ?i )) ≤ D
(
p (r|θk) ||p

(
r|θ?j

))
, (57)

for j = 1, 2, . . . ,K.

With help of Theorem 4, Lemma 2, and Lemma 3, it can be proved that
the output from the algorithm in Section 5.3.2 indeed is a solution to the
problem (37).

Theorem 5. Let D be a set of ND iid residual samples, let n < ND, and let K
be a positive integer. Further, let D, n, and K, be input to the algorithm defined
by Steps 1-4 in Section 5.3.2 and let θ(K) be the output. Then, θ(K) is a solution
to (37).

5.5. Implementation Issues
As said in Section 5.3.2, the most crucial part of the learning algorithm is

Step 3, i.e., to find a partition P of Ψ by means of hard K-means clustering [11].
The complexity properties of the generalK-means clustering problem depends

on which similarity measure, in the present case the KL-divergence, that is used
in (40). For instance, the problem is NP-hard [5] when the (squared) Euclidean
distance is used, but can be solved in a polynomial time if a variance-based
measure is used [32].

There are however a variety of heuristic algorithms available for solving the
general clustering problem approximately. One widely used [10] and in practice
often successful alternative, is the local search based K-Means algorithm [39, 38],
which also is referred to as Lloyd’s algorithm. For the particular, and present,
case when the KL-divergence is used as similarity measure, an approximate
solution to the clustering problem can be computed with the K-means algorithm
in polynomial time [40]. For a general treatment of clustering problems with
similarity measures based on Bregman divergences, including the KL-divergence,
see [6].
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As a remark, it is noted that the assignment and update steps in the K-means
algorithm in fact [11] correspond to the Expectation and Maximization steps,
respectively, in the EM-algorithm [21]. Thus, when the K-means algorithm is
employed for solving the clustering problem in Step 3, the learning algorithm in
a sense resembles the EM-algorithm.

It is also noted that in a practical implementation of the learning algorithm,
the training data set T is preferably split into an estimation data set E and a
validation data set V , in order to avoid over-fitting, see, e.g., [37]. In this setting,
the estimation data set E is used when solving (37) to obtain θ(K), for a fixed K,
and then the validation data set V is used to evaluate if the obtained solution
θ(K) and K satisfies (32).

5.5.1. Parameter Choices
The only parameter involved in the learning problem (32) is n, the number of

residual samples used in each Rk when calculating the set T according to (31),
which is done in Step 1 of the algorithm.

The choice of n is determined by the properties of the considered system. As
said in Section 5.2, n should be chosen so that each Rk ∈ T contains residual
samples from only one operating mode of the system. In order to achieve this, n
should be chosen so that the time it takes to collect a set of n residual samples
is less than the average time that the system spends in one operating mode.

Before learning the parameter θNF, the quantization M of the residual, i.e.,
the size of the residual range space and thereby the resolution of the residual
distribution (1), must be determined and the training data in D formated ac-
cordingly. Choosing M , in fact, corresponds to the well-studied, but nevertheless
difficult, problem of choosing the number of bins in a regular histogram given
a sample of data. Numerous approaches for solving this problem exist, see for
example [20] and references therein.

Regardless of the method used to solve the problem, the choice of M is a
trade-off between accuracy and computational complexity, in terms of time and
storage. A larger M results in a more accurate discretization of the residual and
higher resolution of the probability distributions. On the other hand, a large
M requires more memory and involves more computations. The choice of M
is also related to the choice of n and N , since a small n, or N , together with a
large M will result in an inadequate estimation of the distribution, i.e., a sparse
histogram.

The resolution of the residual also affects the fault detection performance in
the sense that if the resolution is high, small deviations of the residual can be
perceived and thereby small faults can be detected. As a guideline, the resolution
of the residual can be matched to the size of the smallest fault that should be
possible to detect.

6. Application Example

The proposed residual evaluation approach has been applied to the problem of
fault detection in the gas-flow system of a Scania 6 cylinder, 13 liter, truck diesel
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engine equipped with Exhaust Gas Recirculation (EGR), Variable Geometry
Turbine (VGT), and intake throttle. The overall purpose of the study was to
evaluate and demonstrate the proposed on-line residual evaluation algorithm, as
well as the off-line algorithm for learning no-fault residual distributions, using
measurement data. In addition, it is also illustrated how the fault detection
performance of the residual evaluation test is influenced by different values of
the involved parameters, in particular the size N of the residual sample set R,
and the number K of no-fault distribution parameters in θNF.

6.1. Automotive Gas-Flow Diagnosis
The automotive gas-flow system, or rather the truck diesel engine itself,

is a complex system that operates in a variety of different operating modes
characterized by for instance ambient pressure and temperature, engine torque,
engine speed, etc. Fault diagnosis of the gas-flow system consists of detecting and
isolating faults in sensors that measure pressure, temperature, and mass-flow,
actuators that control the EGR, VGT and intake throttle, as well as faults
related to, e.g., manifold leakages and clogged air filters. The main incentives
for gas-flow diagnosis are fault management by means of fault tolerant control,
On-Board Diagnosis (OBD) regulations, and repair and maintenance.

The model of the gas-flow system, which is described in [58], relies on both
fundamental first principle physics and gray-box modeling. For diagnosis of the
gas-flow system, a set of model-based residual generators were designed with the
sequential residual generation method described in [56]. Naturally, the model
does not describe all aspects of the system, leading to that all residuals exhibit
properties similar to those illustrated in Figure 1.

The particular residual considered in this study is sensitive to 10 faults: 3
leakages, 6 sensor faults, and 1 actuator fault. The value of the residual is based
on a comparison of two modeled values of the temperature before the cylinders.

6.2. Learning of No-Fault Distribution Parameters
The data set used for the learning contains measurements from parts of a test

drive, including both city and high-way driving, from Södertälje to Arvidsjaur in
Sweden. The data set contains in total 156,912 measurements sampled at a rate
of 0.1 s, which corresponds to more than 4 hours of driving. The measurements
in the data set were used as input to the considered residual generator and the
residual samples used in the study were computed off-line. In order to minimize
the risk of over-fitting the no-fault distribution parameters to the training data,
the set of residual samples was divided into an estimation data set, E , and a
validation data set, V, of equal size.

6.2.1. Parameter Values
The value of the parameter M , i.e., the quantization of the residual samples,

was chosen to be M = 80. This makes it theoretically possible to detect faults
that cause deviations of the residual of about 3 kelvin. For this application,
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this is a good trade-off between complexity, in terms of required memory and
computational effort, and accuracy.

By a brief analysis of the residual samples, it seems that the minimum time
that the gas-flow system spends in one operating mode is approximately 4 s.
This can be seen in Figure 1, which in fact shows a subset of the residual samples
used in this study. Since the sample rate is 0.1 s, the parameter n, which specifies
the number of residual samples in each Rk in the set T calculated in Step 1 of
the algorithm, should be chosen to satisfy n < 40, see Section 5.5.1. Based on
this, the parameter was chosen to be n = 32.

6.2.2. Results
The algorithm for learning no-fault distribution parameters described in

Section 5.3.2, was implemented in Matlab. To solve the involved clustering
problem, the K-means algorithm [39, 38] was employed. The algorithm was run
with K ∈ {1, 2, . . . , 79}.

Figure 6 shows the model fit metric (36) evaluated for the estimation data set
E and validation data set V, and with the parameters θ(K), K ∈ {1, 2, . . . , 79},
obtained as output from the algorithm. In Figure 6 it can first of all be seen that
the quantitative behaviors of V

(
E , θ(K)

)
and V

(
V, θ(K)

)
are similar, but that

V
(
E , θ(K)

)
always is larger than V

(
V, θ(K)

)
. The latter seems natural since the

data set E indeed was used as input to the learning algorithm. Second, it can
also be noticed that the improvement in model fit as a function of K is larger
for smaller K.

Based on the above observations, and with respect to the trade-off between
model fit and required computational effort stated by (32), K = 10 was chosen.
The 10 no-fault distribution parameters, i.e., the rows of θ(10), are shown in
Figure 7. Note that the characteristics of the learned distribution parameters
are quite different, some are multi-modal and some have only one single mode.
In addition, the distribution parameters are overlapping.
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Figure 7: The no-fault distribution parameters contained in θNF = θ10.

6.3. Evaluation Setup
The set of residual samples used in the evaluation is based on the validation

data set V , which contains in total 78,456 residual samples. Note that this data
set is different than the estimation data set used to learn the no-fault distribution
parameters as described above.

6.3.1. Considered Fault
The fault considered in the evaluation is a fault in the boost pressure sensor.

The relation between the boost pressure sensor signal ypim and the considered
residual is dynamic, and the residual value r depends on the derivative of
the boost pressure sensor signal, as well as the actual sensor signal, i.e., r =
F (ypim , ẏpim , . . .), where F (·) is a non-linear function. The considered fault
scenario is a gain fault in the boost pressure sensor, that is, the sensor signal
ypim fed to the residual generator is ypim = δ · pim, where pim is the actual boost
pressure, and δ 6= 1 indicates a gain fault. Gain faults in the range δ ∈ [0.2, 1.8]
were implemented off-line by modification of the sensor signal.

6.3.2. Fault Detection Performance Metrics
The main metric considered in the evaluation is the power function, in this

context defined as

βλR(δ) = Pr (detection|δ) = Pr(λR (R) > J |δ), (58)

for the test λR (R) > J , defined in Section 4. Note that δ = 1 in the power
function (58) corresponds to that α ∈ Υ and θ = θNF in the power function (24).

To study another important aspect of the detection performance, the Mean
Time to Detection (MTD) will also be considered. Note that the choices of the
values of the parameters N and J , i.e., the size of the residual sample set R
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and the detection threshold, respectively, are a trade-off between the metrics
measured by the power function and the MTD, see Section 4.2.1.

In order to be able to say something about the relative performance of
the proposed residual evaluation approach, it will be compared to the often
in practice used norm-based residual evaluation approach built upon the test
statistic s(R) = 1

N

∑
rk∈R̄ r̄

2
k where R̄ = (r̄1, r̄2, . . . , r̄N ) is a low-passed filtered

version of the sample R. Note that the purpose of this comparison merely is to
give a feeling of the relative performance of the proposed residual evaluation
approach, and the comparison is not claimed to be exhaustive. The low-pass
filtering was in this study performed with a first-order Butterworth filter and
for comparison, four different cut-off frequencies, f1 = 0.005 Hz, f2 = 0.05 Hz,
f3 = 0.5 Hz, and f4 = 4.5 Hz, were used. The corresponding test statistics are
denoted s1, s2, s3, and s4. Recall that the residual is sampled at a rate of 0.1 s,
corresponding to a frequency of fs = 10 Hz.

6.3.3. Implementation Details
The residual evaluation algorithm described in Section 4.2, was implemented

in Matlab. To solve the optimization problem (18), a tailored solver was
generated using the software tool CVXGEN [42], see Section 4.3. With this
solver, the optimization problem (18) in the setting of this study, could be
solved in the time scale of 10−4 s. Solving the corresponding problem using
the Matlab optimization toolbox results in solving times of the magnitude of
10−3 s. Solving the original numerator MLE problem (15) using the Matlab
optimization toolbox however renders solving times of magnitude 10−1 s.

As said in Section 4, it is only justified, in terms of the probability of false
detection, to consider the relaxed problem (18) instead of the original MLE
problem (15) if the size N of the set of residual samples R is sufficiently large. To
investigate the meaning of sufficiently large in the context of this study, Figure 8
shows a comparison of the solutions to the respective problems, as well as a
comparison of the corresponding test statistics, for different values of N in the
no-fault case. Figure 8(a) shows a comparison of the solution αR to the relaxed
problem (18) and the solution αO to the original MLE problem (15), by means
of the quantity ‖φR − φO‖22, where φR =

∑K
i=1 α

R
i θ

NF
i and φO =

∑K
i=1 α

O
i θ

NF
i .

Figure 8(b) shows a comparison of the test statistics λR(R), based on the relaxed
problem and λ(R), based on the original MLE problem, by means of the quantity
λ(R)
λR(R) . The results shown in Figure 8 are the average of 150,000 runs. Based on
Figure 8, it was concluded that in the context of this study, N > 1000 is good
enough to justify the switch to the relaxed problem. Recall from Section 4.3
that the complexity of the relaxed problem, in terms of computational time and
memory, is independent of N .

The threshold J for the test λR(R) > J , as well as the thresholds for the
norm-based tests, was computed based on the estimation data set used in the
learning of the no-fault distribution parameters. All thresholds were computed in
order to give a probability of false detection of 5 %. All residual sample sets were
taken from the validation data set by using a sliding window, see Section 4.2.
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Figure 8: Investigation of how the relation between the solutions αR and αO to the relaxed (18)
and original (15) MLE problems, respectively, as well as the corresponding test quantities,
λR(R) and λ(R), changes with the size N of the residual sample R.

6.4. Evaluation Results
Figure 9 shows the residual and the test statistics λR(R) and s1(R), for size

N = 1024 of the set of residual samples R, in a test case when an abrupt fault
occurs at time t = 450 s. The fault is a 10 % gain fault in the boost pressure
sensor, which correspond to δ = 1.1. For the test statistic λR(R), the parameter
θNF = θ(10) illustrated in Figure 7 was used.

It can be noted that, as in Figure 1, the residual in Figure 9 is non-zero in
the no-fault case, i.e., for t < 450 s, and its distribution exhibit non-stationary
features in both the no-fault and fault cases. Further, it can also be seen that
the difference between the residual in the no-fault and fault cases are small,
but that there is a significant difference between the test statistic λR(R) in the
no-fault and fault cases. Since λR(R) is above the threshold in the fault case,
the present fault can be detected. The fault can however not be detected in a
reliable way with the test statistic s1(R), which in this case performed better
than each of the test statistics s2(R), s3(R), and s4(R).

6.4.1. Power as Function of N
To illustrate how the power of the test λR(R) > J varies with the number

N of residual samples in R, Figure 10 shows the power function for the test for
different values of N and parameter θNF = θ(10). Figure 10 clearly shows that
the power of the test increases with N .

In Figure 10, it can be seen that as small faults as δ ≈ 0.95 and δ ≈ 1.05,
corresponding to gain faults in the boost pressure sensor of about ± 5 %, may be
possible to detect if N is sufficiently large. To further illustrate this, Figure 11
shows the Receiver Operating Characteristic (ROC) curve for different values of
N , for a test case with δ = 1.05. The ROC curve shows the relation between
the True Positive Rate (TPR) of detection (y-axis), and the False Positive Rate
(FPR) of detection (x-axis), i.e., the relation between correct detections and
false detections, when the detection threshold J is varied. Figure 11 again shows
that the detection performance increases with N , but also that the rate of false
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when an abrupt fault occurs at t = 450 s. The fault is a 10 % gain fault in the boost pressure
sensor, which corresponds to δ = 1.1.
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R. The power increases with N .
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Figure 11: ROC for test λR(R) > J when δ = 1.05 for different sizes N of the sample R.

detections can be made lower than the rate of actual detections even for moderate
values of N .

6.4.2. Power as Function of K
To analyze how the power of the test λR(R) > J varies with different values

of the parameter θNF = θ(K), specifying the set of no-fault residual distributions,
or more specifically with K, i.e., the number of operating modes of the system,
Figure 12 shows the power function for the test for different values of K. All
considered parameters θ(K) were obtained by means of the algorithm described
in Section 5. To also see how the power of the test depends on the relation
between K and N , Figure 12 shows how the power function depends on K for
different values of N .

The general conclusion from the evaluation shown in Figure 12, is that for a
given 256 ≤ N ≤ 1024, the power of the test λR(R) > J is almost equal for all
considered K. For small N , e.g., N = 64, however, the power increases with K
and for large N , e.g., N = 4096, the power increases as K decreases. The liable
rationale behind this is that a small K results in a generic and averaged, in terms
of operating modes, description of the set of no-fault residual distributions. A
large set of residual samples typically means residual samples from a variety of
operating modes, while a small set of residual samples on the other hand means
residual samples from only a few operating modes. This means that a parameter
θNF corresponding to a small K, typically can describe the distribution of a large
set of no-fault residual samples, i.e., a large N , better than the distribution of a
small set of no-fault residual samples, i.e., a small N . An accurate description
of the no-fault residual distribution makes it possible to distinguish such from a
faulty residual distribution, which indeed means good detection power.
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Figure 12: Comparison of power functions for the test based on λR(R) for a set of no-fault
distribution parameters θ(K) with different values of K.

6.4.3. Comparison of Tests
Figure 13 shows a comparison of the power functions for the tests based on

the test statistics λR (R), s1 (R), s2 (R), s3 (R), and s4 (R), for different values
of the parameter N , which specifies the number of residual samples in R. For
the test statistic λR (R), the parameter θNF = θ(10) illustrated in Figure 7 was
used.

Figure 13 shows that the powers of all tests increases with N and that the
differences between the power of the tests seem to decrease with an increasing
N . It can also be seen that the power function for the test based on λR (R)
is near symmetric for all N , while the power functions for the other tests are
asymmetric and tend to be less powerful for faults sizes δ < 1. The difference in
power for δ < 1 is for example significant for N = 64.

The mean time to detection (MTD) for each of the tests based on λR (R),
s1 (R), s2 (R), s3 (R), and s4 (R), is shown in Figure 14, for different sizes N of
the sample R.

In order to get comparable results, the MTD was computed as the mean
of the detection time for the two largest faults, corresponding to δ = 0.2 and
δ = 1.8, since all considered test statistics are able to detect these faults to some
extent, see Figure 13. Each fault was injected in the test sequence at 10 time
instances.

In Figure 14, it can be seen that the MTD’s for all tests increase for N > 256.
For N < 256, however, the MTD decreases with N for the norm-based tests and
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Figure 13: Comparison of power functions for the tests based on λR(R) (solid with dot
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sizes N of the sample R.
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increases with N for the test based on λR(R). It is worth noting that the MTD
for the test based on λR(R) is smaller for all N than the MTD’s for all other
tests.

7. Conclusions

As illustrated by Figure 1, residuals in practice often deviate from zero
even in the no-fault case due to uncertainties and disturbances caused by for
example modeling errors, measurement noise, and unmodeled phenomena. In
addition, due to changes in the operating mode of the underlying system, the
magnitude of uncertainties and disturbances is time-varying, causing the behavior
of residuals to be non-stationary. To handle these issues, a novel statistical
residual evaluation approach has been proposed.

The main contribution is to base the residual evaluation on an explicit com-
parison of the probability distribution of the residual, estimated on-line using
current data, with a no-fault residual distribution. The no-fault distribution
is based on a set of a-priori known no-fault distributions, and is continuously
adapted to the current operating mode of the system by means of the likelihood
maximization problem (16). A computational efficient version of the residual
evaluation test statistic suitable for online implementation has been derived by
considering a properly chosen approximation (18) to the maximization prob-
lem (16). The fault detection properties of the resulting residual evaluation test
have been analyzed by means of Theorems 2 and 3.

As a second contribution, a method has been proposed for learning the
required set of no-fault residual distributions off-line from training data. Thus,
by using this method, the overall residual evaluation method is data-driven and
no assumptions regarding the properties of the probability distribution of the
residual, nor the properties of the faults to be detected, are needed. The method
was given by means of an algorithm based on K-means clustering, and was
theoretically justified in Theorem 5.

The proposed residual evaluation method has been evaluated with measure-
ment data on a residual for fault detection in the gas-flow system of a Scania truck
diesel engine. The proposed test statistic performs well despite non-conventional
properties of the considered residual. For instance, the method outperforms
regular norm-based methods using constant thresholding in the sense that small
faults can be detected in cases where these methods fail. It has been empirically
investigated how the fault detection performance of the proposed method is
influenced by different values of the involved parameters.
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