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Piggybacking an Additional Lonely Bit on Linearly

Coded Payload Data
Erik G. Larsson and Reza Moosavi

Abstract—We provide a coding scheme, by which an additional
lonely bit can be piggybacked on a payload data packet encoded
with a linear channel code, at no essential extra cost in power or
bandwidth. The underlying principle is to use the additional bit to
select which of two linear codes that should be used for encoding
the payload packet, this way effectively creating a nonlinear code.
We give a fast algorithm for detecting the additional bit, without
decoding the data packet. Applications include control signaling,
for example, transmission of ACK/NACK bits.

I. INTRODUCTION

In many applications, coded blocks of payload data are mul-

tiplexed with an occasional additional “lonely” bit. An exam-

ple of this situation is the transmission of HARQ ACK/NACK

bits in wireless systems such as LTE [1]. Typically, this extra

bit, called the “additional lonely bit” (ALB) herein, is not

jointly encoded with the payload data because it is desirable

to detect the ALB separately, without decoding the whole

payload block. This in turn is useful if one wants to know

the value of the ALB without waiting for the channel decoder

to finish. In some cases, the contents of the payload data may

not even be of interest to the receiver.

The simplest way of conveying the ALB is to encode it

with a repetition code and transmit it on resources that are

orthogonal to those used by the payload data. If N is the

number of real-valued (one-dimensional) channel uses nomi-

nally allocated for the transmission of the payload data and

K is the number of times the ALB is repeated, then repetition

coding of the ALB requires the payload data to be squeezed

into N −K channel uses as compared to the situation where

an ALB is not sent. As shown in the appendix, maintaining

the same nominal spectral efficiency β (bits/real dimension)

for the payload then requires an increase in transmit power of

about 6.0 · β
1−2−2β · K

N dB. This cost can be substantial. If,

for example, N = 200, β = 0.5 and K = 5, then the power

increase is in the order of 0.15 dB. By contrast, if the ALB

were jointly coded with the payload data, the extra power cost

would be negligible. But this requires a code that separates the

original payload packet from the ALB, so that the ALB can

be detected without decoding the payload data.

A. Contribution and related work

We provide a coding scheme (Sec. II) and an associated fast

decoder (Sec. III), by which an ALB can be piggybacked on
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a payload data packet encoded with a linear channel code, at

no essential cost in power or bandwidth, and detected with

very high reliability at the receiver without decoding the data

packet. The underlying idea is to use the ALB to select which

of two given linear codes that should be used for encoding the

payload packet, this way effectively creating a nonlinear code.

Fundamentally, the distinction of our scheme is that basing the

nonlinear construction on two linear codes enables us to use

an efficient detector. In practice, a simple (but not the only)

way to choose the two linear codes that works in many cases

is to let the second code be a permuted version of the first.

The proposed scheme is primarily useful for relatively small

N , say in the order of one hundred. While the complexity of

the proposed detector for the ALB is not high, the detection

does not come entirely for free. If the ALB is a very important

bit, such as an ACK/NACK bit in an HARQ scheme, then this

complexity should be justifiable.

Overall this work is motivated by the cost of physical-layer

control signaling in mobile broadband systems. This cost can

be substantial [2]–[4], but appears to often be overlooked in

the literature. We are not aware of any work that has studied

the problem of conveying an ALB together with linearly

coded payload data specifically. However, the proposed coding

scheme is related to the secondary synchronization signaling

(SSS) procedure used in 4G/LTE [1, p. 301]. SSS signals

are constructed from m-sequences which are permuted in two

different ways, depending on in which subframe they are sent.

The SSS sequences carry payload data consisting of the cell

identity group number and this information is encoded by

choosing a specific m-sequence. They also carry an ALB (in

our terminology) via the two possible ways the permutation is

performed; this bit of information tells the receiver about one

of two possible subframe locations.

The similarity between SSS in LTE and our proposed

scheme is somewhat superficial, because the set of SSS

sequences do not span a linear code (since m-sequences do

not include the all-zero codeword). While the SSS procedure

uses an ALB to switch between two nonlinear codes, we use it

to switch between two linear codes that could be any standard

channel codes. Our fast detector (see Sec. III) is designed to

detect whether an observed signal was encoded with a given

linear code or not. Since the SSS signals are not based on a

linear code our detector cannot be used to detect them, and

in fact as SSS signals are selected from a small set, a much

simpler detector would suffice.

II. PROPOSED CODING SCHEME FOR CONVEYING AN ALB

Here we describe the coding scheme used to convey the

ALB. The associated fast detector is given in Sec. III. For
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simplicity of the discussion we assume BPSK modulation per

real dimension so that the number of channel uses N equals

the number of coded bits. The extension to general modulation

offers no fundamental difficulties but requires more notation.

The underlying principle of the scheme is to augment

the original payload data codebook with another “sufficiently

different” codebook (to be made precise in the next paragraph)

and use the ALB to select which code that should be used.

More precisely, let M be the payload message and let b be

the ALB. Let C0 and C1 be two different channel codes. The

transmitter now operates by encoding M with C0 if b = 0,
and conversely, encoding M with C1 if b = 1. If the original

codebook has 2Nβ codewords, the new codebook created this

way has 2×2Nβ = 2Nβ+1 codewords. Provided that C0 and C1
are appropriately chosen, the structure of the codebook C0∪C1
facilitates detection of the ALB without decoding the payload

bits, and does not complicate the decoding of the payload data.

Ideally, C0 and C1 would just be two randomly chosen

good codebooks of length N and with 2Nβ codewords. In

practice, C0 and C1 could be two random instances of an

LDPC code with a given degree distribution. Alternatively, as

a simple and well-performing alternative, they can be obtained

by permuting (interleaving) the bits of a standard channel

code (convolutional, turbo, LDPC) in two different ways.

For example, one can take C0 to be a randomly generated

LDPC code and C1 to be the same code but with the bits

rearranged so that if {c1, ..., cN} are the codewords of C0
then the codewords of C1 are given by {ci1 , ..., ciN }, where
{i1, ..., iN} is a randomly chosen permutation. For implemen-

tation reasons, a structured permutation {i1, ..., iN} may be

desirable; for example, for non-cyclic codes one could perform

“half-swapping” by setting {i1, ..., iN/2} = {N/2 + 1, ..., N}
and {iN/2+1, ..., iN} = {1, ..., N/2}. (Let N be even here

for simplicity.) Judging from our numerical experiments, the

specific way the permutation is performed does not appear to

be important.

In general, there is a tradeoff in that the longer codes are

used (larger N ), the more reliable the detection of the ALB

will be. This is so because the minimum distance between the

codebooks C0 and C1 increases with N , for fixed β. On the

other hand, the largerN , the relatively smaller is the advantage

of transmitting the ALB jointly with the payload. We stress

that the construction proposed here does not require C0 or C1
to be linear, but the detector (Sec. III) does.

III. FAST ALGORITHM FOR DETECTION OF THE ALB

The detection of b amounts to determining which code,

C0 or C1, was used to encode M. More specifically, we are

interested in the posterior probability that given the received

data, denoted R here, the code Cb was used for the encoding.

We conclude that code Cb was used for encoding the data if

all syndrome checks associated with Cb are satisfied. Hence,

given R, and given a hypothetical code Cb (corresponding to

a hypothetical value of b) we want to evaluate the probability

that all syndrome checks of Cb are satisfied. This probability

is given by

P (b|R) , P (all syndrome checks for Cb satisfied|R)

=P

(

⋃

k

⊕
l
cpbkl

= 0
∣

∣

∣R

)

≈
∏

k

P

(

⊕
l
cpbkl

= 0
∣

∣

∣R

)

(1)

where ci is the ith coded bit, and pbkl is the index of the lth
nonzero element of the kth row of the parity check matrix

associated with the code Cb.
1 In (1), we assumed in the last

step that the syndrome checks are independent in the sense that

the two events ⊕
l
cpbkl

= 0 and ⊕
l
cpbk′l

= 0 are independent

for k 6= k′, given R. This independence assumption should be

justifiable for large N , but it is not crucial for the detector to

work in practice.

Let

ℓi = log

(

P (ci = 0|R)

P (ci = 1|R)

)

for i = 1, ..., N be the log-likelihood ratios (LLRs) of the bits

ci obtained at the output of the channel demodulator. Then

the LLR associated with the probability that the kth syndrome

check of the code Cb is satisfied, is

γb
k , log









P

(

⊕
l
cpbkl

= 0
∣

∣

∣R

)

1− P

(

⊕
l
cpbkl

= 0
∣

∣

∣R

)









= ⊞
k
ℓpbkl

(2)

where ⊞ is the standard “Boxplus” operator [5].2 Using (2) in

(1) and taking the logarithm yields

log(P (b|R)) =
∑

k

log

(

eγ
b
k

1 + eγ
b
k

)

= −
∑

k

log(1 + e−γb
k)

(3)

To determine which code, C0 or C1 that was used by the

transmitter (and hence the value of b), we form the test

log

(

P (b = 0|R)

P (b = 1|R)

)

=
∑

k

log(1 + e−γ1

k)

−
∑

k

log(1 + e−γ0

k)
b=0

≷
b=1

0.

(4)

The left hand side of (4) may be used as a soft decision on

b. Also, the threshold value “0” on the right hand side of (4)

could be taken to be different from zero, should a biased test

(i.e., a test that is more likely to produce a “1 → 0 error” than

a “0 → 1 error”, or vice versa) be desired for some reason.

To our knowledge the concept of an “all syndromes satis-

fied” posterior probability as defined by the syndrome pos-

terior probability (1), and the associated independence ap-

proximation leading to (4), is an original contribution. A pre-

liminary version of the soft all-syndromes-satisfied posterior

1
⊕ denotes addition over GF(2), i.e. XOR.

2More precisely,

n

⊞
i=1

ℓi , log









1 +
n
∏

i=1

tanh(ℓi/2)

1−

n
∏

i=1

tanh(ℓi/2)









.
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probability concept appeared in [6], in the context of blindly

identifying channel codes for adaptive modulation and coding.

The test in [6] was based on a heuristic argument and led to

a different test that underperforms the test properly derived

in Eq. (4) here. There is also some relation to methods for

estimation of parameters of convolutional codes [7], but it does

not appear that the parameter estimates derived therein could

be usefully exploited for the detection task at hand.

Double-decoder benchmark scheme for detecting b:

An alternative scheme for detecting the ALB is to run the

decoders of both C0 and C1. If the decoder of C0 converges to

a valid codeword but that of C1 does not then take the ALB to

be 0, and vice versa. If none, or both of the decoders converge,

use the above fast ALB detection algorithm. This double

decoder scheme requires decoding of the payload data to

determine b (avoiding this was the main objective of proposing

the above fast detection algorithm) and its computational

complexity is twice that of the original system without an

ALB. However, this scheme has better error performance than

the fast algorithm above (see Sec. VI) and hence it serves as

a useful benchmark.

IV. DECODING THE PAYLOAD DATA

If b were known, we would decodeM as in the conventional

system without the ALB. By contrast, if b is completely

unknown, we could run both the decoder for C0 and that for

C1, and pick the output of the decoder that returns a valid

codeword. This would work because it is very unlikely that

both the C0 and C1 decoders will return a valid codeword. A

standard CRC check could always be used to guarantee that

an invalid codeword is practically never returned.

In our case, a good estimate of b, say b̂, is available by the

algorithm provided above. To decode the payload data, we

first try decoding M with the decoder for Cb̂. If this decoder
returns a valid codeword, we take its output as the final result,

otherwise, we try with the other decoder.

V. COMPLEXITY ANALYSIS

a) Encoder: Two encoders must be implemented in

the transmitter. However, the computational complexity of

performing the encoding is unchanged as compared to trans-

mission without an ALB. If C1 is chosen as a permuted version

of C0, then no extra encoder but one extra interleaver must be

implemented.

b) ALB Detection with the Fast Algorithm: The total

number of terms in (4) is equal to the sum of the number

of parity checks for each codeword. For an M × N LDPC

code, this is equal to the number of parity check nodes

M = N(1− r), where r is the code rate. Computing these M
terms requires

∑M
m=1(dm − 1) boxplus operations, where dm

is the degree of the mth check node.

For an (n, k) convolutional code, the syndrome checks

can be obtained from the syndrome former of the code. A

syndrome former is an n×(n−k) matrix consisting of polyno-

mials with possibly different degrees [8, p. 91]. The maximum

polynomial degree, denoted byms, is called the memory of the

syndrome former and determines how any length-n bit string

obtained at the output of the encoder shift registers at time

instance i, is related to the previous ms such strings. Each

column of the syndrome former imposes one syndrome check

for each string. This means that for a block consisting of N
coded bits, there are in total N(n − k)/n syndrome checks

that need to be satisfied. Note that these syndrome checks are

not independent in general, due to the memory of the code.

However, by skipping every other ms length n-string, we can

obtain approximately
N(n−k)
nms

independent syndrome checks.

Computing each syndrome check requires at most nms − 1
boxplus operations.

The terms of the form log(1 + e−x) in (4) are numerically

very well-behaved and can be easily implemented via a table-

lookup for x ≥ 0. If x < 0, we can write log(1 + e−x) =
−x+ log(1 + ex) and then use the same table-lookup for the

last term, where now x ≤ 0. Very low precision fixed point

arithmetic can be used to represent x. On a final note, the

decoding delay for the ALB with the proposed scheme will

be N , whereas with repetition coding it is only K .

c) Payload Decoding: The computational complexity

of payload decoding is essentially equal to the decoding

complexity of the original system without an ALB. This is

so because we normally only need to run one of the two

decoders corresponding to C0 or C1, depending on the value of

b delivered by the ALB detector. Note that for LDPC codes,

the quantities γ b̂
k computed by the algorithm in Sec. III will be

used as intermediate quantities in the decoder. Hence, half of

the boxplus computation results obtained in the ALB detection

algorithm can be reused in the decoder.

If b is incorrectly detected, both decoders will have to be

run. In the typical operating regime, the error rate of the ALB,

Pe(ALB), would be 10−2 or smaller. Hence, the chance that

both decoders have to be run is negligible. The complexity

increase is Pe(ALB) times the complexity of decoding M
with the wrong code. For a code with a fixed-complexity

decoder, e.g. a convolutional code, the overall complexity

increase is then about Pe(ALB), i.e., typically less than 1%.

For an LDPC code, the total complexity increase depends on

the number of allowed iterations in the decoder, and since the

decoder must iterate more times when trying with the wrong

code, the complexity increase will be somewhat higher.

VI. NUMERICAL EXAMPLE

We provide two examples using BPSK transmission with

spectral efficiencies β = 1/2 and β = 1/6, over an AWGN

channel. The specific choice of code is unimportant so to

illustrate the principles of operation we chose, somewhat

arbitrarily, a randomly generated regular rate-1/2 LDPC code

with degree distribution (3,6) to achieve β = 1/2 bpcu, and

a regular rate-1/6 LDPC code with degree distribution (5,6)

to achieve β = 1/6. LDPC codes were used for the ease of

simulation and since they offer a natural possibility of error

checking. The codes were optimized by performing some cycle

removal, and the resulting parity check matrices had no cycles

of length 4. The payload blocks had N = 200 coded bits

resulting in 100 and 33 information bits for the two cases
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Fig. 1. BER performance at nominal spectral efficiencies β = 1/2 and
β = 1/6. In the comparisons with repetition coding, K = 4 respectively
K = 5 repetitions for the ALB were used. The curves for repetition coding
are truncated to improve readability of the plot.

respectively. The LDPC decoder was forced to terminate after

at most 10 iterations. The half-swap permutation discussed in

Sec. II was used to obtain C1 from C0.
Fig. 1 shows the simulation results for spectral efficiency

β = 1/2 bpcu with the number of repetitions K = 4, and
for β = 1/6 bpcu with K = 5, respectively. The following

graphs are shown for each case: (i) the payload data BER

of the original system, without transmitting an ALB, (ii) the

payload data BER with repetition coding (using N − K out

of N channel uses; hence K of the LLRs are set to zero

before decoding), (iii) the payload BER of a system using the

proposed scheme, (iv) the error probability the of ALB with

the proposed scheme, (v) the error probability of the ALB

using repetition coding, and (vi) the error probability of the

ALB when using the double decoder benchmark scheme.

We selected K so that the ALB error probability crossing

point between the proposed scheme and repetition coding

occurred at slightly below Pe ≈ 10−2. At SNR above the

crossing point, the proposed scheme offers better protection

of the ALB than what repetition coding does and vice versa.

Observe that for SNR above the crossing point, no substantial

payload BER penalty of transmitting an ALB could be mea-

sured for the proposed scheme. The power penalty ∆ when

using repetition coding is about 0.18 and 0.19 dB, respectively,

for β = 1/2 and 1/6. (The order-of-magnitude estimate in the

Appendix gives 0.12 dB, for both cases.)

C++ code for reproducing the numerical results is available

from the authors.

VII. CONCLUSIONS

The proposed scheme facilitates detection of the ALB

without decoding the payload. We believe that the additional

complexity of this can be justified if the ALB is important

(e.g., an ACK/NACK bit in an HARQ scheme). For some

channel codes, parts of the operations of the ALB detection

algorithm can be reused in the decoding of the payload data.

The scheme presented here can be extended in several ways.

For example, if the amount of error protection on the ALB

offered by the proposed scheme is insufficient, the ALB can be

transmitted several times, piggybacked onto several different

payload packets. Alternatively, the other way around, more

than one ALB, say L bits, could be transmitted on top of

one single payload codeword by choosing among 2L codes

C1, ..., C2L at the transmitter. This is likely to be useful only

for small values of L, as the associated detection complexity

scales exponentially with L. Also, naturally, when L is in-

creased, the payload BER would eventually be compromised.

APPENDIX

The AWGN channel with noise variance N0/2 and transmit

power P per real dimension supports a spectral efficiency of

β ,
1

2
log2

(

1 +
P

N0/2

)

(5)

bits/real channel use (bpcu). If N channel uses are nominally

allocated for the transmission and the ALB is to be repeated

K times, then only N − K channel uses remain for the

transmission of the payload data. Hence the spectral efficiency

of the payload data transmission must be increased by a factor

N/(N −K), compared to the case when no ALB is present.

This requires an increase in transmit power from P to P ′,

where P ′ satisfies

β =
1

2

(

1−
K

N

)

log2

(

1 +
P ′

N0/2

)

. (6)

Let ∆ , P ′/P be the increase in transmit power needed to

maintain the same spectral efficiency as in the original system,

when the ALB consumes payload resources. Solving (5)–(6)

for ∆ in dB, we obtain to the first order in 1/N :

10 log10(∆) = 10 log10

(

2
2β

1−K/N − 1

22β − 1

)

≈ 6.0 ·
β

1− 2−2β
·
K

N

REFERENCES

[1] E. Dahlman, S. Parkvall and J. Sköld, 4G LTE/LTE-Advanced for Mobile

Broadband, 1st edition Academic Press, 2011.
[2] J. Gross, H. F. Geerdes, H. Karl and A. Wolisz, “Performance analysis of

dynamic OFDMA systems with inband signaling,” IEEE J. Select. Areas

Commun., vol. 24, pp. 427-436, Mar. 2006.
[3] M. Sternad, T. Svensson and M. Döttling, “Resource allocation and

control signaling in the WINNER flexible MAC concept,” in Proc. of

IEEE VTC, pp. 1-5, Sep. 2008.
[4] R. Moosavi, J. Eriksson, E. G. Larsson, N. Wiberg, P. Frenger and

F. Gunnarsson, “Comparison of strategies for signaling of scheduling
assignments in wireless OFDMA,” IEEE Trans. Veh. Technol., vol. 59,
pp. 4527-4542, Nov. 2010.

[5] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Info. Theory, vol. 42, pp. 429-445,
Mar. 1996.

[6] R. Moosavi and E. G. Larsson, “A fast scheme for blind identification of
channel codes,” in Proc. of IEEE Global Telecommunications Conference

(GLOBECOM), Dec. 2011.
[7] J. Dingel and J. Hagenauer, “Parameter estimation of a convolutional

encoder from noisy observations,” IEEE International Symposium on

Information Theory (ISIT), Jun. 2007.
[8] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional

Coding, IEEE Press, 1999.


