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Method to Estimate the Position and
Orientation of a Triaxial Accelerometer
Mounted to an Industrial Manipulator ?

Patrik Axelsson, Mikael Norrlöf

Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden (e-mail: {axelsson, mino}@isy.liu.se).

Abstract: A novel method to find the orientation and position of a triaxial accelerometer
mounted on a six degrees-of-freedom industrial robot is proposed and evaluated on experimental
data. The method consists of two consecutive steps, where the first is to estimate the orientation
of the accelerometer from static experiments. In the second step the accelerometer position
relative to the robot base is identified using accelerometer readings when the accelerometer
moves in a circular path and where the accelerometer orientation is kept constant in a path
fixed coordinate system. Once the accelerometer position and orientation are identified it is
possible to use the accelerometer in robot model parameter identification and in advanced control
solutions. Compared to previous methods, the accelerometer position estimation is completely
new, whereas the orientation is found using an analytical solution to the optimisation problem.
Previous methods use a parameterisation where the optimisation uses an iterative solver.
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1. INTRODUCTION

The development in the area of industrial robotics is fo-
cused on, among other things, cost reduction leading to
robots with less rigid mechanical structures. The main
flexibilities in the mechanical system are considered to be
introduced in the gearboxes. The current control strategy,
using the motor angles for control of the robot, becomes
insufficient with the new flexible structure. One of the
possible solutions is to mount an accelerometer on the
robot end-effector and estimate the joint angles on the
arm side of the gearboxes (Axelsson et al., 2012; Axelsson,
2012). This gives a possibility to control the robot using an
estimate of the complete system state. It is therefore essen-
tial to have good knowledge of the orientation and position
of the accelerometer in order to get good estimates.

In this paper a novel method to estimate the position
and orientation of a triaxial accelerometer mounted on an
industrial robot is presented. The estimation method uses
a two step procedure where the first step is to identify
the orientation of the accelerometer using a number of
static experiments. It is assumed that the accelerometer is
mounted in such a way that it can be arbitrarily oriented
using the six degrees-of-freedom (dof) robot arm. The
desired orientation of the accelerometer is hence known
while the actual orientation is unknown. In Renk et al.
(2005) and Won and Golnaraghi (2010) the accelerometer
calibration is considered and internal parameters of the
accelerometer, such as sensitivity and bias, but also align-
ment of each one of the three accelerometer measurement
channels, are identified using an iterative search optimi-
sation method. In this paper the unknown parameters
? This work was supported by Vinnova Excellence Center LINK-
SIC.

related to the accelerometer are found using an optimi-
sation formulation where the solution can be expressed in
closed form. By moving the robot such that centripetal
acceleration can be measured, the method presented here
also finds the position of the accelerometer. In Renk et al.
(2005); Won and Golnaraghi (2010) it is also assumed
that the accelerometer is moved, but it moves slowly and
therefore only gravity affects the measurements.

The estimation problem is formulated in Section 2. In
Section 3, the method to find the orientation of the ac-
celerometer is described, and the method to estimate the
mounting position is described in Section 4. The orienta-
tion and position estimation is evaluated on experimental
data in Section 5 and Section 6 concludes the results.

2. PROBLEM FORMULATION

Assume that the accelerometer is mounted on the robot ac-
cording to Figure 1(a) where the accelerometer is assumed
to be rigidly attached to the robot tool. The problem
addressed in this paper is to find:

(i) The internal sensor parameters and the orientation of
the sensor.

(ii) The position of the accelerometer with respect to the
robot tool coordinate system.

The manipulator has a spherical wrist, hence the orienta-
tion can be changed arbitrarily, only using the wrist joints.
The estimation method finds the orientation and position
of the triaxial accelerometer relative a given definition of
the tool coordinate system. The orientation of the desired
coordinate system can be seen in Figure 1(b). Let ρa be
an accelerometer measurement vector in the accelerometer
coordinate system Oxayaza and ρs an acceleration vector
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(a) The accelerometer and
its actual coordinate system
Oxayaza.
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(b) The accelerometer and
the desired coordinate system
Oxsyszs.

Fig. 1. The accelerometer mounted on the robot. The
yellow rectangle represents the tool or a weight and
the black square on the yellow rectangle is the ac-
celerometer. The base coordinate system Oxbybzb of
the robot is also shown.

in the desired coordinate system Oxsyszs, describing the
acceleration in m/s2. The relation between ρa and ρs is
given by,

ρs = κRρa + ρ0, (1)

where R is the rotation matrix from Oxayaza to Oxsyszs,
κ is the accelerometer sensitivity and ρ0 the bias. It is
assumed that the same sensitivity value κ can be used for
all three sensors in the triaxial accelerometer. The sensi-
tivity and bias is chosen such that the units in Oxsyszs
are m/s2. When the unknown parameters in (1) have been
found the position of the accelerometer, expressed relative
to the tool coordinate system, is identified. To solve for the
unknown parameters, ρa is measured while ρs is computed
from a model. When the robot is not moving, ρs is simply
the gravity vector, while in the dynamic case when the
accelerometer is moved the acceleration will depend on
the speed and orientation of the accelerometer.

3. IDENTIFICATION OF ORIENTATION,
SENSITIVITY AND BIAS

To implement step (i) in Section 2, the gravity vector
is measured in different orientations. The different orien-
tations of the accelerometer are achieved by moving the
robot tool to different orientations using the wrist joints
of the robot, see Figure 2 for examples. To solve for the
parameters R, κ and ρ0 in (1), first define the residual

ek = ρs,k − κRρa,k − ρ0, (2)

where k indicates the sample number. Next, minimise the
sum of the squared norm of the residuals,

minimise

N∑
k=1

||ek||2

subject to det(R) = 1
RT = R−1

(3)

where the constrains guarantee that R is an orthonormal
matrix. By introducing the centroids for the measurements
in Oxayaza and Oxsyszs,

ρ̄s =
1

N

N∑
k=1

ρs,k, ρ̄a =
1

N

N∑
k=1

ρa,k, (4)

and defining new coordinates,

ρ′s,i = ρs,i − ρ̄s, ρ′a,i = ρa,i − ρ̄a, (5)
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Fig. 2. Six different configurations of the robot tool used
in Algorithm 1. The orientation of the desired coordi-
nate system Oxsyszs is shown for each configuration.
The base coordinate system Oxbybzb and the gravity
vector are also shown.

the optimisation problem has the closed form solu-
tion (Horn et al., 1988),

κ =

√√√√ N∑
k=1

||ρ′s,k||2
/

N∑
k=1

||ρ′a,k||2, (6a)

R = M
(
MTM

)−1/2
, (6b)

ρ0 = ρ̄s − κRρ̄a, (6c)

where

M =

N∑
k=1

ρ′s,k(ρ′a,k)T . (7)

N is the total number of measurements and it has to be
assumed that N ≥ 3. In addition a condition of sufficient
excitement has to be fulfilled, such that MTM has full
rank. As an alternative to the formulation above where the
rotation is parameterised by the orthonormal matrix R it
is also possible to find a closed-form solution to (1) using
unit quaternions, see e.g. Horn (1987). Considering the
number of operations the matrix formulation is, however,
computationally more efficient.

The orientation and the sensor parameters are found using
static measurements, i.e., the robot is standing still in
NC different tool orientation configurations. The gravity
vector is measured by the accelerometer in each of the
NC configurations, which gives NM,j , j = 1, . . . , NC

measurements for each configuration. Let

{ρa} =
{
{ρ1

a,i}
NM,1

i=1 , . . . , {ρNC
a,i }

NM,NC
i=1

}
(8)

denote the set of all the N =
∑NC

j=1NM,j measurements in
all NC configurations, and let

{ρs} =
{
{ρ1

s}
NM,1

i=1 , . . . , {ρNC
s }

NM,NC
i=1

}
(9)

be the gravity vector from the model in the desired
coordinate system Oxsyszs for each configuration, where
ρjs, j = 1, . . . , NC is a constant. The transformation
parameters R, κ and ρ0 in (1) can be computed using
the measured accelerations and the model values to solve
the optimisation problem in (3) according to (4) to (7).

The NC different configurations can be chosen arbitrary as
long as the matrix MTM has full rank 1 . Here six different
configurations according to Figure 2 are suggested, which
give

1 The matrix MTM has always full rank if none of the two sets {ρa}
and {ρs} are coplanar.



ρ1
s = (0 0 g)

T
, ρ2

s = (0 g 0)
T
,

ρ3
s = (0 0 −g)

T
, ρ4

s = (0 −g 0)
T
,

ρ5
s = (−g 0 0)

T
, ρ6

s = (g 0 0)
T
,

(10)

where g = 9.81 m/s2. Note that the vectors in (10) are
directed towards the gravity vector in Figure 2. The
explanation for this is that an accelerometer measures the
normal force which is opposite the gravity vector.

The six configurations in Figure 2 are straightforward
to obtain for a spherical wrist, six degree of freedom
industrial manipulator (Sciavicco and Siciliano, 2000). The
procedure to estimate the triaxial accelerometer sensor
parameters is summarised in Algorithm 1.

Algorithm 1. Estimation of the sensor parameters

a) Measure the acceleration for the different configura-
tions in Figure 2 to obtain {ρa} according to (8).

b) Construct {ρs} in (9) from (10).
c) Calculate R, κ and ρ0 from (4) to (7).

4. ESTIMATION OF THE POSITION OF THE
ACCELEROMETER

In step (ii) from Section 2 the position of the accelerometer
with respect to a robot fixed tool coordinate system is
derived. From step (i) in Section 2 and the implementation
in Section 3, the orientation and sensor parameters are
known, hence the acceleration measured by the accelerom-
eter has a known orientation. Next, the accelerometer’s
coordinate system Oxsyszs should be expressed in a coor-
dinate system Oxbfybfzbf fixed to the robot.

Using a mathematical model of the robot motion it is
possible to compute the acceleration, parameterised in
some unknown parameters. To simplify the mathematical
model for the acceleration and to make it possible to
parameterise the unknown parameters, consider the case
when the robot is in the configuration shown in Figure 3.
The figure shows the vector rs, the two coordinate sys-
tems Oxbfybfzbf and Oxsyszs, the world fixed coordinate
system Oxbybzb attached to the base of the robot, the
coordinate system Oxwywzw fixed to the end of the robot

arm, and the vector as
∆
= d2

dt2 (rs) which describes the
acceleration of Oxsyszs. The mathematical expression for
as together with the measured acceleration are used in
order to estimates the unknown parameters. The figure
also shows a parameter θ describing the rotation between
Oxbfybfzbf and Oxbybzb, two known parameters L1 and
L2 describing the arm lengths and three unknown param-
eters li, i = 1, 2, 3 describing the vector rs/w in Oxwywzw.

All the calculations are done in the world fixed coordinate
system in order to obtain an expression for d2

dt2 (rs). In a

body fixed coordinate system Oxbfybfzbf
d2

dt2 (rs) = 0. The
notation [rs]i is used to emphasise that rs is expressed in
coordinate system i.

Figure (3) shows that rs can be written as a sum of two
vectors,

[rs]bf = [rw]bf + [rs/w]bf , (11)
where

[rs/w]bf = (l3 −l2 −l1)
T
, (12)

[rw]bf = (L1 0 L2)
T
. (13)
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Fig. 3. The first robot configuration for estimation of the
mounting position. The black cube on the yellow box
indicates the accelerometer, i.e., the origin ofOxsyszs.
The yellow box is attached to the robot in the point

(L1 0 L2)
T

expressed in Oxbfybfzbf .

The transformation of rs from Oxbfybfzbf to Oxbybzb can
be expressed as

[rs]b = [Qbf/b]b
(
[rw]bf + [rs/w]bf

)
, (14)

where

[Qbf/b]b =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
(15)

is the rotation matrix that relates the coordinate system
Oxbfybfzbf to Oxbybzb. θ = θ(t) is the angle relating
Oxbybzb and Oxbfybfzbf according to Figure 3. Taking
the derivative of [rs]b with respect to time gives

d

dt
([rs]b) =

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
. (16)

The time derivative of the rotation matrix is given
by (Spong et al., 2005)

d

dt

(
[Qbf/b]b

)
= S(ω)[Qbf/b]b, (17)

where ω =
(
0 0 θ̇

)T
and

S(ω) =

0 −θ̇ 0

θ̇ 0 0
0 0 0

 (18)

is a skew symmetric matrix. Hence, the time derivative of
[rs]b can be written

d

dt
([rs]b) = S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
. (19)

The second time derivative of [rs]b becomes



[as]b =
d2

dt2
([rs]b) =

d

dt
(S(ω)) [Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
=S(ω̇)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
=S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
, (20)

where ω̇ = (0 0 0)
T

follows from the assumption of
constant angular velocity.

It now remains to transform the measured acceleration aMs
from Oxsyszs to Oxbybzb. From Figure 3 it can be seen
directly that

[aMs ]bf =
(
aMs,x aMs,y 0

)T
, (21)

hence
[aMs ]b = [Qbf/b]b[a

M
s ]bf . (22)

Equations (20) and (22) give

[Qbf/b]b[a
M
s ]bf = S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
⇔

[aMs ]bf = [Qbf/b]
T
b S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
(23)

since [Qbf/b]
T
b = [Qbf/b]

−1
b . Carrying out the matrix

multiplication for the right-hand side of (23) gives

[aMs ]bf =

−θ̇2(L1 + l3)

θ̇2l2
0

 , (24)

where (12), (13), (15) and (18) have been used. Equa-
tions (21) and (24) can now be written as a system of
equations where l2 and l3 are unknown,(

0 −θ̇2

θ̇2 0

)(
l2
l3

)
=

(
aMs,x + θ̇2L1

aMs,y

)
. (25)

It is thus possible to find l2 and l3 from (25) but un-
fortunately not l1. Rotating the accelerometer according
to Figure 4 will give information about l1. The same
calculations as before with

[rs/w]bf = (−l1 −l2 −l3)
T
, (26)

[rw]bf = (L3 0 L4)
T
, (27)

[aMs ]bf =
(
aMs,z a

M
s,y 0

)T
, (28)

see Figure 4, give(
θ̇2 0

0 θ̇2

)(
l1
l2

)
=

(
aMs,z + θ̇2L3

aMs,y

)
. (29)

Equations (25) and (29) can now be used to estimate the
unknown parameters. Using (25) and (29) the estimation
of l2 uses approximately twice as much data than the
estimation of l1 and l3. To get equal amount of data for
each parameter, which gives a more accurate estimation,
the robot configuration in Figure 5 is used, which gives

[rs/w]bf = (l3 −l1 l2)
T
, (30)

[rw]bf = (L1 0 L2)
T
, (31)

[aMs ]bf =
(
aMs,x aMs,z 0

)T
. (32)

From (23) the following equation is obtained(
0 −θ̇2

θ̇2 0

)(
l1
l3

)
=

(
aMs,x + θ̇2L1

aMs,z

)
. (33)
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Fig. 4. The second robot configuration for estimation of the
mounting position. The black cube on the yellow box
indicates the accelerometer, i.e., the origin ofOxsyszs.
The yellow box is attached to the robot in the point

(L3 0 L4)
T

expressed in Oxbfybfzbf .
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Fig. 5. The third robot configuration for estimation of the
mounting position. The black cube on the yellow box
indicates the accelerometer, i.e., the origin ofOxsyszs.
The yellow box is attached to the robot in the point

(L1 0 L2)
T

expressed in Oxbfybfzbf .

Equations (25), (29) and (33) can now be written as one
system of equations according to





0 0 −θ̇2
c1

0 θ̇2
c1 0

θ̇2
c2 0 0

0 θ̇2
c2 0

0 0 −θ̇2
c3

θ̇2
c3 0 0


︸ ︷︷ ︸

A

(
l1
l2
l3

)
︸ ︷︷ ︸

l

=



aMs,x,c1 + θ̇2
c1L1

aMs,y,c1
aMs,z,c2 + θ̇2

c2L3

aMs,y,c2
aMs,x,c3 + θ̇2

c3L1

aMs,z,c3


︸ ︷︷ ︸

b

, (34)

where index ci, i = 1, 2, 3 indicates from which robot
configuration the measurements come from. Equation (34)
has more rows than unknowns, hence the solution to (34)
is given by the solution to the optimisation problem

arg min
l
||b−Al||22, (35)

which has the analytical solution

l̂ =
(
ATA

)−1
AT b. (36)

There exist better numerical solutions to (34) than (36),
e.g. l=A\b in Matlab. The procedure to estimate the po-
sition of the accelerometer is summarised in Algorithm 2.

Algorithm 2. Estimation of the mounting position

a) Measure the acceleration of the tool [aMs ]s and the

angular velocity θ̇ for the three different configura-
tions in Figures 3, 4 and 5 when θ varies from θmin

to θmax with constant angular velocity.
b) Construct A and b in (34).
c) Solve (34) with respect to l, for example according

to (36).

5. EXPERIMENTAL RESULTS

In this section the proposed orientation and position
estimation method described in the two algorithms in
Sections 3 and 4 is evaluated using experimental data. For
Algorithm 1, the data, i.e., the acceleration values, are
collected during 4 s for each one of the six configurations
in Figure 2 using a sample rate of 2 kHz. For Algorithm 2,
the arm angular velocity θ̇ for joint 1 and the acceleration
measurements are collected when the robot is in the three
different configurations according to Figures 3, 4 and 5.
The arm angular velocity for joint 1 is computed from the
motor angular velocity θ̇m using,

θ̇m = τ θ̇, (37)

where τ is the gear ratio. In the position estimation
experiments data are collected during 4 s in each one of
the three configurations, but it is only the constant angular
velocity part of the data that is used. The same sample rate
as before is used, i.e., 2 kHz. The accelerometer used in
the experiments is a triaxial accelerometer from Crossbow
Technology, with a range of ±2 g, and a sensitivity of
approximately 1 V/g Crossbow Technology (2004). The
accelerometer is connected to the measurement system of
the robot controller, and hence the acceleration and motor
angular velocity can be synchronised and measured with
the same sampling rate.

Three different mounting positions and different orienta-
tions of the accelerometer have been used for evaluation
of Algorithms 1 and 2. The actual physical orientation of
the accelerometer was measured using a protractor, see
Figure 6, where the orientation of the desired coordinate
system for the accelerometer also is shown.
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Fig. 6. Orientation for the three mounting positions that
were used to evaluate the two algorithms. The orien-
tation of the desired coordinate system is also shown.
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Fig. 7. Diagram of the transformation errors in the x-, y-
and z-direction for (1) in configuration 1 (Figure 2)
for all three test cases.

Algorithm 1 was applied to the three test cases presented
above and the result R̂, κ̂ and ρ̂0 can be seen in Table 1.
From Figure 6 it can be seen that the rotation matrix R
in (1) should resemble

R1 =

(
0 −1 0
0 0 1
−1 0 0

)
, R2 =

(
1 0 0
0 0 1
0 −1 0

)
, R3 =

(
0 0 1
−1 0 0
0 −1 0

)
.

The superscript indicates the test number. A rotational
difference between the measured rotation matrix Ri and
the estimated matrix R̂i can be computed using the
corresponding unit quaternions qi and q̂i. The rotation

angle ϑi of qi∆ from qi∆ =
(
qi
)−1 ∗ q̂i, which should be

small 2 , is a good measure of the difference between Ri

and R̂i. See e.g. Sciavicco and Siciliano (2000) for a short
introduction to quaternions. The resulting rotation angle
ϑi for the three test cases can be seen i Table 2. The
difference is small in all cases.

It is more difficult to obtain true values for the parameters
κ and ρ0. To verify them, the measured acceleration for
all three test cases in configuration 1, in Figure 2, is
transformed from Oxayaza to Oxsyszs, which results in
three constant signals aMs,x, aMs,y and aMs,z for the three axes
of the accelerometer. Figure 2 shows that the measured
acceleration in frame Oxsyszs should resemble as,x = 0,
as,y = 0 and as,z = g. Subtracting as,j from the mean
of aMs,j , j = x, y, z, gives an error for the transformed
acceleration. A diagram of the errors for each coordinate
axis in Oxsyszs is shown in Figure 7. The errors are small
and, as expected, the errors are larger in x and y due to the
higher sensitivity to orientation errors in these axis when
measuring gravity along the z-axis. The bias in x can also
be explained by a systematic error in orientation due to
the robot elasticity and gravitational force acting on the
robot in the evaluation position, see Figure 1.

2 The matrices are identical if ϑ = 0◦.



Table 1. Estimated parameters in (1) using
Algorithm 1 for three different test cases.

Test κ̂ ρ̂0 R̂

1 9.91

(
25.05
−23.75
24.26

) (
−0.0138 −0.9998 −0.0170
−0.0094 −0.0169 0.9998
−0.9999 0.0140 −0.0092

)

2 9.91

(
−23.89
−24.03
25.11

) (
0.9999 −0.0070 −0.0131
0.0129 −0.0276 0.9995
−0.0073 −0.9996 −0.0275

)

3 9.91

(
−24.46
24.86
23.74

) (
0.0169 −0.0139 0.9998
−0.9992 −0.0355 0.0164
0.0353 −0.9993 −0.0145

)

Table 2. The rotation angle ϑ indicates how
close the estimated and measured rotation

matrices are to each other.

Test 1 2 3

ϑ 1.4◦ 1.8◦ 2.4◦

Table 3. Estimated positions l̂ of the ac-
celerometer , the error ∆ relative the measured

position lM , and the standard deviation for l̂.

Test Est. pos. (l̂) [cm] ∆ = l̂ − lM [cm] Std. for l̂ [cm]

1
(
35.2 6.3 15.5

)T (
0.2 2.3 −1.0

)T (
0.4 0.5 0.5

)T
2

(
14.2 5.8 16.9

)T (
−0.3 −1.2 1.8

)T (
0.3 0.3 0.3

)T
3

(
29.2 1.6 5.9

)T (
2.2 1.6 0.4

)T (
0.4 0.4 0.4

)T
The estimated position l̂ and the error ∆ between l̂ and
the measured position lM , for the three test cases can be
seen in Table 3. The position was always measured using
a tape measure to the centre of the accelerometer, since
the position of the origin of the accelerometer’s coordinate
system inside the sensor is unspecified.

If the measured θ̇ is assumed to be with without noise,
which is a reasonable assumption for the robot system,

then l̂ is linear dependent of the noise, originating from the
measured acceleration, according to (36). The covariance

matrix for l̂ can therefore be calculated as

Cov
(
l̂
)

=
(
ATA

)−T
Cov (b) . (38)

Cov (b) is a scalar and the structure of A implies that(
ATA

)−T
is a diagonal matrix, hence Cov

(
l̂
)

is diagonal.

The square root of the diagonal elements in Cov
(
l̂
)

,

i.e., the standard deviation, of the estimated position are
presented in Table 3.

Considering the accuracy of the measurements and the un-
certainty of the origin of the accelerometer coordinate sys-
tem the result in Table 3 is considered as acceptable. The
actual requirement of the result, in terms of position and
orientation accuracy, will depend on the application where
the accelerometer is used. A more detailed investigation of
the requirement for the accuracy in the dynamic position
and orientation estimation of the tool position, such as
described in Axelsson et al. (2012); Axelsson (2012), is
left as future work.

6. CONCLUSIONS

A method to find the position and orientation of a triaxial
accelerometer mounted on a six dof robot is presented.
The method is divided into two main steps, where in
the first step, the orientation is estimated by finding the
transformation from the actual coordinate system of the
accelerometer, with unknown orientation, to a new coordi-
nate system with known orientation. It is also possible to
find the sensitivity and the bias parameters. The estima-
tion of the orientation is based on static measurements
of the gravity vector when the accelerometer is placed
in different orientations using the six dof robot arm. In
the second step of the method, the mounting position of
the accelerometer in a robot fixed coordinate system is
computed using several experiments where the robot is
moving with constant speed. Finally, the method is eval-
uated on experimental data. The resulting position and
orientation accuracy are evaluated using measurements
on the physical system. The orientation error is in the
range 1 to 2 degrees and the position error is in average

∆̄ = (0.7 0.9 0.4)
T

cm, where ∆ is the error relative the
measured position lM . The accuracy is sufficient in exper-
iments with dynamic position and orientation estimation
of the tool position using sensor fusion methods, such as
extended Kalman filter and particle filter.
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