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Abstract. The use of polynomial expansion in image registration has
previously been shown to be beneficial due to fast convergence and high
accuracy. However, earlier work has only been for mono-modal image
registration. In this work, it is shown how polynomial expansion and
mutual information can be linked to achieve multi-modal image registra-
tion. The proposed method is evaluated using MRI data and shown to
have a satisfactory accuracy while not increasing the computation time
significantly.

1 Introduction

The use of image registration within the medical image domain is vast and
includes various tasks, such as; surgical planning, radiotherapy planning, image-
guided surgery, disease progression monitoring and image fusion. Especially
image fusion is becoming more and more important in several clinical work-
flows, since patients tend to have multiple examinations from different imaging
modalities that need to be registered before image fusion is possible. Intensity-
based similarity metrics, such as; sum-of-squared-difference or normalized cross-
correlation, are often inadequate for handling multi-modal image registration.
A frequently applied measure that can handle multi-modal registration is mu-
tual information. Since the introduction of mutual information in image reg-
istration by Collignon et al. [1] and by Viola and Wells [10], it has become a
well-established similarity metric for multi-modal image registration [8].

Polynomial expansion was introduced by Farnebäck [3] as a method to locally
approximate a signal with a polynomial. It was later shown by Farnebäck and
Westin [4] how polynomial expansion could be used to perform both linear (e.g.
translation and affine) and non-rigid image registration. The idea of image reg-
istration using polynomial expansion was further developed by Wang et al. [11].
Both Farnebäck and Westin [4] and Wang et al. [11] showed that image registra-
tion using polynomial expansions has some valuable qualities. Firstly, since it is
based on an analytical solution, the convergence rate is fast, typically only need-
ing a few iterations per scale. Secondly, also the accuracy of the registration has



been demonstrated to be on a similar or even better level than some of the algo-
rithms included in ITK. However, thus far, image registration using polynomial
expansion has only been applicable for mono-modal image registration.

The contribution of this paper, is to present how mutual information can
be integrated into polynomial expansion in order to achieve multi-modal image
registration, thus, making image registration based on polynomial expansion
feasible for not only mono-modal registration but also for multi-modal image
registration.

2 Background

2.1 Polynomial Expansion

The basic idea of polynomial expansion is to locally approximate each signal
value with a polynomial. In case of a linear polynomial, this approximation can
be expressed as f(x) ∼ bTx + c, where the coefficients are determined by a
weighted least squares fit to the local signal. The weighting depends on two
factors, certainty and applicability. These terms are the same as in normalized
convolution [3, 6], which forms the basis for polynomial expansion.

2.2 Image Registration Using Polynomial Expansion

Global Translation Let both the fixed and the moving images be locally
approximated with a linear polynomial expansion and assume that the moving
image is a globally translated version of the fixed image, thus,

If(x) = bT
f x + cf , (1)

Im(x) = bT
mx + cm = If(x− d) = bT

f (x− d) + cf , (2)

which gives cm = cf − bT
f d and hence, the translation d can be is estimated as

d = (bfbT
f )−1bf (cf − cm). (3)

In practice, a point-wise polynomial expansion is estimated, i.e. bf (x), cf (x),
bm(x), and cm(x). Since it cannot be expected that bf (x) = bm(x) holds, they
are replaced with the average

b(x) =
bf (x) + bm(x)

2
. (4)

Also, set
∆c(x) = cf (x)− cm(x) (5)

and thus, the primary constraint is given by:

b(x)Td = ∆c(x) (6)

To solve (6), compute d by minimizing the squared error in the constraint over
the whole image,

ε2 =
∑
x

‖b(x)d−∆c(x)‖2. (7)



Affine Registration If a space-variant displacement is assumed, then the pre-
vious solution can be extended to handle affine registration. Let d(x) = S(x)p,
where

S(x) =

(
x y 0 0 1 0

0 0 x y 0 1

)
, (8)

p =
(
a1 a2 a3 a4 a5 a6

)T
. (9)

To estimate the parameters of the affine displacement field, replace d with
d(x) = S(x)p in (7),

ε2 =
∑
x

‖b(x)TS(x)p−∆c(x)‖2 (10)

and the parameters p are given by the least squares solution of (10).

Non-Rigid Registration A non-rigid registration algorithm can be achieved
if the assumption about a global translation is relaxed and we instead sum over
a neighborhood around each pixel in (7), thereby obtaining an estimate for each
pixel. In this case, a local translation is assumed but it could easily be changed
to a local affine transformation as is done by Wang et al. [11]. More precisely
(7) is changed to

ε2(x) =
∑
y

w(y)
(
‖b(x− y)Td(x)−∆c(x− y)‖2

)
, (11)

where w weights the points in the neighborhood around each pixel. This weight
can be any low-pass function, but here it is assumed to be Gaussian. This equa-
tion can be interpreted as a convolution of the point-wise contributions to the
squared error in (7) with the low-pass filter w. The solution is given as

G(x) = b(x)b(x)T , (12)

h(x) = b(x)∆c(x), (13)

Gavg(x) = (G ∗ w)(x), (14)

havg(x) = (h ∗ w)(x), (15)

d(x) = Gavg(x)−1havg(x). (16)

Note that in this work only a linear polynomial expansion have been used, but
as shown in [4, 11] a quadratic polynomial expansion along with similar deriva-
tions can also be used for image registration. In fact, it is possible to combine
both in order to obtain a more robust solution. Further, the described method
for non-rigid registration can be extended to handle diffeomorphic deformations
by using diffeomorphic field accumulation as described by Forsberg et al. [5].



2.3 Mutual Information

Mutual information is typically based on the Shannon Entropy and defined as

H =
∑
i

pi log
1

pi
= −

∑
i

pi log pi, (17)

where pi is the probability that event ei occurs. Based on the Shannon entropy
we can define the mutual information of the random variables A and B as

MI(A,B) = H(A) +H(B)−H(A,B), (18)

where H(A,B) is the joint entropy of A and B. The Shannon entropy for the
joint distribution is given by

−
∑
i,j

pi,j log pi,j . (19)

3 Polynomial Expansion and Mutual Information

3.1 Algorithm Overview

The basic idea of combining polynomial expansion and mutual information lies
in replacing ∆c(x) in (5). The term ∆c(x) can be interpreted as how much If (x)
should change in order to match Im (x) based on intensity-difference. Instead,
estimate ∆c(x) as how much If (x) should change in order to match Im (x)
but based on a pixel-wise minimization of the conditional entropy, i.e. a pixel-
wise maximization of the mutual information. This is estimated according to the
following scheme:

– Estimate the joint distribution p (If , Im) given If and Im.

– For each x:

• Retrieve the corresponding pixel values if = If (x) and im = Im (x + d).

• Estimate the conditional distribution p (If |Im = im).

• Estimate how the conditional entropy H (If |Im = im) is affected by if .

• Find i? for which the conditional entropy has a local minima and estimate
∆c(x) as if − i?.

Knowing that mutual information can also be defined as

MI(A,B) = H(A)−H(A|B), (20)

ensures that the last step is reasonable for finding a ∆c(x) that matches If
and Im based on mutual information, since minimizing H(If |Im) will maximize
MI(If , Im) in a point-wise manner.



3.2 Channel Coding and Probability Distribution Estimation

A well-known issue with mutual information is how to estimate the needed prob-
ability distributions, since the straightforward solution of using a standard his-
togram is insufficient. A common approach is to use some sort of soft histograms
where the intensity of each pixel is distributed fractionally over multiple bins.
This will give a more stable and often close to continuous result. In this work,
channel coding and B-splines have been used to achieve this, which in practice
is similar to kernel density estimation introduced by Rosenblatt and Parzen to
estimate probability density functions [7, 9].

The basic concept of channel coding consists of representing a value x by
passing it through a set of localized basis functions {B (x− k)}K1 . The output
signal from each basis function is called a channel, thus, the channel representa-
tion of x is given by a vector of a set of channel values

ϕ(x) = [B (x− 1) B (x− 2) . . . B (x−K)]
T
. (21)

A suitable basis function is the quadratic B-spline function, defined as the unit
rectangle convolved with itself two times. A B-spline of degree two, B2(x), is
chosen because it is continuously differentiable and has compact support.

The probability distribution of an image, using K channels, is, thus, esti-
mated as:

1. Map each intensity value I(x) to [1,K − 1], Ĩ(x).
2. Compute the channel representation of each mapped value ϕ(Ĩ (x)).
3. Compute the bins hk of the soft histogram as the element-wise sum of the

channel representations.
4. Estimate a probability distribution pk by normalizing the soft histogram.

The fractional bins of the joint histogram can then be estimated as the sum
of the element-wise products of the channel representations over the respective
images

hk,l =
∑
x

ϕk

(
Ĩf (x)

)
ϕl

(
Ĩm (x + d)

)
, (22)

which is then normalized to obtain the joint probability distribution, pk,l.

3.3 Conditional Entropy

To estimate ∆c(x) for the corresponding pixel values if = If (x) and im =
Im (x + d(x)), we start by estimating the conditional probability distribution
pk (If |Im = im) as

pk (If |Im = im) =
hk (If |Im = im)∑K
k=1 hk (If |Im = im)

(23)

where

hk (If |Im = im) =

L∑
l=1

ϕl

(̃
im
)
pk,l (If , Im) for k = 1 . . .K, (24)



and where ĩm is the mapped im value. Here ϕl

(̃
im
)
pk,l (If , Im) acts as a sub-

channel interpolation term.
Given the conditional probability distribution pk (If |Im = im), the condi-

tional entropy is estimated as

H (If |Im = im) = −
∑
k

pk (If |Im = im) log pk (If |Im = im). (25)

However, in our case we are interested in understanding how if affects the con-
ditional entropy. This can be investigated by an infinite small addition of the
intensity value if to create a new distribution

pk (if ) =
pk (If |Im = im) + ε× ϕk

(̃
if
)

1 + ε
, (26)

where ε is small. Thus, the modified entropy is given by

H (if ) = −
∑
k

pk (if ) log pk (if ) =
1

1 + ε

(
H (If |Im = im)−

ε
∑
k

ϕk

(̃
if
) (

1 + log pk (If |Im = im)
))

+ O
(
ε2
)
. (27)

Differentiating (27) with respect to if and omitting O
(
ε2
)

gives

∂H (if )

∂if
=

ε

1 + ε

(∑
k

ϕk

(̃
if
) (

1 + log pk (If |Im = im)
))

. (28)

Using the expressions in (27) and in (28), it is straightforward to find a i?,
which minimizes H (i?). This in turn, can be viewed as a pixel-wise minimization
of the conditional entropy. The found i? is used to estimate ∆c(x) as

∆c(x) = if − i?. (29)

The term ∆c(x) can, as previously explained, be interpreted as how much if
should change in order to match im in a mutual information sense, instead of
in a intensity-difference sense. The estimated ∆c(x) can now be used for image
registration as previously described in Sect. 2.2, but with the difference that
b(x) = bf (x) instead of as defined in (4).

4 Results

The proposed method was evaluated using both affine and non-rigid image reg-
istration as described in Sect. 2.2 and 2.2. For the non-rigid registration, diffeo-
morphic field accumulation was used for achieving diffeomorphic deformations.
For some of the performed experiments, the proposed method was compared
with its mono-modal counterpart on mono-modal data. The image data used in
the experiments were obtained from BrainWeb [2].



In the first experiment, the proposed multi-modal method was compared with
the previously presented mono-modal method using a linear polynomial expan-
sion [4]. A single T1-weighted brain image was used as moving image. From the
moving image, 20 fixed images were created using known affine transforms. The
affine transforms were obtained according the following schema: the scaling fac-
tors within [0.80, 1.30], the rotation factor within [-π/4, π/4], and the translation
factors within [-15, 15]. The moving image was then registered to each of the 20
fixed images using affine registration. The obtained affine transforms where then
compared with the known transforms, yielding the results in Table 1, comparing
the average error for each parameter type. The experiment was run twice, one
time where noise was added (Gaussian noise with σ = 200) and one time with-
out any added noise. Timing the experiment showed that the computation time
increased with a mere 40% for adding the computational steps for multi-modal
image registration, i.e. from approximately 1.0 seconds to 1.4 seconds.

Table 1. Results (average error and its standard deviation) for comparing accuracy
per parameter type (scale, rotation and translation) of affine mono-modal registration
with the proposed multi-modal registration on mono-modal data.

Transformation factor Scale Rotation Translation

Mono-modal (noise added) 1.0e-5 ± 1.1e-3 -5.8e-4 ± 2.4e-3 2.0e-4 ± 3.2e-2

Mono-modal -4.1e-6 ± 4.9e-5 1.8e-5 ± 1.4e-4 6.9e-4 ± 3.2e-3

Multi-modal (noise added) 7.4e-4 ± 1.7e-3 -1.0e-3 ± 4.1e-3 1.6e-4 ± 5.3e-2

Multi-modal -2.9e-5 ± 1.3e-4 -2.1e-6 ± 5.7e-5 6.3e-4 ± 3.3e-3

In the second experiment, the proposed multi-modal method was evaluated
in the same manner as in the first experiment but on multi-modal data, i.e. on a
T1-weighted image and a T2-weighted image, where the T2-weighted image was
transformed according to a set of known affine transforms (in this experiment the
rotation factor was limited to [-π/6, π/6]), and without running the mono-modal
registration algorithm. The experiment was also executed twice, one time where
noise was added and one time without any added noise (Gaussian noise with
σ = 200). The results for this experiment are given in Table 2. Example images
from the second experiment are depicted in Fig. 1. In both the experiments
for affine registration, the number of scales and iterations per scale were kept
constant, five scales and ten iterations per scale.

To evaluate the accuracy for non-rigid registration, a similar setup was used
as for affine registration. A single image was deformed using 20 known displace-
ment fields (randomly created and with an average displacement of 5 pixels and
maximum displacement of 15 pixels). The original image was then registered
to the deformed images and the obtained displacements fields were compared
with the known displacement fields using the target registration error (TRE).
As before, the experiment was first run on mono-modal data to compare the



Table 2. Results (average error and its standard deviation) for comparing accuracy
per parameter type (scale, rotation and translation) of affine multi-modal registration
on multi-modal 2D data.

Transformation factor Scale Rotation Translation

With added noise -4.1e-3 ± 6.8e-3 -5.5e-4 ± 4.3e-3 1.3e-2 ± 4.9e-2

Without added noise -9.82e-4 ± 2.0e-4 -2.8e-4 ± 4.9e-4 -8.7e-3 ± 9.0e-3

Fig. 1. An example of affine multi-modal registration from the second experiment,
showing from left the moving image (T2-weighted), the fixed image (T1-weighted),
the absolute difference image between fixed and moving, and fixed and deformed for
T2-weighted images.

accuracy of multi-modal registration with mono-modal registration (with and
without added noise) and then it was run on multi-modal data (also with and
without added noise). Also here Gaussian noise with σ = 200 was used. The
results for this experiment are given in Table 3 and some example images are
shown in Fig. 2. Also in this experiment, the number of scales and iterations
per scale were kept constant, four scales and ten iterations per scale. Timing
the experiment further showed that for non-rigid registration the computation
time increased with only 30% for adding the computational steps for multi-
modal image registration, i.e. from approximately 3.0 seconds to 3.8 seconds per
registration.

Table 3. Target registration error (TRE) of 20 non-rigid 2D registrations (mean),
comparing accuracy of multi-modal registration on mono-modal and multi-modal data
with mono-modal registration on mono-modal data, with and without added noise.
TRE is given in pixels.

Registration Mono Multi Multi

Data Mono Mono Multi

With added noise 0.59 0.68 1.16

Without added noise 0.35 0.42 0.91



Fig. 2. An example of non-rigid multi-modal registration on multi-modal data, showing
from left the moving image (T1-weighted), the fixed image (T2-weighted), the absolute
difference image between fixed and moving, and fixed and deformed for T1-weighted
images.

5 Discussion

In this work, we have presented how polynomial expansion can be utilized for
multi-modal image registration (both linear and non-rigid). This is achieved by
incorporating a pixel-wise minimization of the conditional entropy, in order to
estimate a pixel-wise intensity change that maximizes the mutual information.

The results in Tables 1 and 2 demonstrate the accuracy of the proposed
method for multi-modal image registration but also when compared to its mono-
modal counterpart in mono-modal image registration. In the case of affine reg-
istration of mono-modal image data, both algorithms achieves a descent reg-
istration accuracy. The accuracy of the registration decreases with a factor of
approximately ten when adding Gaussian noise to the images but is still suffi-
cient. For affine registration of multi-modal data, the accuracy is on a similar
level as for registration of mono-modal data, hence sufficient for achieving a
good registration. One thing that differed between the multi-modal registration
of mono-modal data and multi-modal data was that the capture range for rota-
tions decreased from [-π/4, π/4] to [-π/6, π/6] when running the registration on
multi-modal data.

In the case of non-rigid registration, see Table 3, the accuracy of mono-modal
registration and multi-modal registration of mono-modal data is also on similar
levels and achieving sub-pixel accuracy. For non-rigid registration of multi-modal
data the accuracy decreased by a factor of two and reached an average TRE of
approximately one pixel.

A difference that could be noted between the mono-modal registration and
the multi-modal registration was that the multi-modal was more iterative in its
nature, i.e. the mono-modal algorithm converged within a few iterations, whereas
the multi-modal often required at least twice as many iterations. Hence, the large
number of iterations per scale used in the experiments.

Future work includes a more thorough investigation of how the number of
channels affect the end result of the registration. In our experiments we only



empirically decided how to set the number of channels, typically eight channels
for coarse scales and step-wise increasing up to 24 or 32 for the finest scales.
For instance, a better use of the number of channels might decrease the TRE
further for non-rigid registration and making sub-pixel accuracy also possible for
multi-modal registration. Further evaluation and implementation in 3D will also
be of interest to better compare with other existing algorithms for multi-modal
image registration and on various types of multi-modal data.
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