
Extended Target Tracking with a Cardinalized
Probability Hypothesis Density Filter

Umut Orguner, Christian Lundquist and Karl Granström
Department of Electrical Engineering
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Abstract—This paper presents a cardinalized probability hy-
pothesis density (CPHD) filter for extended targets that can
result in multiple measurements at each scan. The probability
hypothesis density (PHD) filter for such targets has already
been derived by Mahler and a Gaussian mixture implementation
has been proposed recently. This work relaxes the Poisson
assumptions of the extended target PHD filter in target and
measurement numbers to achieve better estimation performance.
A Gaussian mixture implementation is described. The early
results using real data from a laser sensor confirm that the
sensitivity of the number of targets in the extended target PHD
filter can be avoided with the added flexibility of the extended
target CPHD filter.
Keywords: Multiple target tracking, extended targets,
random sets, probability hypothesis density, cardinalized,
PHD, CPHD, Gaussian mixture, laser.

I. INTRODUCTION

The purpose of multi target tracking is to detect, track and
identify targets from sequences of noisy, possibly cluttered,
measurements. The problem is further complicated by the fact
that a target may not give rise to a measurement at each
time step. In most applications, it is assumed that each target
produces at most one measurement per time step. This is true
for some cases, e.g. in radar applications when the distance
between the target and the sensor is large. In other cases
however, the distance between target and sensor, or the size
of the target, may be such that multiple resolution cells of the
sensor are occupied by the target. This is the case with e.g.
image sensors. Targets that potentially give rise to more than
one measurement are denoted as extended.

Gilholm and Salmond [1] presented an approach for track-
ing extended targets under the assumption that the number
of received target measurements in each time step is Poisson
distributed. They show an example where they track point
targets which may generate more than one measurement, and
an example where they track objects that have a 1-D extension
(infinitely thin stick of length l). In [2] a measurement model
was suggested which is an inhomogeneous Poisson point
process. At each time step, a Poisson distributed random
number of measurements are generated, distributed around the
target. This measurement model can be understood to imply
that the extended target is sufficiently far away from the sensor
for its measurements to resemble a cluster of points, rather
than a geometrically structured ensemble. A similar approach

is taken in [3], where the so-called track-before-detect theory
is used to track a point target with a 1-D extent. Koch has
recently developed a Bayesian random matrix approach in
[4] to track extended and group targets which was further
improved in [5].

Random finite set statistics (FISST) proposed by Mahler
has become a rigorous framework for target tracking adding
the approximate Bayesian filters named as the probability
hypothesis density (PHD) filter [6] into the toolbox of tracking
engineers. In a PHD filter the targets and measurements are
modeled as finite random sets, which allows the problem of
estimating multiple targets in clutter and uncertain associations
to be cast in a Bayesian filtering framework [6]. A convenient
implementation of a linear Gaussian PHD-filter was presented
in [7] where a PHD is approximated with a mixture of Gaus-
sian density functions. In the recent work [8], Mahler gave an
extension of the PHD filter to also handle extended targets of
the type presented in [2]. A Gaussian mixture implementation
for this extended target PHD filter was presented in [9].

In this paper, we extend the works in [8] and [9] by
presenting a cardinalized PHD (CPHD) filter [10] for extended
target tracking. To the best of the authors’ knowledge and
based on a personal correspondence [11], no generalization
of Mahler’s work [8] has been made to derive a CPHD filter
for the extended targets of [2]. In addition to the derivation,
we also present a Gaussian mixture implementation for the
derived CPHD filter which we call extended target (tracking)
CPHD (ETT-CPHD) filter. Further, early results on laser data
are shown which illustrates robust characteristics of the ETT-
CPHD filter compared to its PHD version (called naturally as
ETT-PHD).

This work is a continuation of the first author’s initial
derivation given in [12] which was also implemented by the
authors of this study using Gaussian mixtures and discovered
to be extremely inefficient. Even though the formulas in [12]
are correct (though highly inefficient), the resulting Gaussian
mixture implementation also causes problems with PHD coef-
ficients that can turn out to be negative. The resulting PHD was
surprisingly still valid due to the identical PHD components
whose weights were always summing up to their true positive
values. The derivation presented in this work gives much more
efficient formulas than [12] and the resulting Gaussian mixture
implementation works without any problems.



The outline for the remaining parts of the paper is as fol-
lows. We give a brief description of the problem in Section II
where we define the related quantities for the derivation of
the ETT-CPHD filter in Section III. Note here that we are
unable to supply an introduction in this work to all the details
of the random finite set statistics due to space considerations.
Therefore, Section II and especially Section III require some
familiarity with the basics of the random finite set statistics.
The unfamiliar reader can consult Chapters 11 (multitarget
calculus), 14 (multitarget Bayesian filter) and 16 (PHD and
CPHD filters) of [13] for an excellent introduction. The main
results are described by three theorems in Section III whose
proofs needed also to be excluded due to lack of space.
The interested reader can find the proofs in the appendices
of the companion document [14] which is available online.
Section IV describes the Gaussian mixture implementation of
the derived CPHD filter. Experimental results based on laser
data are presented in Section V with comparisons to the PHD
filter for extended targets. Section VI contains conclusions and
thoughts on future work.

II. PROBLEM FORMULATION

PHD filter for extended targets has the standard PHD filter up-
date in the prediction step. Similarly, ETT-CPHD filter would
have the standard CPHD update formulas in the prediction
step. For this reason, in the subsequent parts of this paper, we
restrict ourselves to the (measurement) update of the ETT-
CPHD filter. We consider the following multiple extended
target tracking update step formulation for the ETT-CPHD
filter.
• We model the multitarget state Xk as a random finite set
Xk = {x1k, x2k, . . . , x

NT
k

k } where both the states xjk ∈ Rnx

and the number of targets NT
k are unknown and random.

• The set of extended target measurements, Zk =

{z1k, . . . , z
Nz

k

k } where zik ∈ Rnz for i = 1, . . . , Nz
k ,

is distributed according to an i.i.d. cluster process. The
corresponding set likelihood is given as

f(Zk|x) = Nz
k !Pz(N

z
k |x)

∏
zk∈Zk

pz(zk|x) (1)

where Pz( · |x) and pz( · |x) denote the probability mass
function for the cardinality Nz

k of the measurement set Zk
given the state x ∈ Rnx of the target and the likelihood
of a single measurement. Note here our convention of
showing the dimensionless probabilities with “P ” and the
likelihoods with “p”.

• The target detection is modeled with probability of de-
tection PD( · ) which is a function of the target state
x ∈ Rnx .

• The set of false alarms collected at time k are shown with
ZFAk = {z1,FAk , . . . , z

NFA
k ,FA

k } where zi,FAk ∈ Rnz are
distributed according to an i.i.d. cluster process with the
set likelihood

f(ZFA) = NFA
z !PFA(NFA

k )
∏

zk∈ZFA
k

pFA(zk) (2)

where PFA( · ) and pFA( · ) denote the probability mass
function for the cardinality NFA

k of the false alarm set
ZFAk and the likelihood of a single false alarm.

• Finally, the multitarget prior f(Xk|Z0:k−1) at each esti-
mation step is assumed to be an i.i.d. cluster process.

f(Xk|Z0:k−1) =Nk|k−1!Pk+1|k(Nk+1|k)

×
∏

xk∈Xk

pk+1|k(xk) (3)

where

pk|k−1(xk) , N−1k|k−1Dk|k−1(xk) (4)

with Nk|k−1 ,
∫
Dk|k−1(xk) dxk and Dk|k−1( · ) is the

predicted PHD of Xk.
Given the above, the aim of the update step of the ETT-

CPHD filter is to find the posterior PHD Dk|k( · ) and the
posterior cardinality distribution Pk|k( · ) of target finite set
Xk.

III. CPHD FILTER FOR EXTENDED TARGETS

The probability generating functional (p.g.fl.) corresponding
to the updated multitarget density f(Xk|Z0:k) is given as

Gk|k[h] =
δ
δZk

F [0, h]
δ
δZk

F [0, 1]
(5)

where

F [g, h] ,
∫
hXG[g|X]f(X|Zk−1)δX, (6)

G[g|x] ,
∫
gZf(Z|X)δZ (7)

with the notation hX showing
∏
x∈X h(x). The updated

PHD Dk|k( · ) and the updated probability generating function
Gk|k( · ) for the number of targets are then provided with the
identities

Dk|k(x) =
δ

δx
Gk|k[1] =

δ
δx

δ
δZk

F [0, 1]
δ
δZk

F [0, 1]
, (8)

Gk|k(x) =Gk|k[x] =
δ
δZk

F [0, x]
δ
δZk

F [0, 1]
. (9)

In the equations above, the notations δ ·
δX and

∫
· δX denote

the functional (set) derivative and the set integral respectively.
• Calculation of G[g|X]: The p.g.fl. for the set of mea-

surements belonging to a single target with state x is as
follows.

Gx[g|x] = 1− PD(x) + PD(x)Gz[g|x] (10)

where Gz[g|x] is

Gz[g|x] =

∫
gXf(Z|x)δZ. (11)

Suppose that, given the target states X , the measurement
sets corresponding to different targets are independent.



Then, we can see that the p.g.fl. for the measurements
belonging to all targets becomes

GX [g|X] , (1− PD(x) + PD(x)Gz[g|x])X . (12)

With the addition of false alarms, we have

G[g|X] = GFA[g](1− PD(x) + PD(x)Gz[g|x])X .
(13)

• Calculation of F [g, h]: Substituting G[g|X] above into
the definition of F [g, h] we get

F [g, h] =

∫
hXGFA[g](1− PD(x) + PD(x)Gz[g|x])X

× fk|k−1(X|Zk−1)δX (14)

=GFA[g]

∫
(h(1− PD(x) + PD(x)Gz[g|x]))

X

× fk|k−1(X|Zk−1)δX (15)

=GFA[g]Gk|k−1
[
h(1− PD(x) + PD(x)Gz[g|x]

]
(16)

=GFA[g]Gk|k−1
[
h(1− PD + PDGz[g]

]
(17)

where we omitted the arguments x of the functions
PD( · ) for simplicity. For a general i.i.d. cluster process,
we know that

G[g] =G(p[g]) (18)

where G( · ) is the probability generating function for the
cardinality of the cluster process; p( · ) is the density of
the elements of the process and the notation p[g] denotes
the integral

∫
p(x)g(x) dx. Hence,

F [g, h] =GFA(pFA[g])

×Gk|k−1
(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
.

(19)

We first present the following result.

Theorem 3.1 (Derivative of the Prior p.g.fl.): The prior
p.g.fl. Gk|k−1

[
h(1 − PD + PDGz[g]

]
has the following

derivatives.

δ

δZ
Gk|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
= Gk|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
δZ=φ

+
∑
P∠Z

G
(|P|)
k|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
×
∏
W∈P

pk|k−1

[
hPDG

|W |
z (pz[g])

∏
z′∈W

pz(z
′)

]
(20)

where

δZ=φ ,

{
1, if Z = φ

0, otherwise
. (21)

• The notation P∠Z denotes that P partitions the mea-
surement set Z and when used under a summation sign
it means that the summation is over all such partitions P .

• The value |P| denotes the number of sets in the partition
P .

• The sets in a partition P are denoted by the W ∈ P .
When used under a summation sign, it means that the
summation is over all the sets in the partition P .

• The value |W | denotes the number of measurements (i.e.,
the cardinality) in the set W .

Proof: The proof is given in the companion document [14]
(available online) due to space considerations. �

We can now write the derivative of F [g, h] as

δ

δZ
F [g, h] =

∑
S⊆Z

δ

δ(Z − S)
GFA(pFA[g])

× δ

δS
Gk|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
. (22)

Substituting the result of Theorem 3.1 into (22), we get the
following result.

Theorem 3.2 (Derivative of F [g, h] with respect to Z):
The derivative of F [g, h] is given as

δ

δZ
F [g, h] =

(∏
z′∈Z

pFA(z′)

) ∑
P∠Z

∑
W∈P

(
GFA(pFA[g])

×G(|P|)
k|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

])
× 1

|P|
ηW [g, h] +G

(|W |)
FA (pFA[g])

×G(|P|−1)
k|k−1

(
pk|k−1

[
h(1− PD + PDGz(pz[g]))

]))
×

∏
W ′∈P−W

ηW ′ [g, h] (23)

where

ηW [g, h] ,pk|k−1
[
hPDG

(|W |)
z (pz[g])

∏
z′∈W

pz(z
′)

pFA(z′)

]
. (24)

�

Proof: The proof is given in the companion document [14]
(available online) due to space considerations. �

After substituting g = 0 in the result of Theorem 3.2, we
define the quantity ρ[h] to simplify the expressions as

ρ[h] , pk|k−1
[
h(1− PD + PDGz(0))

]
(25)



which leads to

δ

δZ
F [0, h] =

(∏
z′∈Z

pFA(z′)

) ∑
P∠Z

∑
W∈P

(
GFA(0)

×G(|P|)
k|k−1

(
ρ[h]

)ηW [0, h]

|P|
+G

(|W |)
FA (0)G

(|P|−1)
k|k−1

(
ρ[h]

))
×

∏
W ′∈P−W

ηW ′ [0, h]. (26)

Taking the derivative with respect to x, we obtain the
following result.

Theorem 3.3 (Derivative of δF [0,h]
δZ with respect to x):

The derivative δ
δx

δF [0,h]
δZ is given as

δ

δx

δF [0, h]

δZ
=

(∏
z′∈Z

pFA(z′)

)
pk|k−1(x)

×
∑
P∠Z

∑
W∈P

( ∏
W ′∈P−W

ηW ′ [0, h]

)

×

((
GFA(0)G

(|P|+1)
k|k−1 (ρ[h])

ηW [0, h]

|P|

+G
(|W |)
FA (0)G

(|P|)
k|k−1(ρ[h])

)(
1− PD(x) + PD(x)Gz(0)

)
+GFA(0)G

(|P|)
k|k−1(ρ[h])

h(x)PD(x)G
|W |
z (0)

|P|
∏
z′∈W

pz(z
′|x)

pFA(z′)

+

(
GFA(0)G

(|P|)
k|k−1(ρ[h])

ηW [0, h]

|P|

+G
(|W |)
FA (0)G

(|P|−1)
k|k−1 (ρ[h])

)
×

∑
W ′∈P−W

h(x)PD(x)G
|W ′|
z (0)

ηW ′ [0, h]

∏
z′∈W ′

pz(z
′|x)

pFA(z′)

)
. (27)

�

Proof: The proof is given in the companion document [14]
(available online) due to space considerations. �

When we substitute h = 1 into the result of Theorem 3.3
and define the constants

βP,W ,GFA(0)G
(|P|)
k|k−1(ρ[1])

ηW [0, 1]

|P|
+G

(|W |)
FA (0)G

(|P|−1)
k|k−1 (ρ[1]); (28)

γP,W ,GFA(0)G
(|P|+1)
k|k−1 (ρ[1])

ηW [0, 1]

|P|
+G

(|W |)
FA (0)G

(|P|)
k|k−1(ρ[1]); (29)

αP,W ,
∏

W ′∈P−W
ηW ′ [0, 1], (30)

we can write (27) and (26) as follows.

δ

δx

δ

δZ
F [0, 1] =

(∏
z′∈Z

pFA(z′)

)
pk|k−1(x)

×
∑
P∠Z

∑
W∈P

αP,W

(
γP,W

(
1− PD(x) + PD(x)Gz(0)

)
+GFA(0)G

(|P|)
k|k−1(ρ[1])

PD(x)G
|W |
z (0)

|P|
∏
z′∈W

pz(z
′|x)

pFA(z′)

+ βP,W
∑

W ′∈P−W

PD(x)G
|W ′|
z (0)

ηW ′ [0, 1]

∏
z′∈W ′

pz(z
′|x)

pFA(z′)

)
(31)

δ

δZ
F [0, 1] =

(∏
z′∈Z

pFA(z′)

) ∑
P∠Z

∑
W∈P

αP,WβP,W .

(32)

Dividing the two quantities above, we obtain the updated PHD
Dk|k( · ) as given below.

Dk|k(x) =

∑
P∠Z

∑
W∈P αP,W γP,W∑

P∠Z
∑
W∈P αP,WβP,W

× (1− PD(x) + PD(x)Gz(0))pk|k−1(x)

+


∑
P∠Z

∑
W∈P G

|W |
z (0)

×
(
αP,W

|P| GFA(0)G
(|P|)
k|k−1(ρ[1])

+
∑

W ′∈P−W αP,W ′βP,W ′

ηW [0,1]

)


∑
P∠Z

∑
W∈P αP,WβP,W

× PD(x)
∏
z′∈W

pz(z
′|x)

pFA(z′)
pk|k−1(x). (33)

If we define the additional coefficients κ and σP,W as

κ ,

∑
P∠Z

∑
W∈P αP,W γP,W∑

P∠Z
∑
W∈P αP,WβP,W

, (34)

σP,W ,G
|W |
z (0)

(
αP,W
|P|

GFA(0)G
(|P|)
k|k−1(ρ[1])

+

∑
W ′∈P−W αP,W ′βP,W ′

ηW [0, 1]

)
, (35)

we can obtain the final PHD update equation as in (36) on the
next page.

Substituting h(x) = x in the result of Theorem 3.2, we get

δ

δZ
F [0, x] =

(∏
z′∈Z

pFA(z′)

) ∑
P∠Z

∑
W∈P

αP,W

(
GFA(0)

×G(|P|)
k|k−1(ρ[1]x)

ηW [0, 1]

|P|
x|P|

+G
(|W |)
FA (0)G

(|P|−1)
k|k−1 (ρ[1]x)x|P|−1

)
. (37)

Now dividing by δ
δZF [0, 1] which is given in (32), we get

the posterior p.g.f. Gk|k( · ) of the target number given in
(38) on the next page. Taking the nth derivatives with respect



Dk|k(x) =

κ(1− PD(x) + PD(x)Gz(0)) +

∑
P∠Z

∑
W∈P σP,W

∏
z′∈W

pz(z
′|x)

pFA(z′)∑
P∠Z

∑
W∈P αP,WβP,W

PD(x)

 pk|k−1(x). (36)

Gk|k(x) =

∑
P∠Z

∑
W∈P αP,W

(
GFA(0)G

(|P|)
k|k−1(ρ[1]x)ηW [0,1]

|P| x|P| +G
(|W |)
FA (0)G

(|P|−1)
k|k−1 (ρ[1]x)x|P|−1

)
∑
P∠Z

∑
W∈P αP,WβP,W

; (38)

Pk|k(n) =

∑
P∠Z

∑
W∈P αP,WG

(n)
k|k−1(0)

(
GFA(0)ηW [0,1]

|P|
ρ[1]n−|P|

(n−|P|)! δn≥|P| +G
(|W |)
FA (0)ρ[1]

n−|P|+1

(n−|P|+1)! δn≥|P|−1

)
∑
P∠Z

∑
W∈P αP,WβP,W

. (39)

to x, evaluating at x = 0 and dividing by n!, would give
the posterior probability mass function Pk|k(n) of the target
number given in (39).

IV. A GAUSSIAN MIXTURE IMPLEMENTATION

In this section, we assume the following.

• The prior PHD, Dk|k−1( · ) is a Gaussian mixture given
as

Dk|k−1(x) =

Jk|k−1∑
j=1

wjk|k−1N (x;mj
k|k−1, P

j
k|k−1).

(40)

• The individual measurements belonging to targets are
related to the corresponding target state according to the
measurement equation

zk = Cxk + vk (41)

where vk ∼ N (0, R) is the measurement noise. In
this case, we have the Gaussian individual measurement
likelihood pz( · |x) = N ( · ;Cx,R).

• The following approximation about the detection proba-
bility function PD(x) holds.

PD(x)N (x;m,P ) ≈ PD(m)N (x;m,P ) (42)

where m ∈ Rnx and P ∈ Rnx×nx are arbitrary mean and
covariances. This approximation is made for the sake of
simplicity and for not being simplistic by assuming a
constant probability of detection. The formulations can
be generalized to a function PD( · ) represented by a
Gaussian mixture straightforwardly though this would
increase the complexity significantly.

The Gaussian mixture implementation we propose has the
following steps.

1) Calculate ρ[1] as

ρ[1] =
∑

w̄jk|k−1(1− P jD + P jDGz(0)) (43)

where P jD , PD(mj
k|k−1) and

w̄jk|k−1 ,
wjk|k−1∑Jk|k−1

`=1 w`k|k−1

(44)

for j = 1, . . . , Jk|k−1 are the normalized prior PHD
coefficients.

2) Calculate ηW [0, 1] for all sets W in all partitions P of
Zk as follows.

ηW [0, 1] =G(|W |)
z (0)

Jk|k−1∑
j=1

w̄jk|k−1P
j
D

Lj,Wz
LWFA

(45)

where

Lj,Wz =N (zW ; zj,Wk|k−1,S
j,W
k|k−1) (46)

LWFA =
∏
z∈W

pFA(z) (47)

zj,Wk|k−1 =CWm
j
k|k−1 (48)

Sj,Wk|k−1 =CWP
j
k|k−1C

T
W + RW (49)

zW ,
⊕
z∈W

z, (50)

CW =[CT, CT, · · · , CT︸ ︷︷ ︸
|W | times

]T, (51)

RW = blkdiag(R,R, · · · , R︸ ︷︷ ︸
|W | times

). (52)

The operation
⊕

denotes vertical vectorial concatena-
tion.

3) Calculate the coefficients βP,W , γP,W , αP,W , κ and
σP,W for all sets W and all partitions P using the
formulas (28), (29), (30), (34) and (35) respectively.

4) Calculate the posterior means mj,W
k|k and covariances

P j,Wk|k as

mj,W
k|k =mj

k|k−1 + Kj,W (zW − zj,Wk|k−1) (53)

P j,Wk|k =P jk|k−1 −Kj,WSj,Wk|k−1(Kj,W )T (54)

Kj,W ,P jk|k−1C
T
W

(
Sj,Wk|k−1

)−1
. (55)



5) Calculate the posterior weights wj,P,Wk|k as

wj,P,Wk|k =
w̄jk|k−1P

j
DσP,W

Lj,W
z

LW
FA∑

P∠Z
∑
W∈P αP,WβP,W

. (56)

After these steps, the posterior PHD can be calculated as

Dk|k(x) =κ

Jk|k−1∑
j=1

w̄jk|k−1(1− P jD + P jDGz(0))

×N (x;mj
k|k−1, P

j
k|k−1)

+
∑
P∠Zk

∑
W∈P

wj,P,Wk|k N (x;mj,W
k|k , P

j,W
k|k ) (57)

which has

Jk|k = Jk|k−1

(
1 +

∑
P∠Zk

|P|

)
(58)

components in total. The number of components can further
be decreased by identifying the identical sets W in different
partitions and combining the corresponding components by
including only one Gaussian with weight equal to the sum of
the weights of the previous components. The usual techniques
of merging and pruning should still be applied to reduce the
exponential growing of the number of components, see [7] for
details.

The calculation of the updated cardinality distribution
Pk|k( · ) is straightforward with (39) using the quantities
calculated above.

Note that the ETT-CPHD filter, like ETT-PHD, requires all
partitions of the current measurement set for its update. This
makes these filters computationally infeasible even with the
toy examples and hence approximations are necessary. We are
going to use the partitioning algorithm presented in [9] to solve
this problem efficiently. This partitioning algorithm basically
puts constraints on the distances between the measurements
in a set of a partition and reduces the number of partitions to
be considered significantly sacrificing as little performance as
possible. The details of the partitioning algorithm are not given
here due to space considerations and the reader is referred to
[9].

V. EXPERIMENTAL RESULTS

In this section, we illustrate the early results of an experiment
made with the ETT-CPHD filter using a laser sensor and com-
pare it to the ETT-PHD version in terms of estimated number
of targets. In the experiment the measurements were collected
using a SICK LMS laser range sensor. The sensor measures
range every 0.5◦ over a 180◦ surveillance area. Ranges shorter
than 13 m were converted to (x, y) measurements using a
polar to Cartesian transformation. The data set contains 100
laser range sweeps in total. During the data collection two
humans moved through the surveillance area, entering the
surveillance area at different times. The laser sensor was at
the waist level of the humans and each human was giving
rise to, on average, 10 clustered laser returns. The first human
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Figure 1. Surveillance region and laser sensor measurements.

enters the surveillance area at time k = 22, and moves to
the center of the surveillance area where he remains still until
the end of the experiment. The second human enters at time
k = 38, and proceeds to move behind the first target, thus
both entering and exiting an occluded part of the surveillance
area. We illustrate the surveillance region and the collected
measurements in Figure 1.

Since there is no ground truth available it is difficult to
obtain a definite measure of target tracking quality, however
by examining the raw data we were able to observe the true
cardinality (0 from time k = 1 to k = 21, 1 from time k = 22
to k = 37 and 2 from time k = 38 to k = 100), which can
thus be compared to the estimated cardinality.

When the probability of detection PD( · ) is kept constant
over all of the surveillance area, the target loss is evident in this
scenario when the second human is occluded by the first since
the tracker always expects to detect the targets. Avoiding such
a loss is possible using inhomogeneous detection probability
over the surveillance region based on the target estimates. The
knowledge of the targets that are present, i.e., the estimated
Gaussian components of the PHD, can be used to determine
which parts of the surveillance area are likely to be occluded
and which parts are not. The estimated range r and bearing
ϕ between the sensor and the target may be computed from
the state variables. The P jD values of the components behind
each component, i.e., the components at a larger range from
the sensor than a target, is reduced from a nominal value
P 0
D according to the weight and bearing standard deviation

of the Gaussian component. The exact reduction expression is
quite complicated and omitted here. Instead we give a pictorial
illustration of the function PD( · ) that we use in Fig 2.

We run both ETT-PHD and ETT-CPHD filters with (nearly)
constant velocity target dynamic models that have zero mean
white Gaussian distributed acceleration noise of 2 m/s2 stan-
dard deviation. The measurement noise is assumed to be Gaus-
sian distributed with zero-mean and 0.1 m standard deviation.
Uniform Poisson false alarms are assumed. Since there is
almost no false alarm in the scenario, the false alarm rate has
been set to be 1/VS , where VS is the area of the surveillance
region, which corresponds to only a single false alarm per
scan on average. Both algorithms use Poisson target generated
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Figure 2. The function PD( · ) at time k = 65.

measurements with uniform rate of 12 measurements per
scan. Notice that, with these settings, the ETT-CPHD filter
is different than ETT-PHD filter only in that its posterior (and
prior) is a cluster process rather than a Poisson process which
is the case for ETT-PHD filter.

The first tracking experiment was performed with the
variable probability of detection described above with the
nominal detection probability of P 0

D = 0.99. The ETT-CPHD
filter obtained its cardinality estimates as the maximum-a-
posteriori (MAP) estimates of the cardinality probability mass
function. The ETT-PHD filter set the cardinality estimates
based on the rounded values of the Gaussian mixture PHD
weights. The sum of the Gaussian mixture PHD weights
of ETT-CPHD and ETT-PHD algorithms along with their
corresponding cardinality estimates are shown in Figures 3
and 4 respectively. Although both of the algorithms cardinality
estimates are the same, their sum of PHD weights differ
especially during the occlusion of one of the targets. ETT-
PHD filter has been discovered to have problems especially
when the target occlusion ends. When the target appears
into the view of the sensor from behind the other target,
its detection probability still remains slightly lower than the
nominal probability of detection. The ETT-PHD filters sum
of weights tends to grow as soon as several measurements
of the occluded target appear. This strange phenomenon can
be explained with the following basic example: Assuming no
false alarms and a single target with existence probability PE,
a single detection (without any other information than the
detection itself) should cause the expected number of targets
to be exactly unity. However, applying the standard PHD
formulae, one can calculate this number to be 1+PE(1−P jD)
whose bias increases as P jD decreases. We have seen that when
the target exits the occluded region, the sudden increase in
the sum of weights appearing is a manifestation of this type
of sensitivity of the PHD filter. A similar sensitivity issue is
mentioned in [15] for the case of no detection. The ETT-CPHD
filter on the other hand shows a perfect performance in this
case.

In order to further examine the stability issues depending on
low values of the detection probability, in the second tracking
experiment, we set the nominal probability of detection to
a slightly lower value P 0

D = 0.7. The results for the ETT-
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Figure 3. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-CPHD filter when nominal probability of detection
is P 0

D = 0.99.
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Figure 4. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-PHD filter when nominal probability of detection
is P 0

D = 0.99.

CPHD and ETT-PHD filters are illustrated in Figures 5 and
6. respectively. We see that while the ETT-CPHD filters
performance hardly changes, the ETT-PHD filters performance
shows remarkable differences. When the occlusion ends, the
jump in the sum of weights is so large for ETT-PHD that
the cardinality estimates are also affected. Another important
change is that ETT-PHD has significantly biased sum of PHD
weights in the steady state. This phenomenon has the following
explanation in the case of the basic example discussed above.
When consecutive detections are obtained when P jD is low, the
PHD weight would converge to the fixed point of the equation

PE = 1 + PE(1− P jD) (59)

which is PE = 1

P j
D

. In this case, since P 0
D = 0.7, the sum
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Figure 5. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-CPHD filter when nominal probability of detection
is P 0

D = 0.7.
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Figure 6. The sum of weights (upper figure) and the cardinality estimates
(lower figure) of the ETT-PHD filter when nominal probability of detection
is P 0

D = 0.7.

of weights is converging approximately to 1/0.7 ≈ 1.43 and
2/0.7 ≈ 2.85 for the single and two target cases respectively.
The sum of ETT-CPHD filters PHD weights on the other hand
converge to much more reasonable values compared to those
of ETT-PHD.

When we made further trials, it has been seen that ETT-
CPHD filter is not immune to such issues either when the
nominal probability of detection P 0

D values are decreased
further. However, it seems to be much more robust to this
phenomenon than the ETT-PHD filter.

VI. CONCLUSIONS

A CPHD filter has been derived for the extended targets
which can give rise to multiple measurements per each scan

modeled by an i.i.d. cluster process. A Gaussian mixture
implementation for the derived filter has also been proposed.
The results of early experiments on laser data show that the
cardinality estimates and the PHD weights of the new ETT-
CPHD filter is more robust to different parameter settings than
its PHD counterpart.

The experiments made on the laser data contained few (if
not none) false alarms. Further experiments with significant
clutter must be made to evaluate performance improvements
compared to the ETT-PHD filter.
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