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Bayesian State Estimation of a Flexible Industrial Robot

Patrik Axelssona,∗, Rickard Karlssonb,a, Mikael Norrlöfa

aDivision of Automatic Control, Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden
bNira Dynamics, Teknikringen 6, SE-583 30 Linköping, Sweden

Abstract

A sensor fusion method for state estimation of a flexible industrial robot is developed. By measuring the acceleration
at the end-effector, the accuracy of the arm angular position, as well as the estimated position of the end-effector
are improved. The problem is formulated in a Bayesian estimation framework and two solutions are proposed; the
extended Kalman filter and the particle filter. In a simulation study on a realistic flexible industrial robot, the angular
position performance is shown to be close to the fundamental Cramér-Rao lower bound. The technique is also verified
in experiments on an ABB robot, where the dynamic performance of the position for the end-effector is significantly
improved.

Keywords: Industrial robot, positioning, estimation, particle filter, extended Kalman filter, Cramér-Rao lower bound.

1. Introduction

Modern industrial robot control is usually based only
on measurements from the motor angles of the manipula-
tor. However, the ultimate goal is to move the tool accord-
ing to a predefined path. In Gunnarsson et al. (2001) a
method for improving the absolute accuracy of a standard
industrial manipulator is described, where improved accu-
racy is achieved through identification of unknown or un-
certain parameters in the robot system, and applying the
iterative learning control (ilc) method, (Arimoto et al.,
1984; Moore, 1993), using additional sensors to measure
the actual tool position. The aim of this paper is to eval-
uate Bayesian estimation techniques for sensor fusion and
to improve the estimate of the tool position from mea-
surements of the acceleration at the end-effector. The im-
proved accuracy at the end-effector is needed in demanding
applications such as laser cutting, where low cost sensors
such as accelerometers are a feasible choice.

Two Bayesian state estimation techniques, the extended
Kalman filter (ekf) and the particle filter (pf), are applied
to a standard industrial manipulator and the result is eval-
uated with respect to the tracking performance in terms
of position accuracy of the tool. The main contribution in
this paper compared to previous papers in the field is the
combination of: i) the evaluation of estimation results in
relation to the Cramér-Rao lower bound (crlb); ii) the
utilization of motor angle measurement and accelerometer
measurement in the filters; iii) the experimental evaluation
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Figure 1: The ABB IRB4600 robot with the accelerometer. The
base coordinate system, (xb, yb, zb), and the coordinate system for
the sensor (accelerometer), (xs, ys, zs), are also shown.

on a commercial industrial robot, see Figure 1; iv) the ex-
tensive comparison of ekf and pf, and finally; v) the use
of a manipulator model including a complete model of the
manipulator’s flexible modes. In addition, the utilization
of the calibration of the accelerometer sensor from Axels-
son and Norrlöf (2012) and the proposal density for the pf
using an ekf, (Doucet et al., 2000; Gustafsson, 2010), is
non standard.

Traditionally, many nonlinear Bayesian estimation prob-
lems are solved using the ekf (Anderson and Moore, 1979;
Kailath et al., 2000). When the dynamic models and mea-
surements are highly nonlinear and the measurement noise
is not Gaussian, linearized methods may not always be
a good approach. The pf (Gordon et al., 1993; Doucet
et al., 2001) provides a general solution to many problems
where linearizations and Gaussian approximations are in-
tractable or would yield too low performance.

Bayesian techniques have traditionally been applied in
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mobile robot applications, see e.g. Kwok et al. (2004);
Jensfelt (2001), and Doucet et al. (2001, Ch. 19). In the
industrial robotics research area one example is Jassemi-
Zargani and Necsulescu (2002) where an ekf is used to
improve the trajectory tracking for a rigid 2 degree-of-
freedom (dof) robot using arm angle measurements and
tool acceleration measurements. The extension to several
dof is presented in Quigley et al. (2010), where the ekf is
used on a robot manipulator with 7 dof and 3 accelerome-
ters. A method for accelerometer calibration with respect
to orientation is also presented. The idea of combining
a vision sensor, accelerometers, and gyros when estimat-
ing the tool position is explored in Jeon et al. (2009) for
a 2 dof manipulator, using a kinematic Kalman filter.
Another way is to use the acceleration of the tool as an
input instead of a measurement as described in De Luca
et al. (2007), where it is assumed that the friction is ne-
glected, the damping and spring are assumed linear. As
a result, the estimation can be done using a linear time
invariant observer with dynamics based upon pole place-
ment. For flexible link robots the Kalman filter has been
investigated in Li and Chen (2001) for a single link, where
the joint angle and the acceleration of the tool are used as
measurements. Moreover, in Lertpiriyasuwat et al. (2000)
the extended Kalman filter has been used for a two link
manipulator using the joint angles and the tool position
as measurements. In both cases, the manipulator is oper-
ating in a plane perpendicular to the gravity field. Sensor
fusion techniques using particle filters have so far been ap-
plied to very few industrial robotic applications (Rigatos,
2009; Karlsson and Norrlöf, 2004, 2005), and only using
simulated data. The pf method is also motivated since it
provides the possibility to design control laws and perform
diagnosis in a much more advanced way, making use of the
full posterior probability density function (pdf). The pf
also enables incorporation of hard constraints on the sys-
tem parameters, and it provides a benchmark for simpler
solutions, such as given by the ekf.

This paper extends the simulation studies introduced
in Karlsson and Norrlöf (2004, 2005) with experimental
results. A performance evaluation in a realistic simulation
environment for both the ekf and the pf is presented and
it is analyzed using the Cramér-Rao lower bound (crlb),
(Bergman, 1999; Kay, 1993). In addition to Karlsson and
Norrlöf (2004, 2005), experimental data, from a state of
the art industrial robot, are used for evaluation of the
proposed methods. A detailed description of the exper-
imental setup is given and also modifications of the pf for
experimental data are presented.

The paper is organized as follows. In Section 2, the
Bayesian theory estimation is introduced and the concept
of the crlb is presented. The robot, estimation, and sen-
sor models, are presented in Section 3. The performance
of the ekf and pf are compared to the Cramér-Rao lower
bound limit for simulated data in Section 4. In Section 5
the experimental setup and performance are presented. Fi-
nally, Section 6 contains conclusive remarks and future

work.

2. Bayesian Estimation

Consider the discrete state-space model

xt+1 = f(xt,ut,wt), (1a)

yt = h(xt) + et, (1b)

with state variables xt ∈ Rn, input signal ut and mea-
surements Yt = {yi}ti=1, with known probability density
functions (pdfs) for the process noise, pw(w), and mea-
surement noise pe(e). The nonlinear posterior prediction
density p(xt+1|Yt) and filtering density p(xt|Yt) for the
Bayesian inference (Jazwinski, 1970) are given by

p(xt+1|Yt) =

∫
Rn

p(xt+1|xt)p(xt|Yt)dxt, (2a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2b)

For the important special case of linear-Gaussian dynam-
ics and linear-Gaussian observations, the Kalman filter
(Kalman, 1960) provides the solution. For nonlinear and
non-Gaussian systems, the pdf can not, in general, be
expressed with a finite number of parameters. Instead ap-
proximative methods are used. This is usually done in
two ways; either by approximating the system or by ap-
proximating the posterior pdf, see for instance, Sorenson
(1988); Arulampalam et al. (2002). Here, two different ap-
proaches of solving the Bayesian equations are considered;
extended Kalman filter (ekf) , and particle filter (pf).
The ekf will solve the problem using a linearization of
the system and assuming Gaussian noise. The pf on the
other hand will approximately solve the Bayesian equa-
tions by stochastic integration. Hence, no linearizations
errors occur. The pf can also handle non-Gaussian noise
models where the pdfs are known only up to a normaliza-
tion constant. Also, hard constraints on the state variables
can easily be incorporated in the estimation problem.

2.1. The Extended Kalman Filter (ekf)

For the special case of linear dynamics, linear mea-
surements and additive Gaussian noise, the Bayesian re-
cursions in (2) have an analytical solution given by the
Kalman filter. For many nonlinear problems, the noise as-
sumptions and the nonlinearity are such that a linearized
solution will be a good approximation. This is the idea be-
hind the ekf (Anderson and Moore, 1979; Kailath et al.,
2000) where the model is linearized around the previous
estimate. The time update and measurement update for
the ekf are{

x̂t+1|t = f(x̂t|t,ut, 0),

Pt+1|t = FtPt|tF
T
t + GtQtG

T
t ,

(3a)
x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1,

(3b)
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where the linearized matrices are given as

Ft = ∇xf(xt,ut, 0)|xt=x̂t|t , (4a)

Gt = ∇wf(xt,ut,wt)|xt=x̂t|t , (4b)

Ht = ∇xh(xt)|xt=x̂t|t−1
. (4c)

In (3), Pt+1|t and Pt|t denote the covariance matrices for
the estimation errors at time t + 1 and t given measure-
ments up to time t, and the noise covariances are given
as

Qt = Cov (wt) , Rt = Cov (et) , (5)

where the process noise and measurement noise are as-
sumed zero mean processes.

2.2. The Particle Filter (pf)

The pf from Doucet et al. (2001); Gordon et al. (1993);
Ristic et al. (2004) provides an approximate solution to
the discrete time Bayesian estimation problem formulated
in (2), by updating an approximate description of the pos-
terior filtering density. Let xt denote the state of the ob-
served system and Yt = {yi}ti=1 be the set of observed
measurements until present time. The pf approximates
the density p(xt|Yt) by a large set of N samples (parti-

cles), {x(i)
t }Ni=1, where each particle has an assigned rel-

ative weight, γ
(i)
t , chosen such that all weights sum to

unity. The location and weight of each particle reflect
the value of the density in the region of the state space.
The pf updates the particle location in the state space
and the corresponding weights recursively with each new
observed measurement. Using the samples (particles) and
the corresponding weights, the Bayesian equations can be
approximately solved. To avoid divergence, a resampling
step is introduced, (Gordon et al., 1993). The pf is sum-
marized in Algorithm 1, where the proposal distribution

pprop(x
(i)
t+1|x

(i)
t ,yt+1) can be chosen arbitrary as long as it

is possible to draw samples from it.
The estimate for each time, t, is often chosen as the

minimum mean square estimate, i.e.,

x̂t|t = E (xt) =

∫
Rn

xtp(xt|Yt)dxt ≈
N∑
i=1

γ
(i)
t x

(i)
t , (6)

but other choices, such as the ML-estimate, might be of
interest. There exist theoretical limits (Doucet et al., 2001)
that the approximated pdf converges to the true as the
number of particles tends to infinity.

2.3. Cramér-Rao Lower Bound

When different estimators are used, it is fundamen-
tal to know the best possible achievable performance. As
mentioned previously, the pf will approach the true pdf
asymptotically. In practice only approximations are pos-
sible since the number of particles are finite. For other
estimators, such as the ekf, it is important to know how

Algorithm 1 The Particle Filter

1: Generate N samples {x(i)
0 }Ni=1 from p(x0).

2: Compute the weights

γ
(i)
t = γ

(i)
t−1 ·

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

pprop(x
(i)
t |x

(i)
t−1,yt)

and normalize, i.e., γ̄
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t , i =

1, . . . , N .

3: [Optional]. Generate a new set {x(i?)
t }Ni=1 by resam-

pling with replacement N times from {x(i)
t }Ni=1, with

probability γ̄
(i)
t = Pr{x(i?)

t = x
(i)
t } and reset the

weights to 1/N ; otherwise let {x(i?)
t }Ni=1 = {x(i)

t }Ni=1.
4: Generate predictions from the proposal distribution

x
(i)
t+1 ∼ pprop(xt+1|x(i?)

t ,yt+1), i = 1, . . . , N .
5: Increase t and continue to step 2.

much the linearization or model structure used, will affect
the performance. The Cramér-Rao lower bound (crlb)
is such a characteristic for the second order moment (Kay,
1993; Cramér, 1946). Here, only state-space models with
additive Gaussian noise are considered. The theoretical
posterior crlb for a general dynamic system was derived
in Van Trees (1968); Tichavsky et al. (1998); Bergman
(1999); Doucet et al. (2001). Here a continuous-time sys-
tem is considered. By first linearizing and then discretizing
the system, the fundamental limit can in practice be calcu-
lated as the stationary solution for every t, P̄ = P̄(xtrue

t ),
of the Riccati recursions in the ekf, where the lineariza-
tions are around the true state trajectory, xtrue

t . Note
that the approximation is fairly accurate for the industrial
robot application due to a high sample rate and a small
process noise. The predicted value of the stationary covari-
ance for each time t, i.e., for each point in the state-space,
xtrue
t , is denoted P̄p and given as the solution to

P̄p = F̄(P̄p − K̄H̄P̄p)F̄
T + ḠQḠT . (7)

where the linearized matrices F̄, Ḡ and H̄ are evaluated
around the true trajectory, xtrue

t , and

K̄ = P̄pH̄
T (H̄P̄pH̄

T + R)−1. (8)

The crlb limit can now be calculated as

P̄ = P̄p − K̄H̄P̄p, (9)

for each point along the true state-trajectory.

3. Dynamic Models

In this section a continuous-time 2 dof robot model is
discussed. The model is simplified and transformed into
discrete time, to be used by the ekf and pf. The mea-
surements are in both cases angle measurements from the
motors, with or without acceleration information from the
end-effector.
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Figure 2: A 2 dof robot model. The links are assumed to be rigid
and the joints are described by a two mass system connected by a
spring damping pair.

3.1. Robot Model

The robot model used in this work is a joint flexible
two-axes model, see Figure 2. The model corresponds to
axes 2 and 3 of a serial 6 dof industrial robot like the one
in Figure 1. A common assumption of the dynamics of the
robot is that the transmission can be approximated by two
or three masses connected by springs and dampers. The
coefficients in the resulting model can be estimated from
an identification experiment, see for instance Kozlowski
(1998). Here, it will be assumed that the transmission can
be modelled as a two mass system and that the links are
rigid.

The dynamic model can be described by a torque bal-
ance for the motors and the arms. A common way to
obtain the dynamic model in industrial robotics is to use
Lagrange’s equation as described in Sciavicco and Siciliano
(2000). The equation describing the torque balance for the
motor becomes

Mmq̈m =− fmq̇m − rgk(rgqm − qa)

− rgd(rgq̇m − q̇a) + τm, (10)

where Mm is the motor inertia matrix, qm =
(
q1
m q2

m

)T
the motor angles, qa =

(
q1
a q2

a

)T
the arm angles, rg the

gear ratio, fm the viscous friction at the motor, k the
spring constant and d the damping coefficient. No cou-
plings between motor 1 and 2 implies that Mm is a diag-
onal matrix. The parameters rg, fm, k, and d are two by
two diagonal matrices, where the diagonal element ii cor-
responds to joint i. The inputs to the system are the motor

torques, τm =
(
τ1
m τ2

m

)T
. The corresponding relation for

the arm becomes a nonlinear equation

Ma(qa)q̈a+C(qa, q̇a)q̇a + g(qa) =

k(rgqm − qa) + d(rgq̇m − q̇a), (11)

where Ma(·) is the arm inertia matrix, C(·) the Coriolis-
and centrifugal terms and g(·) the gravitational torque.
Here, it is assumed that there are no couplings between
the arms and motors, which is valid if the gear ratio is high
(Spong, 1987). A more detailed model of the robot should
include nonlinear friction such as Coulomb friction. An

important extension would also be to model the nonlinear
spring characteristics in the gear-boxes. In general, the
gear-box is less stiff for torques close to zero and more
stiff when high torques are applied. The extended flexible
joint model proposed in Moberg (2010, Paper A), which
improves the control accuracy, can also be used.

3.2. Estimation Model

The estimation model has to reflect the dynamics in
the true system. A straight forward choice of estimation
model is the state space equivalent of (10) and (11), which
gives a nonlinear dynamic model with 8 states (motor and
arm angular positions and velocities). This gives both a
nonlinear state space model and a nonlinear measurement
model. Instead, a linear state space model is suggested
with arm angles, velocities and accelerations as state vari-
ables, in order to simplify the time update for the pf. Note
that the measurement model is still nonlinear in this case.
Bias states compensating for measurement and model er-
rors have shown to improve the accuracy and are therefore
also included. The state vector is now given as

xt =
(
qTa,t q̇Ta,t q̈Ta,t bTm,t bTρ̈,t

)T
, (12)

where qa,t =
(
q1
a,t q2

a,t

)T
contains the arm angles from

joint 2 and 3 in Figure 1, q̇a,t is the angular velocity, q̈a,t

is the angular acceleration, bm,t =
(
b1m,t b2m,t

)T
con-

tains the bias terms for the motor angles, and bρ̈,t =(
b1ρ̈,t b2ρ̈,t

)T
contains the bias terms for the acceleration

at time t. The bias states are used to handle model errors
in the measurement equation but also to handle drifts in
the measured signals, especially in the acceleration signals.
The first three states are given by a constant acceleration
model discretized with zero order hold, and the bias states
are modeled as random walk. This yields the following
state space model in discrete time

xt+1 = Fxt + Guut + Gwwt, (13a)

yt = h(xt) + et, (13b)

where

F =


I TI T 2/2I O O
O I TI O O
O O I O O
O O O I O
O O O O I

 , (14a)

Gw =


T 3

6 I O O
T 2

2 I O O
TI O O
O I O
O O I

 , Gu =


T 3

6 I
T 2

2 I
TI
O
O

 . (14b)

The input, ut, is the arm jerk reference, i.e., the differ-
entiated arm angular acceleration reference. The process
noise, wt and measurement noise et are considered Gaus-
sian with zero mean and covariances, Qt and Rt respec-
tively. The sample time is denoted T and I and O are two
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by two identity and null matrices. The sensor model (13b)
is described in full detail in the next section.

3.3. Sensor Model

The available measurements are motor angular posi-
tions from resolvers and the acceleration of the end-effector
from the accelerometer. The sensor model is thus given by

h(xt) =

(
qm,t + bm,t
ρ̈t + bρ̈,t

)
, (15)

where qm,t =
(
q1
m,t q2

m,t

)T
is the motor angle and ρ̈t =(

ρxt ρzt
)T

is the Cartesian acceleration vector in the ac-
celerometer frame Oxszs, see Figure 2. With the simpli-
fied model described in Section 3.1, the motor angle qm,t
is computed from (11) according to

qm,t =r−1
g

(
qa,t + k−1

(
Ma(qa,t)q̈a,t + g(qa,t)

+ C(qa,t, q̇a,t)q̇a,t − d(rgq̇m,t − q̇a,t)
))
. (16)

Here, the motor angular velocity q̇m can be seen as an in-
put signal to the sensor model. The damping term d(rgq̇m−
q̇a) is small compared to the other terms and is therefore
neglected.

The approach is similar to the one suggested in Gun-
narsson and Norrlöf (2004), which uses the relation given
by (11) in the case when the system is scalar and linear.
The results presented here are more general, since a multi-
variable nonlinear system is considered.

The acceleration in frame Oxszs, in Figure 2, measured
by the accelerometer, can be expressed as

ρ̈t = Rb
s(qa,t) (ρ̈b,t + ng) , (17)

where Rb
s(qa,t) is the rotation matrix fromOxbzb toOxszs,

ng =
(
0 g

)T
is the gravity vector and ρ̈b,t is the second

time derivative of the vector ρb,t, see Figure 2. The vector
ρb,t is described by the forward kinematics (Sciavicco and
Siciliano, 2000) which is a nonlinear mapping from joint
angles to Cartesian coordinates, i.e.,

ρb,t =

(
xacct

zacct

)
= Tacc(qa,t), (18)

where xacct and zacct are the position of the accelerometer
expressed in frame Oxbzb. Differentiation of ρb,t twice,
with respect to time, gives

ρ̈b,t = J(qa,t)q̈a,t +

(
2∑
i=1

∂J(qa,t)

∂q
(i)
a,t

q̇
(i)
a,t

)
q̇a,t, (19)

where q
(i)
a,t is the ith element of qa,t and J(qa,t) is the

Jacobian of Tacc(qa,t), i.e.,

J(qa) = ∇qa
Tacc(qa). (20)

Both the position model (16) for the motors and the
acceleration model (19) are now a function of the state
variables qa,t, q̇a,t, and q̈a,t.

Remark: If the nonlinear dynamics (10) and (11), are
used, see Section 3.1, the relation in (16) becomes linear
since qm,t is a state variable. However, the relation in (19)
becomes more complex since q̈a,t is no longer a state, but
has to be computed using (11).

4. Analysis

4.1. Simulation Model

In order to perform Cramér-Rao lower bound (crlb)
analysis, the true robot trajectory must be known. Hence,
in practice this must be conducted in a simulation envi-
ronment since not all state variables are available as mea-
surements. In the sequel, the simulation model described
in (Karlsson and Norrlöf, 2005) is used, where the crlb
analysis is compared to Monte Carlo simulations of the
ekf and pf.

4.2. Cramér-Rao lower bound Analysis of the Robot

In Section 2.3, the posterior Cramér-Rao lower bound
(crlb) was defined for a general nonlinear system with
additive Gaussian noise. In this section the focus is on
the crlb expression for the industrial robot presented in
Section 3.1. Solving for the acceleration in (11) yields

κ(qa, q̇a)
M
= q̈a = −Ma(qa)−1

(
k(rgqm − qa)

− d(rgq̇m − q̇a)− g(qa)− C(qa, q̇a)q̇a
)
. (21)

Here, the motor angular velocity, q̇m, is considered as an
input signal, hence not part of the state-vector, x(t) =(
qa q̇a q̈a

)T
. The system can be written in state space

form as

ẋ =
d

dt

qa
q̇a
q̈a

 = f c(x(t)) =

 q̇a
q̈a

Λ(qa, q̇a, q̈a)

 , (22a)

Λ(qa, q̇a, q̈a) =
d

dt
κ(qa, q̇q). (22b)

The differentiation of κ is performed symbolically, using
the Matlab symbolic toolbox. According to Section 2.3
the crlb is defined as the stationary Riccati solution of the
ekf around the true trajectory, xtrue

t . This is formulated
for a discrete-time system. Hence, the continuous-time
robot model from (22) must be discretized. This can be
done by first linearizing the system and then discretizing
it, (Gustafsson, 2010). The differentiation is done numeri-
cally around the true trajectory, to avoid the very complex
symbolic gradient, and the result becomes,

Ac = ∇xf
c(x)|x=xtrue

t
(23)

=

 O I O
O O I

∂Λ(q,q̇,q̈)
∂q

∂Λ(q,q̇,q̈)
∂q̇

∂Λ(q,q̇,q̈)
∂q̈

 . (24)
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The desired discrete time system matrix is now given as

F̄ = eA
c·T , (25)

where T is the sample time. The crlb is presented in
Figure 3.

4.3. Estimation Performance

The performance of the ekf and pf are compared against
the Cramér-Rao lower bound (crlb) calculated in Sec-
tion 4.2, using simulated data. The model is implemented
and simulated using the Robotics Toolbox (Corke, 1996)
in Matlab Simulink. The robot is stabilized using a sin-
gle pid-controller. The estimation model and sensor model
will not use the bias states described in Section 3.2 because
no model errors or drift are included in the simulation.
This means that only the upper left corner of the matrices
in (14) are used.

The simulation study is based mainly around the ekf
approach, since it is a fast method well suited for large
Monte Carlo simulations. The pf is much slower, there-
fore, a smaller Monte Carlo study is performed. The Monte
Carlo simulations use the following covariance matrices for
the process and measurement noise

Q = 4 · 10−6I, R =

(
10−6 · I O
O 10−4 · I

)
. (26)

The measurement covariance is basically given by the mo-
tor angle and accelerometer uncertainty, and the process
noise covariance is considered as a filter design param-
eter. The system is simulated around the nominal tra-
jectory and produces different independent noise realiza-
tions for the measurement noise in each simulation. The
continuous-time Simulink model of the robot is sampled
in 1 kHz. The data is then decimated to 100 Hz before any
estimation method is applied.

The estimation performance is evaluated using the root
mean square error (rmse) which is defined as

rmse(t) =

 1

NMC

NMC∑
j=1

‖xtrue
t − x̂

(j)
t ‖22

1/2

, (27)

where NMC is the number of Monte Carlo simulations,

xtrue
t is the true state vector and x̂

(j)
t is the estimated

state vector in Monte Carlo simulation j. Here, the state
vector is divided up into states corresponding to angular
position, angular velocity, and angular acceleration, be-
fore (27) is used.

EKF. In Figure 3 the root mean square error (rmse)
from 500 Monte Carlo simulations are compared to the
crlb limit, both with and without acceleration measure-
ments. The crlb is computed as the square root of the
trace for the covariance matrix part corresponding to the
angular states. As seen, the rmse is close the fundamen-
tal limit. The discrepancy is due to model errors, i.e.,
neglected damping term and the fact that the estimator

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

Time [s]

R
M

S
E

(t
) 

[r
ad

]

RMSE EKF (no acc)
RMSE EKF (acc)
CRLB (no acc)
CRLB (acc)

Figure 3: Angular position rmse from 500 Monte Carlo simulations
using the ekf with and without accelerometer sensor are compared
to the crlb limit for every time, i.e., the square root of the trace of
the angular position from the time-varying crlb covariance.

Table 1: The rmse for arm-side angular position (qa), angular ve-
locity (q̇a) and angular acceleration (q̈a), with and without the ac-
celerometer, using 500 Monte Carlo simulations.

Accelerometer No accelerometer
RMSE qa 1.25 · 10−5 2.18 · 10−5

RMSE q̇a 7.57 · 10−5 4.08 · 10−4

RMSE q̈a 1.23 · 10−3 3.91 · 10−3

uses a simplified system matrix consisting of integrators
only. Also note that the accelerometer measurements re-
duce the estimation uncertainty. The results in Figure 3
are of course for the chosen trajectory, but the acceleration
values are not that large, so greater differences will occur
for larger accelerations. The rmse, ignoring the initial
transient is given in Table 1 for both angular position, ve-
locity and acceleration. The improvements are substantial
in angular position, but for control, the improvements in
angular velocity and acceleration are important.

PF. The proposal density pprop(x
(i)
t+1|x

(i)
t ,yt+1) in Al-

gorithm 1 is chosen as the conditional prior of the state

vector, i.e., p(x
(i)
t+1|x

(i)
t ), and resampling is selected every

time, which gives

γ
(i)
t = p(yt|x(i)

t ), i = 1, . . . , N. (28)

The particle filter is rather slow compared to the ekf for
this model structure. Hence, the given Matlab imple-
mentation of the system is not well suited for large Monte
Carlo simulations. Instead, a small Monte Carlo study
over a short part of the trajectory used for the ekf case
is considered. The pf and the ekf are compared, and a
small improvement in performance is noted. The result is
given in Figure 4. One explanation for the similar results
between the ekf and pf is that the nonlinearities may not
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Figure 4: ekf and pf angular position rmse with external accelerom-
eter signal from 20 Monte Carlo simulations.

give a multi modal distribution, hence the point estimates
are quite similar. The advantage with the pf is that it can
utilize hard constraints on the state variables and it can
also be used for control and diagnosis where the full poste-
rior pdf is available. Even though the pf is slow, it gives
more insight in the selection of simulation parameters than
the ekf, where the filter performance is more dependent
on the ratio between the process and measurement noise.

5. Experiments on an ABB IRB4600 Robot

The experiments were performed on an ABB IRB4600
industrial robot, like the one seen in Figure 1. To illu-
minate the tracking capacity of the filters, the servo tun-
ing of the robot was not optimal, which introduces more
oscillations in the path. The accelerometer used in the
experiments is the triaxial accelerometer CXL02LF3 from
Crossbow Technology, which has a range of ±2 g, and a
sensitivity of 1 V/g (Crossbow Technology, 2004). In the
next sections the experimental setup and results are given.

5.1. Experimental Setup

The orientation and position of the accelerometer were
estimated using the method described in Axelsson and
Norrlöf (2012). All measured signals, i.e., acceleration,
motor angles and arm angular acceleration reference, are
synchronous and sampled with a rate of 2 kHz. The ac-
celerometer measurements are filtered with a low pass filter
before any estimation method is applied to better reflect
the tool movement. The path used in the evaluation is il-
lustrated in Figure 5, and it is programmed such that only
joints 2 and 3 are moved. Moreover, the wrist is configured
such that the couplings to joint 2 and 3 are minimized. It
is not possible to get measurements of the true state vari-
ables xtrue

t , as is the case for the simulation, instead, the
true trajectory of the end-effector, more precisely the tool

center point (tcp), xtcpt and ztcpt , is used for evaluation.
The true trajectory is measured using a laser tracking sys-
tem from Leica Geosystems. The tracking system has an
accuracy of 0.01 mm per meter and a sample rate of 1 kHz
(Leica Geosystems, Metrology Products, 2008). The mea-
sured tool position is however not synchronized with the
other measured signals, i.e., a manual synchronization is
therefore needed, which can introduce small errors. An-
other source of error is the accuracy of the programmed
tcp in the control system of the robot. The estimated
data is therefore aligned with the measured position to
avoid any static errors. The alignment is performed using
a least square fit between the estimated position and the
measured position.

5.2. Experimental Results

The only measured quantity to compare the estimates
with is the measured tool position, as was mentioned in
Section 5.1. Therefore, the estimated arm angles are used
to compute an estimate of the tcp using the kinematic
relation, i.e., (

x̂tcpt

ẑtcpt

)
= Ttcp(q̂a,t), (29)

where q̂a,t is the result from the ekf or the pf. An-
other simple way to estimate the tool position is to use
the forward kinematic applied to the motor angles 1, i.e.,
Ttcp(qm,t). In the evaluation study the estimates from the
ekf, pf, and Ttcp(qm,t) are compared to measurements
from the Leica system. When computing the 2-norm of
the rmse the first 0.125 seconds are disregarded in order
to evaluate the tracking performance only, and not include
filter transients.

In the evaluation of the experiment, the focus is on
position error only since the Leica laser reference system
measures position only. However, the estimation tech-
nique presented is general, so the velocity estimates will
be improved as well, which is important for many con-
trol applications. In simulations this has been verified, see
Section 4.3 and Table 1. Since the position is based on
integrating the velocity model, this will in general be true
when applied to experimental data as well. However, the
current measurement system cannot be used to verify this.

EKF. Figure 5 shows that the estimated paths follow
the true path. The performance of the estimates are better
shown in Figure 6 and 7, where the four sides are magni-
fied. At first, it can be noticed that Ttcp(qm,t) cannot esti-
mate the oscillations of the true path. This is not a surprise
since the oscillations originates from the flexibilities in the
gear boxes which are not taken care of in this straight-
forward way to estimate the tcp. However, as seen the
accelerometer based sensor fusion method performs very
well. It can also be noticed that the ekf estimate goes
somewhat past the corners before it changes direction. An

1The motor angles are first transformed to the arm side of the
gear box via the gear ratio.
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Figure 5: The path start at the lower left corner and is counter-
clockwise. A laser tracking system from Leica Geosystems has been
used to measure the true tool position (solid). The estimated tool
position using the ekf (dashed) and Ttcp(qm,t) (dash-dot) are also
shown.

explanation to this phenomena can be that the jerk refer-
ence is used as an input to the estimation model. The jerk
reference does not coincide with the actual jerk as a result
of model errors and control performance. The initial tran-
sient for the ekf, due to incorrect initialization of the filter,
rapidly approaches the true path. In this case Ttcp(qm,t)
starts near the true path, but Ttcp(qm,t) can start further
away for another path. The position rmse is presented
in Figure 8, where the ekf with acceleration measure-
ments shows a significantly improve in the performance.
The 2-norm of the rmse2 for the ekf is reduced by 25 %
compared to Ttcp(qm,t). This is based on the single ex-
perimental trajectory, but the result is in accordance with
the simulation result and the theoretical calculations. Fig-
ure 8 also shows that the ekf converges fast. The Matlab
implementation of the ekf is almost real-time, and with-
out losing performance the measurements can be slightly
decimated (to approximately 200 Hz), yielding faster than
real-time calculations.

PF. The proposal density used during the simulation
did not work properly for the experimental data due to
a high signal to noise ratio (snr) and also model errors.
One could use an optimal proposal density, (Doucet et al.,
2000; Gustafsson, 2010), but the problem is that it is diffi-
cult to sample from that. Instead, the proposal density is
approximated using an ekf, (Doucet et al., 2000; Gustafs-
son, 2010)

pprop(xt|x(i)
t−1,yt) =

N(f(x
(i)
t−1) + K

(i)
t (yt − ŷ

(i)
t ), (H

(i)
t R†tH

(i)
t + Q†t−1)†),

(30)

where † denotes the pseudo-inverse, and where the matri-
ces are assumed to be evaluated for each particle state.

2The rmse is computed without considering the first 0.125 sec-
onds where the EKF has a transient behavior.
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Figure 6: The top side (upper diagram) and bottom side (lower dia-
gram) of the square path in Figure 5 for the true tool position (solid)
and tool position estimates using the ekf (dashed) and Ttcp(qm,t)
(dash-dot).
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Figure 8: Tool position rmse for the ekf (dashed) and Ttcp(qm,t)
(dash-dot). The 2-norm of the rmse-signals, without the first 0.125
seconds, are 0.1246 and 0.1655 for the ekf and Ttcp(qm,t), respec-
tively.

The result of the pf compared to the ekf can be found
in Figure 9 and Figure 10. The pf performs better in
the corners, i.e., the estimated path does not go past the
corners before it changes. The motive that the pf can
handle the problem with the jerk input better than the
ekf can be that the particle cloud covers a larger area
of the state space. The pf estimate is also closer to the
true path, at least at the vertical sides. Figure 11 shows
the rmse for the pf which is below the rmse for the ekf
most of the time. The resulting 2-norm of the rmse for
the pf is 0.0818, which is approximately 66 % of the ekf
and 49 % of Ttcp(qm,t). Note that the transients are not
included, i.e., the first 0.125 seconds are removed. The pf
converges much faster than the ekf as can be seen clearly
in Figure 11. The pf in the proposed implementation is
far from real-time and the bias states are needed to control
the model errors.

6. Conclusions and Future Work

A sensor fusion approach to find estimates of the tool
position, velocity, and acceleration by combining a triax-
ial accelerometer at the end-effector and the measurements
from the motor angles of an industrial robot is presented.
The estimation is formulated as a Bayesian problem and
two solutions are proposed; the extended Kalman filter and
the particle filter. The algorithms were tested on simulated
data from a realistic robot model as well as on experimen-
tal data.

Sufficiently accurate estimates are produced for simu-
lated data, where the performance both with and without
accelerometer measurements are close to the fundamen-
tal Cramér-Rao lower bound limit in Monte Carlo simula-
tions. The dynamic performance for experimental data is
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Figure 9: The top side (upper diagram) and bottom side (lower
diagram) of the square path in Figure 5 for the true tool position
(solid) and tool position estimates using the ekf (dashed) and the
pf (dash-dot).
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Figure 10: The left side (left diagram) and right side (right diagram)
of the square path in Figure 5 for the true tool position (solid) and
tool position estimates using the ekf (dashed) and the pf (dash-dot).
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Figure 11: Tool position rmse for the ekf (dashed) and the pf (dash-
dot). The 2-norm of the rmse-signals, without the first 0.125 sec-
onds, are 0.1246 and 0.0818 for the ekf and the pf, respectively.

also significantly better using the accelerometer method.
The velocity estimates are also proven to be much more ac-
curate when the filter uses information from the accelerom-
eter. This is important for control design in order to give
a well damped response at the robot arm.

Since the intended use of the estimates is to improve
position control using an off-line method, like iterative
learning control, there are no real-time issues using the
computational demanding particle filter algorithm, how-
ever the extended Kalman filter runs in real-time in Mat-
lab. The estimation methods presented in this paper are
general and can be extended to higher degrees of freedom
robots and additional sensors, such as gyros and camera
systems. The main effect is a larger state space model
giving more time-consuming calculations and also a more
complex measurement equation. The most time-consuming
step in the ekf is the matrix multiplications FtPt|tF

T
t .

The two matrix multiplications require in total 4n3 flops3.
For example, going from 2 to 6 dof increases the compu-
tational cost with a factor of 27. For the pf it is not as
easy to give a description of the increased computational
complexity.
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