
  

  

Diagnosability Analysis Considering Causal 

Interpretations for Differential Constraints 

  

  

Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander,  

Belarmino Pulido and Gautam Biswas 

  

  

Linköping University Post Print 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2012 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE.  

Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino Pulido and Gautam 

Biswas, Diagnosability Analysis Considering Causal Interpretations for Differential 

Constraints, 2012, IEEE transactions on systems, man and cybernetics. Part A. Systems and 

humans, (42), 5, 1216-1229. 

http://dx.doi.org/10.1109/TSMCA.2012.2189877 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-82059 
 

http://dx.doi.org/10.1109/TSMCA.2012.2189877
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-82059


IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART A 1

Diagnosability Analysis Considering Causal
Interpretations for Differential Constraints

Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino Pulido, and Gautam Biswas

Abstract—This work is focused on structural approaches to
studying diagnosability properties given a system model taking
into account, both simultaneously or separately, integral and
differential causal interpretations for differential constraints. We
develop a model characterization and corresponding algorithms,
for studying system diagnosability using a structural decompo-
sition that avoids generating the full set of system Analytical
Redundancy Relations. Simultaneous application of integral and
differential causal interpretations for differential constraints
results in a mixed causality interpretation for the system. The
added power of mixed causality is demonstrated using a Reverse
Osmosis Subsystem from the Advanced Water Recovery System
developed at NASA Johnson Space Center. Finally, we summarize
our work and provide a discussion of the advantages of mixed
causality over just derivative or just integral causality.

Index Terms—Fault diagnosis, Diagnosability, Detectability,
Isolability, Structural Analysis

I. INTRODUCTION

FAULT Detection and Diagnosis, FDD, are essential for
Fault Tolerant Control and System Health Monitoring

tasks. Model-based Reasoning has seen significant research
activities from both the Systems Dynamics and Control
Engineering (FDI) [1], [2], [3] and the Artificial Intelligence
Diagnosis (DX) [4], [5] communities in the last three decades.
The two communities have developed different algorithms
that has been proved to be complementary [6]. An advantage
of using Model-based techniques against other diagnosis
approaches, like Expert Systems or Machine Learning, relies
in the re-usability of models or diagnostic algorithms [7] (even
though this re-usability process is quite difficult in practice).

In the last decade, a lot of work has been devoted to
analyze diagnosability and sensor placement in the context
of model-based diagnosis. Early works in the DX community
on fault diagnosability were devoted to the definition and
characterization of the diagnosability concept, based on fault
detection and isolation results [8]. Recently, the process has
been carried out by pre-computing the whole set of existing
Analytical Redundancy Relations (ARRs) for a given set of
sensors, and analyzing their discriminability properties [9], [10].
But such approaches are infeasible for large systems. More
recently, [11], [12] have explored alternative and more efficient
computational ways for diagnosability analysis.
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Our work extends all these previous works by studying the
diagnosability properties given a system model and a fixed
set of sensors. The novelty of this work relies upon causality,
i.e. the computational form, in constraints modeling dynamics.
Our approach focuses on analyzing the structural model of the
system to define and efficiently compute detectable and isolable
parts of the system. The first contribution of this work is to
consider either integral or derivative causality in differential
constraints while performing system diagnosability analysis
using the system model. The second contribution considers
mixed causality –allowing the choice of derivative or integral
causality on individual constraints – while analyzing system
diagnosability. How to deal with loops for both approaches
is discussed, and efficient algorithms for computing causal
matchings in each case are developed. Then, we compare
the diagnosability capabilities for the integral, derivative and
mixed causality approaches. Finally, we discuss the applicability
of sequential residual generators with the different causal
interpretations.1

To illustrate these concepts and algorithms we consider a
complex case study, the Reverse Osmosis Subsystem from the
Advanced Water Recovery System, developed at NASA John-
son Space Center [13], [14]. We have shown that the proposed
algorithms can be used to analyze structural diagnosability of
a complex system without exhaustive computation of the set of
residuals. Moreover, we show that diagnosability is improved
when mixed causality is considered.

This article is organized as follows. First, we introduce
the problem formulation, together with a simple system to
illustrate the main concepts of this work. The theoretical
background for the basic concepts used in the proposal is
provided next. This is followed by an analysis of the structural
diagnosability properties of a system model under different
causal interpretations for differential constraints. Next, we
discuss the applicability of the proposed method to real systems,
where both integral and derivative causalities are known to
face different implementation issues. Finally, we present and
discuss results obtained using the approach on the case study,
and draw some conclusions.

II. PROBLEM FORMULATION

We use a simple three-tank system model (Fig. 1) to
introduce the problem and formulate the different classes of
residual generators that we discuss in the paper. The three-tank

1A Matlab implementation is available at http://www.fs.isy.liu.se/Software/
CausalIsolability/.



system model is represented by the set of equations

c1 : q1 =
1

RV 1
(p1 − p2) c7 : y1 = p1

c2 : q2 =
1

RV 2
(p2 − p3) c8 : y2 = q2

c3 : q3 =
1

RV 3
(p3) c9 : y3 = q0

c4 : ṗ1 =
1

CT1
(q0 − q1) c10 : ṗ1 =

dp1
dt

c5 : ṗ2 =
1

CT2
(q1 − q2) c11 : ṗ2 =

dp2
dt

c6 : ṗ3 =
1

CT3
(q2 − q3) c12 : ṗ3 =

dp3
dt

where pi is the pressure in tank i, qi the flow through valve i,
RV i the flow resistance of valve i, and CTi the capacitance
of tank i. Three sensors y1, y2, and y3, measure p1, q2, and
q0, respectively. For this study, six parametric faults have been
considered in the plant: change in capacity of tanks CT1, CT2,
and CT3, and partial blocks in valves RV 1, RV 2, RV 3.

�� �� ��
�� �� ��

�� ��

��

Fig. 1. Diagram of the three-tank system.

A sequential residual generator consists of a subset of
equations that are used to compute the unknown variables
included in these equations, and a redundant equation that
checks the consistency between the observations and the
considered subset of model equations. It is assumed here that
all algebraic loops can be solved using symbolic or numeric
solvers. This assumption is realistic since commercial packages
for simulating differential-algebraic equations, e.g. Dymola,
successfully use such techniques to solve large dynamical
models [15].

A main concern is how to handle the dynamics in the model.
For sequential residual generators, the literature report two
options: (1) integral causality form, and (2) derivative causality
form [1], [16], [9], [17]. This means that during computation,
only differentiations or integrations are allowed. However, when
solving differential algebraic equations, there is typically a
need to include both differentiation and integration in the same
solver [18]. For that reason, it is necessary to analyze the
influence of combining both types of causal assignments, i.e.,
mixed causality, when using dynamic models.

As an example, consider the three-tank model and assume
derivative causality. Fig. 2 graphically illustrates how variables
p1, q2, q0, q1, p2 can be sequentially computed from equations
c7, c8, c9, c4, c1 respectively, and ṗ1 and ṗ2 are computed by
numeric differentiation using equations c10 and c11. Finally, a
residual is computed using equation c5 as r := CT2ṗ2−q1+q2.

The variables are computed in a sequential way using numeric
differentiation where needed, and no algebraic loops need to
be solved.

y3

c9

q0

y1

c7

p1

c10

ṗ1

c4

q1
c1

p2

c11

ṗ2

y2

c8

q2

c5

r

Fig. 2. A sequential residual generator in derivative causality.

Integral causality works in a similar way. Fig. 3 illustrate a
sequential residual generator in integral causality where q2 and
q0 are computed using c8 and c9 and then variables q1, p1, p2,
ṗ1, and ṗ2 are computed using the set of equations c1, c4, c5,
c10, c11. Note that this is a differential loop [1] that has to be
solved numerically, which can be done using any ODE-solver
technique. Loops are broken by integrators, and sometimes this
is referred to as a spiral [19]. Finally, the residual is computed
using equation c7 as r := y1 − p1.

y3

c9

q0 c4

ṗ1

c10
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Fig. 3. A sequential residual generator in integral causality.

These two examples illustrate the main principle of sequential
residual generation with the derivative and the integral causality
assumptions. Here one can also note a fundamental difference
between the two cases. A loop including dynamic constraints,
i.e. any of c10, c11, c12, in the integral causality case did not
impose any difficulties since the loop could be directly solved
by pure integration or using the structure to build a state
observer [20]. However, a similar loop cannot be solved with
a derivative causality assumption. This is because the loop
corresponds to a differential equation which cannot be solved
by only differentiating variables.

We demonstrate in Section V cases where neither derivative
nor integral causality is enough and mixed causality has to
be applied to compute all variables. Thus, different causality
interpretations impose different constraints, which leads to
the formulation of different residual generators. Therefore,
different causality interpretations will likely result in different
maximal structural diagnosability properties for a given model.
Here, diagnosability refers to fault detectability and isolability
properties of the model. See Section III-C for formal definitions.
One possibility could be to compute the set of all Analytical Re-
dundancy Relations (ARRs) [21], Possible Conflicts (PCs) [16],
or Minimal Structurally Overdetermined (MSO) sets [22].
However, such an approach suffers from severe complexity
properties since the number of MSO sets is exponential in the



model redundancy [22]. This paper addresses the problem of
deriving efficient algorithms (which are not based on the set
of ARRs/PCs/MSO sets) using integral, derivative, or mixed
causality interpretations, and then uses this model to determine
the diagnosability properties of the system.

III. THEORETICAL BACKGROUND

This section recapitulates some basic formalism, concepts,
and notation needed to describe the theoretical developments
in Section IV.

A. Graph Representation of the Model

The class of models considered is a general class of first-
order differential-algebraic equations in the form

gi(x1, ẋ1, x2, z) = 0, i = 1, . . . ,m (1)

where z ∈ Rnz is the vector of known variables, x1 ∈ Rn1 is
the vector of unknown dynamic variables, and x2 ∈ Rn2 is
the vector of unknown algebraic variables. Since the objective
is to analyze the effect of causal assumptions it is convenient
to add explicitly, for each component x1,i in x1, constraints
capturing the dynamics

ẋ1,i =
d

dt
x1,i, i = 1, . . . , n1 (2)

The constraints in (1) are algebraic and system dynamics are
included in (2) which are referred to as dynamic or differential
constraints. Note that the constraints expressed by equation (2)
can be evaluated using two different causal interpretations:

1) derivative causal interpretation (derivative causality, for
short), where x1,i is differentiated to obtain ẋ1,i; and

2) integral causal interpretation (integral causality, for
short), where ẋ1,i is integrated to obtain x1,i.

Model analysis is based on the model structure rather than
the analytical equations. This makes it possible to analyze
large systems efficiently and with no numeric problems. The
disadvantage is that the structural results may not be as precise
as the corresponding analytical results. However, analytical
results are computationally expensive if they are at all possible
to derive. The reason is that the analytical results concern
properties of solutions to the model equations, and often it is
not possible to analytically solve nonlinear equations in the
form (1).

The structure of a model is commonly represented by a
bipartite graph as follows:

Definition 1. The structural model graph for the model equa-
tions (1) and (2) is defined as a bipartite graph, G(C,X,E),
where C and X are node sets, such that C = {c1, . . . , cm}
is the set of constraints, X the set of unknown variables, and
E ⊆ C ×X edges such that (ci, xj) ∈ E if xj ∈ X appears
in constraint ci ∈ C. The set of unknown variables are all
components in x1, ẋ1, and x2.

Since the objective is to analyze consequences of different
causal interpretations of the differential constraints (2), the
set of edges E is partitioned into E = EX ∪ ED ∪ EI

where ED is the set of edges corresponding to differentiated

variables ẋ1,i in the differential constraints (2), EI the non-
differentiated variables x1,i in the differential constraints, and
EX the remaining set of edges.

For example, the bi-adjacency matrix of the graph represent-
ing the three-tank model is shown in Table I, where X , D,
and I indicate edges in EX , ED, and EI , respectively.

TABLE I
BI-ADJACENCY MATRIX FOR THE STRUCTURAL MODEL OF THE

THREE-TANK SYSTEM.

q0 q1 q2 q3 p1 p2 p3 ṗ1 ṗ2 ṗ3

c1 X X X
c2 X X X
c3 X X
c4 X X X
c5 X X X
c6 X X X
c7 X
c8 X
c9 X
c10 I D
c11 I D
c12 I D

A number of simple graph operations and relations will be
used in our algorithms. Let G be a structural model graph,
E1 a set of edges, X1 a set of variables, and C1 a set of
constraints.
• G(C,X,E)− E1 is the graph G(C,X,E \ E1).
• G−X1 and G−C1 are the graphs where a set of variables

and constraints respectively are removed together with
any corresponding connected edges.

• C(G), X(G), E(G) are the constraints, variables, and
edges respectively in a graph G.

• C(G,E1) and C(G,X1) are the set of constraints in graph
G connected to edges E1 or variables X1 respectively.

• G1(C1, X1, E1) ∪ G2(C2, X2, E2) is the graph G(C1 ∪
C2, X1 ∪X2, E1 ∪ E2).

• G1(C1, X1, E1) ⊂ G2(C2, X2, E2) means that C1 ⊂ C2,
X1 ⊂ X2, and E1 ⊂ E2.

B. The Dulmage-Mendelsohn Decomposition

A key tool when analyzing structural models is the Dulmage-
Mendelsohn decomposition [23], used for diagnosis in [1],
[11], [24]. The general Dulmage-Mendelsohn decomposition
is illustrated in Fig. 4 where, by a suitable reordering of
constraints and variables, the bi-adjacency matrix is converted
to a triangular form. The sub-graph G− with node sets C−

and X− represents the underdetermined part of the model, G0

with node sets C0 and X0 the exactly determined part, and
G+ with node sets C+ and X+ the overdetermined part. The
overdetermined part contains redundancy, and can, therefore,
be used for diagnosis. In the exactly determined part there is a
finer structure of Hall-components, here denoted Gi. With some
slight abuse of notation, + and 0 will be used as operators on
both graphs and set of constraints in the forthcoming sections.

A central concept used frequently in the following sections
is matching [25]. A matching is a set Γ of edges such that no
two edges in Γ have common nodes. A matching can, in the
context of structural models, loosely be interpreted as which
variable is solved in which equation, and also as a causal
ordering or causal interpretation [26]. A matching is said to be



G−

Gn

. . .

G2

G1

G+

X− X0 X+

C−

C0

C+

Fig. 4. Dulmage-Mendelsohn decomposition.

complete with respect to a node set if all nodes in the set are
matched and perfect if the matching is complete with respect
to both node sets in the bi-partite graph.

C. Structural Detectability and Isolability

Given a structural model and the Dulmage-Mendelsohn
decomposition, we can now recapitulate standard definitions
on structural detectability and isolability. These definitions will
then be extended in Section IV to cover the cases where there
are causal constraints. Without loss of generality, it is assumed
that a fault f only influences one constraint, denoted cf . In case
a fault signal f appears in more than one constraint, extend
the model with a new constraint

xf = f

and substitute f for xf in the rest of the model. In the three-
tank system model, constraints {c1, c2, c3, c4, c5, c6} are linked
to faults in resistances and capacitances, constraints {c7, c8, c9}
are linked to sensor faults, and constraints {c10, c11, c12} are
not linked to faults.

Then from [1], [11]:

Definition 2 (Structural Detectability). A fault f is structurally
detectable in a model if

cf ∈ C+

Following the ideas in [11], a fault fi is isolable from a
fault fj if fi is detectable in the model G− cfj , i.e.

Definition 3 (Structural Isolability). A fault fi is structurally
isolable from fj in a model if

cfi ∈ (C \ {cfj})+

To illustrate the definition, consider the case of determining
which faults that are structurally isolable from a fault in valve
V2. Fig. 5 shows the just-determined and the over-determined
part of C \ {cfj} with cfj = c2.

Since c3 and c6, corresponding to faults in valve
V3 and tank T3, are not in the overdetermined part
{c1, c4, c5, c7, c8, c9, c10, c11}, the definition states that a fault
in valve V3 and a fault in tank T3 is not isolable from a fault
in valve V2. All other faults are isolable from a fault in valve
V2.

p3 q3 ṗ3 p1 p2 q0 q1 q2 ṗ1 ṗ2

c2 X X X
c12 X X
c3 X X
c6 X X X
c7 X
c11 X X
c4 X X X
c1 X X X
c8 X
c10 X X
c5 X X X
c9 X

(M \ {c2})+

Fig. 5. Illustration of isolability from a fault in RV2
, that is linked to

constraint c2.

IV. DIAGNOSABILITY UNDER CAUSAL CONSTRAINTS

This section first introduces formal definitions on causal
detectability and isolability and then proceeds to develop the
algorithms and formal proofs of their correctness.

A. Basic Definitions

As discussed in Section II, a causal assumption imposes an
ordering on how the unknown variables are computed in a
system. If a proper order can be found, the system is solvable.
This is better formulated as shown in Fig. 4, therefore, the
first step en route to defining detectability and isolability under
a causality assumption is to formally define solvability. Note
that special attention has to be given to the Hall components,
see Fig. 4, which correspond to a set of variables that has
to be solved simultaneously in a set of constraints. For the
case where no causality constraints are imposed, a solvability
condition is then that there exists a complete matching with
respect to the unknown variables.

As discussed in Section II, non-trivial loops involving integral
constraints can be solved sequentially. Then, since it is assumed
that algebraic loops can be solved, solvability for integral
causality is defined as follows:

Definition 4. A Hall component G is structurally solvable
under integral causality if there exists a perfect matching Γ in
G such that

Γ ⊆ EX ∪ EI

The definition is quite natural. A matching, with no derivative
edges, that is complete in the unknown variables gives a
computational sequence. The computational sequence may
involve Hall components of size larger than 1, i.e., more
than one variable has to be solved simultaneously. If the Hall
component includes an integration, the computational loop is
naturally broken [19], and if it is a pure algebraic loop, it is
assumed that any such loop can be solved numerically.

For the derivative causality case, a similar definition can
be stated. Here it is important to note that a non-trivial Hall
component with a derivative edge can not be solved using
differentiation only. This is because the equations in the Hall
component correspond to a differential-equation to be solved
which implies that integration is needed.

Definition 5. A Hall component G is structurally solvable
under derivative causality if there exists a perfect matching Γ
in G such that
• Γ ⊆ EX ∪ ED, and



q3 ṗ3 p3 p2 ṗ2 q2 q1 q0 ṗ1 p1

c3 X X
c6 X X X
c12 D I
c11 I D
c5 X X X
c8 X
c4 X X X
c9 X
c10 D I
c7 X

Fig. 6. A perfect matching Γ with causally solvable Hall components.

• Γ ∩ ED 6= ∅ implies that |Γ| = 1.

where |Γ| is the cardinality of the set Γ.

The second condition ensures that there are no non-trivial
loops with derivative edges.

For the mixed causality case, a matching Γ can structurally
solve all variables if all variables that are not computed by
integration can be solved using derivative causality. Thus, the
solvability definition for the mixed causality case can then be
stated based on Definitions 4 and 5.

Definition 6. A Hall component G is structurally solvable
under mixed causality if there exists a perfect matching Γ in
G such that all Hall components in G′(Γ) = G − C(G,Γ ∩
EI)−X(G,Γ∩EI) are structurally solvable under derivative
causality.

Fig. 6 illustrates a perfect matching, from the three-tank
example, such that all Hall components, indicated by the boxes,
are causally solvable.

Using Definition 2 in Section III that the monitorable part of
a model is its overdetermined part, i.e., C+ in Fig. 4, solvability
can be defined for the three different causality interpretations.
The set of constraints that is structurally monitorable can be
directly defined using the following definition.

Definition 7. Given a causal assumption, a set of constraints
C is structurally monitorable if

• C = C+, and
• there exists a complete matching Γ with respect to all

unknown variables in C such that all Hall components,
induced by Γ, are structurally solvable under the causal
assumption.

The Hall components induced by Γ means the Hall compo-
nents of the sub-graph defined by the constraints and unknowns
in Γ. This sub-graph is exactly determined and therefore are
the induced Hall components given by a Dulmage-Mendelsohn
decomposition as in Fig. 4. The union of two structurally
monitorable sets is also monitorable and, therefore, there is
a unique maximal monitorable set which is the union of
all monitorable sets. This maximal set of constraints is of
special importance since this set is a direct counterpart to the
overdetermined part used in Definitions 2 and 3.

Definition 8. Given a causal assumption, causal ∈
{der, int,mix}, the set of structurally monitorable constraints
under the causal assumption, C+

causal, is the maximal set of
structurally monitorable constraints.

q0 ṗ1 p1 q3 p3 ṗ3 q1 ṗ2 p2 q2
c4 X X X
c9 X
c10 D I
c1 X X X
c7 X
c3 X X
c12 I D
c6 X X X
c5 X X X
c11 D I
c2 X X X
c8 X

C+
mix

C+
int

Fig. 7. Computation of (C \ {c4})+causal.

With the definition of C+
causal, extensions of Definitions 2

and 3 are direct and summarized as:

Definition 9. A fault f is causally structurally detectable in a
model if

cf ∈ C+
causal

A fault fi is causally structurally isolable from fj in a model
if

cfi ∈ (C \ {cfj})+causal
Thus, algorithms that compute C+

causal for causal ∈
{der, int,mix} are sufficient to evaluate structural diagnos-
ability properties of a given model.

Again, consider the three-tank example. To determine causal
isolability from a fault in tank 1 capacitance, remove equation
c4 from the model and compute C+

causal for the three cases.
Fig. 7 shows the result. The boxes indicate a matching, with
corresponding Hall components, and the dashed box show
the overdetermined part. Then, since all hall components
are solvable in both mixed and integral causality, (C \
{c4})+mix = (C \{c4})+int = {c1, c2, c3, c5, c6, c7, c8, c11, c12},
and therefore are all faults isolable from a fault in tank 1 in
mixed and integral causality. Similarly, it can be shown that
(C \ {c4})+der = ∅ and thus no faults are isolable from a fault
in tank 1 in the derivative causality case.

B. Computing Monitorable Part Under a Causal Assumption

This section provides algorithms, and formal proofs, on
how to compute C+

causal and, for a given set of equations, a
causal matching. Computation of C+

causal makes it possible to
determine isolability properties according to Definition 9 and
with a causal matching it is possible to derive sequential residual
generators as described in Section II. Integral, derivative, and
mixed causality constraints will be treated separately.

1) Integral causality: The algorithm in [24] can be
directly used to compute C+

int. An algorithm descrip-
tion is included here, which is equivalent to the one
in [24], but uses the notation introduced in Section III.

Algorithm 1: Compute C+
int

function computeInteg(G(C,X,EX ∪ EI ∪ ED))
repeat

G := G+;
G1 := G− ED;
G := G− C(G,X(G−1 ));

until G−1 = ∅;
return C(G)



ṗ2 q1 ṗ1 q0 ṗ3 q3 p1 p2 p3 q2
c5 X X X
c4 X X X
c9 X
c6 X X X
c3 X X
c7 X
c2 X X X
c12 D I
c8 X
c10 D I
c11 D I

G2

Fig. 8. Bi-adjacency matrix for the structural model used to illustrate
Algorithm 1.

The algorithm works by iteratively removing variables that can
not be computed when no differential edges can be used in
a matching. To obtain a causal matching, consider the graph
G1 after the final iteration. First, any matching in G1 is causal
according to Definition 4. Also, observe that when the iteration
terminates it holds that X(G) = X(G1) and that G = G+,
which means that the causal matching in G1 is also a causal
matching for the variables in C+

int.
To illustrate how Algorithm 1 works consider the graph

represented by Fig. 8 as input. This graph shows the structure
of the model of three-tank system, when fault RV1 is decoupled,
i.e., constraint c1 has been removed. In the first iteration
G1 is the graph in the figure when the differential edges
marked D have been removed. The Dulmage-Mendelsohn
decomposition of G1 is indicated in the figure. The unknowns
in the under-determined part X(G−1 ) = {ṗ2, q1, ṗ1} are not
structurally solvable under integral causality and the constraints
including these variables C(G,X(G−1 )) = {c4, c5, c10, c11}
are not monitorable, hence removed from G. Since G−1 6= ∅, a
second iteration starts with G = G2 where the nodes sets of
G2 are indicated with lines on the top and on the right side of
the figure. Since (G2)+ = ∅ the algorithm terminates after this
iteration and returns C(G) = C(∅) = ∅. Hence no equations
are structurally monitorable under integral causality if RV1 is
decoupled.

2) Derivative causality: For the derivative causality case,
note that the algorithm from [24] cannot be used since
special attention has to be given to loops involving dif-
ferential constraints, i.e., condition 2 in Definition 5. The
algorithm works by first computing, again in an itera-
tive manner, the set of all computable variables Xc un-
der derivative causality and then the structurally moni-
torable part under derivative causality C+

der is computed.

Algorithm 2: Compute C+
der

function computeDeriv(G(C,X,EX ∪ EI ∪ ED))
Xc:= ∅;
repeat

Gnc := G−Xc;
Gni := Gnc − C(Gnc, EI);
Xc := Xc ∪X(G+

ni ∪G0
ni);

until X(G+
ni ∪G0

ni) = ∅;
G := G− C(G,X \Xc);
return C(G+)

To illustrate how Algorithm 2 works, consider again the
three-tank example. Fig. 9 shows the model when fault RV1

is

p2 p3 q3 ṗ3 ṗ2 q1 ṗ1 p1 q2 q0
c2 X X X
c3 X X
c6 X X X
c11 I D
c12 I D
c5 X X X
c4 X X X
c10 D I
c7 X
c8 X
c9 X

G1
ni

G2
ni

G3
ni

X1
c

X2
c = X3

c

Fig. 9. Bi-adjacency matrix for the structural model used to illustrate
Algorithm 2.

decoupled, i.e., constraint c1 has been removed.
Let input G be the corresponding graph. No unknown

variable has not yet been identified to be structurally solvable,
thus Xc = ∅. In Algorithm 2, Xc represents the set of
computable variables, Gnc represents the subgraph of G after
removing the computable variables, and Gni represents the
subgraph of Gnc after removing the integral constraints. In the
first iteration Gni is set to G1

ni which is the graph with node
sets indicated with lines in the figure. The difference between
G1

ni and the input graph is that the differential constraints
have been removed. The structurally solvable variables in
G1

ni are X1
c = {p1, q2, q0} also indicated with a line in the

figure. The outcome of the first iteration is that Xc = X1
c . In

the second iteration Gni = G2
ni where the so far identified

solvable unknowns X1
c have been removed. Note that c10 is

included in G2
ni which was not the case in G1

ni, since p1 ∈ X1
c .

The interpretation is that c10 can be used to solve for ṗ1
under derivative causality. The solvable unknowns in G2

ni are
{ṗ2, q1, ṗ1} and the updated set of identified solvable unknowns
becomes Xc = X2

c where X2
c is indicated in the figure. In

the third iteration Gni = G3
ni and Xc = X3

c = X2
c . Since

the third iteration did not identify any new solvable unknown,
Xc = X3

c is the complete set of structurally solvable unknowns
in the input graph and the iteration stops. In the second to
last line of the algorithm the constraints {c2, c3, c6, c11, c12}
containing unsolvable unknowns are removed. Finally, the
remaining constraints contain no redundancy and the output is
C(G+) = ∅.

Theorem 1. The output of Algorithm 2 satisfies the condition
in Definition 8 for derivative causality.

Proof: Consider C+
der and let the corresponding sub-graph

be denoted G+
d . As a first step, we will show that C+

der is
a subset of the output of the algorithm. According to the
definition of C+

der, there exists a matching Γ, Hall components
H(Γ) = {G1, . . . , Gn}, and for each component Gk there
exists a matching Γk such that Γk ⊂ EX∪ED, and Γk∩ED 6=
∅ implies that |Γk| = 1. This is equivalent to the condition

E(Gk) ∩ EI = ∅ (3)

Assume that the Hall components are enumerated as in Fig. 4
and define Xk = ∪j≤kX(Gj). In the first iteration G1 ⊂ Gnc

since Xc = ∅. It follows from (3) that no part of G1 is removed



when Gni is created and G1 ⊂ Gni. Using that G1 is a Hall
component we get

G1 = G+
1 ∪G0

1 ⊂ G+
ni ∪G0

ni

Hence X1 ⊂ Xc after the first iteration.
In the second iteration, it follows from the definition of Gnc

that G2−Xc ⊂ Gnc. Furthermore, X1 ⊂ Xc and condition (3)
imply that none of the constraints in C(G2 −Xc) is removed
when Gni is computed, and hence G2 −Xc ⊂ Gni.

Using that G2−Xc has no underdetermined part, G2−Xc ⊂
Gni −Xc and X(Gni) ∩Xc = ∅ we get

G2 −Xc = (G2 −Xc)
+ ∪ (G2 −Xc)

0

⊂ (Gni −Xc)
+ ∪ (Gni −Xc)

0 = G+
ni ∪G0

ni

and it follows that

X2 ⊂ Xc ∪X(G2 −Xc) ⊂ Xc ∪X(G+
ni ∪G0

ni)

where the set on the right-hand side is the set Xc after the
second iteration.

We have shown that X2 ⊂ Xc after the second iteration and
we can continue in the same way and show that Xk ⊂ Xc

after k iterations and X(G+
d ) = Xn ⊂ Xc after at most n

iterations. It follows that C+
der ∩ C(G,X \ Xc) = ∅, G+

d ⊂
G − C(G,X \ Xc), and we get C+

der ⊂ C(G+) in the final
step of the algorithm.

The next step is to show that the output of the algorithm is a
subset of C+

der. To do this it is sufficient to show that the output
is structurally monitorable, since C+

der is the largest structurally
monitorable subset of C. In iteration k there exists a complete
matching Γk with respect to the variables in G+

ni ∪G0
ni; see

Fig. 10.

Γ1

Γ2

Fig. 10. Causal Matchings Γ1 and Γ2 after iteration 2.

Let H(Γk) = {Gk1, . . . , Gknk
} denote the induced Hall

components. All Hall components Gkj fulfill condition (3),
since E(G2)∩EI = ∅ by definition. Define Γ = ∪kΓk, which
is a complete matching with respect to the variables in Xc in
G−C(G,X \Xc) and the induced Hall components are given

by ∪kH(Γk). After the operation G := G−C(G,X \Xc) the
set C(G) is a set of constraints where all unknown variables
can be computed under the derivative causality assumption. By
removing the exactly determined part of the model a structurally
monitorable set of constraints is obtained.

The proof of Theorem 1 includes a constructive procedure
to compute a causal matching Γ for the variables included in
C+

der.
3) Mixed causality: The mixed causality case is treated by

first considering an exactly determined model and proving, in a
constructive manner, that there always exists a causal matching
Γ. Then, this result is used to state an algorithm for computing
the set C+

mix.
For an exactly determined model, i.e. the graph G satisfies

that G = G0, the set H of Hall components is uniquely
defined and given by the Dulmage-Mendelsohn decomposition
described in Section III-B. Let the set of admissible edges
A(G) be defined as

A(G) =
⋃
g∈H

E(g) (4)

These edges are called admissible since these are the
only edges in G included in some perfect matching of
G. The following algorithm computes a causal matching,
assuming mixed causality, for any exactly determined system.
Algorithm 3: Mixed causality matching

function mixedCausalityMatching(G(C,X,EX ∪ EI ∪ ED))
Γ := ∅;
while A(G) ∩ EI 6= ∅ do

Select any e ∈ A(G) ∩ EI ;
Γ := Γ ∪ {e};
G := G− C({e})−X({e});

end
Let Γ′ be any perfect matching of G;
Γ := Γ ∪ Γ′;
return Γ

Correctness of the algorithm is proven in the following
theorem:

Theorem 2. For a graph that satisfies G = G0, Algorithm 3
returns a perfect matching Γ such that all Hall components in
G are structurally solvable under mixed causality according
to Definition 6.

Proof: Since e is included in a perfect matching, there
exists a perfect matching in G−C({e})−X({e}) as well, and
A(G) is well defined in each iteration. The set of admissible
edges, A(G), is decreasing in each iteration and after the final
iteration a reduced graph G is obtained with the property
A(G)∩EI = ∅. Let the Hall components in the original graph
be denoted by {G1, . . . , Gn}. After the reduction each Hall
component Gk has a structure similar to the one illustrated
in Fig. 11. Let the Hall components in the reduced Hall
component G′k be denoted by Hk = {Gk1, Gk2, . . . , }. The
Hall components in the reduced graph are then given by
H = ∪kHk and it follows from A(G) ∩ EI = ∅ that

E(Gkj) ∩ EI = ∅ (5)

The matching Γ obtained by the algorithm can be partitioned



I D

I D

Fig. 11. Reduced Hall component G′k

into sets Γk, k = 1, . . . , n, where each Γk is a perfect matching
in Gk.

It follows from the construction that G′k = Gk − C(Γk ∩
EI) − X(Γk ∩ EI), and it follows from (5) that all Hall
components in G′k are solvable under derivative causality.

Based on Theorem 2, the following result on how to compute
C+

mix is immediate.

Corollary 1. Given a structural model graph G, the set of
constraints in the overdetermined part G+ equals C+

mixed as
defined in Definition 8.

Proof: The result in Theorem 2 states that, in an exactly
determined system there always exists a mixed causal matching.
From this follows that mixed causality is as general as the no
causality case and thus C+

mix = C(G+).
The result can be summarized in the algorithm below.

Algorithm 4: Compute C+
mix

function computeMixed(G)
C1 := C(G+);
return C1

The three-tank system model (shown in Fig. 1) is used
to illustrate the proposed approach. In this section, the fault
detectability analysis is performed, and then, based on the
detectability results, single fault isolability analysis is carried
out.

C. Computational Complexity

The time-complexity of the presented algorithms is de-
termined by the number of times the Dulmage-Mendelsohn
decomposition is performed. Let n be the number of equations
and m the number of unknown variables in an input graph G.
The time-complexity of computing the Dulmage-Mendelsohn
decomposition of G is of order nm

√
min(m,n) [27].

Algorithm 4 makes one Dulmage-Mendelsohn decomposition
and thus have the same time-complexity. The number of
Dulmage-Mendelsohn decompositions performed in Algo-
rithms 1, 2, and 3 is linear in the number of unknowns
m. Hence, the time-complexity of these algorithms is of
order nm2

√
min(m,n). This means that all algorithms have

polynomial complexity.

D. Diagnosability Analysis of the Three-tank Model

Applying algorithms 1, 2, and 4 on the three-tank model
automatically provides the monitorable part of the model for in-
tegral, derivative, and mixed causality respectively. The results
show that all the constraints influenced by the faults considered
belong to C+

int, C+
der, or C+

mix, hence, the system has full
structural detectability when any of the three interpretations is
considered.

To illustrate single fault isolability properties of the model,
matrices representing isolability properties are computed for
each one of the causal interpretations considered. Tables II, III,
and IV show the isolability matrices when derivative, integral,
and mixed causality, respectively, is considered. Columns and
rows of the isolability matrix represent the faulty candidates
considered. An X in position (i, j) indicates that fault j cannot
be isolated from fault i. Isolability matrices were computed
using the algorithms proposed and ideas of Definition 9.

When derivative causality is considered, the diagnosis system
cannot provide full isolability, because faults in RV1

and CT1

cannot be isolated from the rest of the faults in the system, and
faults in RV2

, RV3
, CT3

cannot be isolated among themselves.
Only faults in CT2 can be uniquely isolated using derivative
causality.

Integral causality provides better isolability than the deriva-
tive case: using integral causality, faults in CT1

and CT2
can

be isolated from the rest of the faults in the system.
Finally, mixed causality provides the best results for isola-

bility: faults in RV1
, CT1

, CT2
can be isolated from the rest

of the faults in the system.

TABLE II
ISOLABILITY MATRIX FOR THE THREE-TANK SYSTEM WHEN DERIVATIVE

CAUSALITY IS CONSIDERED.

RV1
RV2

RV3
CT3

CT1
CT2

RV1
X X X X X X

RV2
X X X

RV3
X X X

CT3
X X X

CT1
X X X X X X

CT2
X

TABLE III
ISOLABILITY MATRIX FOR THE THREE-TANK SYSTEM WHEN INTEGRAL

CAUSALITY IS CONSIDERED.

RV1
RV2

RV3
CT3

CT1
CT2

RV1
X X X X X X

RV2
X X X

RV3
X X X

CT3
X X X

CT1
X

CT2
X

V. APPLICABILITY OF SEQUENTIAL RESIDUAL
GENERATORS WITH DIFFERENT CAUSAL INTERPRETATIONS

The objective of this section is, first, to discuss sequential
residual generators, and then, discuss and compare implemen-
tation aspects of derivative, integral, and mixed causality.

Sections III and IV described theory and methodology for
diagnosability analysis under the constraint of using sequential



TABLE IV
ISOLABILITY MATRIX FOR THE THREE-TANK SYSTEM WHEN MIXED

CAUSALITY IS CONSIDERED.

RV1
RV2

RV3
CT3

CT1
CT2

RV1
X

RV2
X X X

RV3
X X X

CT3
X X X

CT1
X

CT2
X

residual generators. This particular method is attractive because
of its general applicability to different types of models and
the significant possibility for automatic syntheses of residual
generators [28]. Models of industrial systems are typically large
scale dynamic models including non-linearities such as look-up
tables and saturations. Such models can without modifications
be the input to sequential residual generation algorithms. This
is an advantage compared to many other residual generation
approaches where the model needs to be written in a more
restrictive form, for example as a state-space, control affine,
or polynomial form. Another attractive feature of sequential
residual generation is the low computational complexity of
the residual generation synthesis. A main reason for its low
complexity is that no analytical computations are required,
instead, a computation scheme is derived from efficient
structural algorithms. This makes this approach feasible even
for large scale models where analytical design methods have
problems. For example, variable elimination based techniques
[29] suffer from severe complexity problems [30, p. 108] and
[31] has to deal with analytical difficulties wherever solutions
to a non-linear partial-differential equation are needed in the
design.

The above discussion motivates the usage of sequential
residual generators. With that choice, there is still the choice
of using derivative, integral, or mixed causality.

For the derivative case, approximations of derivatives are
needed. For example, a simple way is to implement

ˆ̇y(t) ≈ p

p/ωc + 1
y(t) (6)

where p is the differentiation operator and ωc some suitable
cut-off frequency. In difficult situations with high noise levels,
such a simple approach may not be sufficient and other
more advanced methods, for example those based on spline
interpolation [32], can be explored to better cope with noise. A
main drawback is that imposing differential causality means a
restriction in the possible residual generators. And, as seen in
the three-tank example in Section IV, isolability performance
may be affected. Another main drawback is the complication
of differentiating noisy measurement signals and the higher the
order of derivative, the more the noise is amplified. In addition,
if the derivative approximation is done with a causal filter like
(6), there will be a slight time delay for each differentiation
which, for higher order redundancy relations, will make signals
out of sync, and, therefore, introduce additional disturbances
in the residual. However, the direct approach with derivative
estimation may work very well in applications. For example,
the work in [33] indicates positive results using derivative
causality in a heavy duty vehicle engine application using real

measurement data from production sensors. In contrast with
the integral causality case, stability of the residual generator is
always ensured.

For the integral causality case, there is a similar restriction in
possible residual generators as for the derivative causality case.
There are no fundamental problems with noisy measurement
signals, but this comes at the price of not being able to guarantee
stable residual generators. Note that, just because the process
model is stable, there is no guarantee that the square subsystem
of an MSO set is stable. Another issue is the unknown initial
condition and that biased models may introduce difficulties.
Consider a model of a rotating machinery with a small bias in
the friction model, which is not an unreasonable situation:

ϕ̇ = ω (7)
Jω̇ = Tcontrol − Tfric (8)
y = ϕ (9)

Pure integration will then not be a good idea and biased
models are common in industrial cases, see for example [34],
[35]. Anyway, these problems regarding biased models can
also be avoided. In [20], a framework is proposed where
state observers are used to estimate the initial conditions for
simulation. Then, these initial conditions are used to reset the
open loop integration at suitable simulation intervals.

The main advantage with the mixed causality case is that
no restrictions are imposed on the possible residual generators.
In the three-tank example, it was clear from Tables II and
III that it is not possible to isolate fault in RV1

from fault
in RV2

using neither derivative nor integral causality. Fig. 12
shows a computational graph for a residual obtained for mixed
causality. Looking at the differential constraints in the residual,
c10 uses derivative causality, while both c11 and c12 use
integral causality. Only mixed causality allows for a residual to
isolate faults in RV1

(in this case this is the only residual not
containing the constraint c1). This residual was obtained from
the causal matching automatically provided by Algorithm 3
when mixed causality is considered. Also, Corollary 1 states
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q0

y1

c7

p1

c10

ṗ1

c4

q1 c5

ṗ2
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p2
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ṗ3

c12

p3
q3

c3
y2

c8

q2

c2

r

Fig. 12. Additional residual obtained when mixed causality is considered.

that performing analysis using mixed causality is equivalent
to an analysis with no restrictions on causal interpretation
of differential constraints. Thus, an upper limit of possible
structural diagnosis performance is obtained with a free choice
of residual generation method, including sequential generators.
But of course, the mixed causality case inherits properties,
the good ones as well as the bad ones, from both derivative
and integral causality meaning that both noise sensitivity
and stability of the residual generator has to be considered.



Typically, there is a possibility to lower the highest order
derivative using a mixed approach compared to a purely
derivative causality approach, which helps mitigating problems
with sensor noise.

VI. CASE STUDY: THE REVERSE OSMOSIS SYSTEM

The use and storage of consumable resources during extended
duration manned space missions entails high costs and requires
to fulfill high safety constrains. The development of an Life
Support System (LSS) will allow to reduce costs and increase
safety by minimizing the current dependency on resupply
missions [36]. To show the suitability and the improvement
of our proposal, we apply the approach to a subsystem of the
LSS, the Advanced Water Recovery System (AWRS), designed
and built at NASA Johnson Space Center (JSC) [13], [14].
The AWRS (see Fig. 13) works in microgravity conditions
converting waste water to potable water. As shown in Fig. 13,
the AWRS is made up of four different subsystems: (1) the
Biological Waste Processor, or BWP; (2) the Reverse Osmosis
System, or ROS; (3) the Air Evaporation System, or AES;
and (4) the Post Processing System, or PPS. Due to the high
complexity of each one of these components, this case study
only discusses the ROS results.

Fig. 13. Schema of the Advanced Water Recovery System with the Reverse
Osmosis System [37].

The ROS uses a membrane system to remove inorganic
matter from the effluent of the BWP. The inflow to the ROS,
i.e. the effluent from the BWP, draws into a coiled section of
pipe (Reservoir), and then cycles through the loop including
the feed pump (Fp, which is always on), the tubular reservoir
(TubRes), the recirculating pump (Rp), the membrane (Memb),
and the recirculation path (Pipe) that includes a multi way valve.
In this cycle the recirculating pump pulls the water at high
pressure through the membrane to obtain clean water, called
permeate. This water is then sent to the PPS, and the remaining
water is recirculated in a feedback loop. The recirculation of
water increases the concentration of impurities, called brine.
Approximately 85% of the input effluent is cleaned by the
ROS, and the remaining, the brine, is delivered to the AES.

Two measured variables have been selected for diagnosis
experiments in this system: (1) the pressure immediately after
the recirculation pump, PPump; and (2) the pressure of the
permeate at the membrane, PMemb.

The ROS was initially modelled using the bond graph
modeling approach [38], [39] (see Fig. 14). Using the bond
graph model of the system, the set of equations describing
the structural model of the ROS was automatically computed.
Table V shows the bi-adjacency matrix for the structural
model of the ROS. Rows and columns in the matrix represent
equations and variables of the structural model, respectively.
Variables named with an e in the matrix correspond to effort
variables (i.e., fluid pressures) in the bond graph model, while
variables named with an f correspond to flow variables (i.e.,
fluid flowrates) in the bond graph model. Numbers in the
variables indicate the bond number in the bond graph model.
Equations c30 to c35 are the differential equations of this
system.

Table VI describes the ROS model parameters, that are
also the fault candidates considered. Additional information
regarding the ROS can be found in [39], [40].

Fig. 14. Bond graph model of the Reverse Osmosis System [39], [40].

TABLE VI
ROS MODEL PARAMETERS AND DESCRIPTION OF POTENTIAL FAULTS.

Fault Description

CMemb Buildup of impurities in the membrane
CTubRes Buildup of impurities in the tubular resistance
GYRp Decrease in efficiency of the recirculation pump
IFp Change in inertia of the feed pump
IRp Change in inertia of the recirculation pump

RBrine Partial blockage in the pipe carrying brine
RMemb Partial blockage in flow through the membrane
RPipe Partial blockage in pipe carrying water to the membrane
RRp Increase in friction in the recirculation pump
RFp Increase in friction in the feed pump

A. Fault Detectability and Isolability Results

Algorithms 1, 2, and 4, automatically provide the monitorable
part of the ROS model for integral, derivative, and mixed
causality, respectively. The results show that all the equations
in the structural model influenced by the faults considered
belong to the sets C+

int, C
+
der, or C+

mix, hence, all faults are
structurally detectable in any of the three causal interpretations.



TABLE V
BI-ADJACENCY MATRIX FOR THE STRUCTURAL MODEL OF THE REVERSE OSMOSIS SYSTEM. ROWS ARE EQUATIONS, COLUMNS ARE VARIABLES.

e
3

e
5

e
1

e
2
6

e
1
1

e
2
0

f
2
0

f
7

f
1
1

f
2
1
2
7

f
3
0

e
1
6
b

e
1
6
a

f
1
6
a

e
1
5
b

e
1
5
a

f
1
5
a

f
1
4

e
2
3

e
2
4

e
2
5

f
5

f
2
5

e
7

e
2
8

e
3
1

e
1
4

ḟ
5

ḟ
2
5

ė
7

ė
2
8

ė
3
1

ė
1
4

c1 X X
c2 X X X X
c3 X X
c4 X X
c5 X X X X
c6 X X
c7 X X X
c8 X X
c9 X X X X
c10 X X
c11 X X
c12 X X
c13 X X X
c14 X X
c15 X X X
c16 X X
c17 X X X
c18 X X X
c19 X X X X X
c20 X X
c21 X X
c22 X X
c23 X X X
c24 X X
c25 X
c26 X
c27 X
c28 X
c29 X
c30 I D
c31 I D
c32 I D
c33 I D
c34 I D
c35 I D

Regarding structural fault isolability, the single fault isola-
bility matrices were computed using the proposed algorithms.
Tables VII, VIII, and IX show the isolability matrices for
derivative, integral, and mixed causality, respectively. Columns
and rows of the isolability matrix represent the faulty candidates
considered. An X in position (i, j) indicates that fault j cannot
be isolated from fault i.

Looking at Table VII it is clear that the diagnosis system
cannot provide full structural isolability when derivative
causality is considered. Moreover, none of the faults can
be uniquely isolated, and only two subsets of faults can be
structurally isolated from the rest of the faults in the system, i.e.,
Ider = {{fRFp, fIFp, fCTubRes}, {fRMemb, fCMemb}}.
The situation is similar for integral causality, none of
the faults are uniquely structurally isolable, and only two
subsets of faults are structurally isolable, i.e. Iint =
{{fGYRp, fRRp, fIRp}, {fRMemb, fCMemb}}. Finally, for
mixed causality, the structural isolability results are improved:
faults in RPipe and RBrine can be uniquely isolated, and
the rest of the fault candidates are included within subsets
of fault candidates that can be isolated from other faults,
i.e. Imix = {{fRPipe}, {fRBrine}, {fGYRp, fRRp, fIRp},
{fRFp, fIFp, fCTubRes}, {fRMemb, fCMemb}}

Thus, similar to the three-tank system, isolability analysis
results for the ROS showed that Ider ≺ Imix and Iint ≺ Imix,
that can be guaranteed because always C+

int ⊆ C+
mix and

C+
der ⊆ C+

mix. Full structural isolability cannot be achieved
for this system with its current sensors configuration, and
maximum structural isolability can only be achieved when

mixed causality is considered.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a novel way to analyze
structural diagnosability properties by analyzing the struc-
tural model of the system, under three different causality
assumptions: derivative, integral, and mixed causality. We
have proposed the theoretical framework and the algorithms to
compute the monitorable part for a system model for the three
causal interpretations considered, and used this to establish
the diagnosability properties of the system. Moreover, using
the computations for the monitorable part, we provide the
mechanisms to efficiently compute causal matchings for each
case.

Several approaches have been proposed in the literature to
analyze diagnosability of systems, like the work done by [9],
where diagnosability is analyzed after the computation of
the complete set of ARRs. The approach presented in this
paper provides diagnosability results with different causal
interpretations by analyzing the model of the system, and
not a previously designed diagnosis system. Other approaches
(e.g., [24]) propose canonical decomposition methods that
use invertibility information to analyze diagnosability of the
system. The main difference with our approach is that in [24]
differential constraints can be seen as non invertible constraints
if information about the loops is not considered. Hence, this
last approach is valid only when integral causality is considered,
but not for the derivative and mixed causality cases.



TABLE VII
ISOLABILITY MATRIX FOR THE ROS SYSTEM WHEN DERIVATIVE CAUSALITY IS CONSIDERED.

fRFp fIFp fCTubRes fGYRp fRRp fIRp fRPipe fRBrine fRMemb fCMemb

fRFp X X X
fIFp X X X

fCTubRes X X X
fGYRp X X X X X X X X X X
fRRp X X X X X X X X X X
fIRp X X X X X X X X X X

fRPipe X X X X X X X X X X
fRBrine X X X X X X X X X X
fRMemb X X
fCMemb X X

TABLE VIII
ISOLABILITY MATRIX FOR THE ROS SYSTEM WHEN INTEGRAL CAUSALITY IS CONSIDERED.

fRFp fIFp fCTubRes fGYRp fRRp fIRp fRPipe fRBrine fRMemb fCMemb

fRFp X X X X X X X X X X
fIFp X X X X X X X X X X

fCTubRes X X X X X X X X X X
fGYRp X X X
fRRp X X X
fIRp X X X

fRPipe X X X X X X X X X X
fRBrine X X X X X X X X X X
fRMemb X X
fCMemb X X

TABLE IX
ISOLABILITY MATRIX FOR THE ROS SYSTEM WHEN MIXED CAUSALITY IS CONSIDERED.

fRFp fIFp fCTubRes fGYRp fRRp fIRp fRPipe fRBrine fRMemb fCMemb

fRFp X X X
fIFp X X X

fCTubRes X X X
fGYRp X X X
fRRp X X X
fIRp X X X

fRPipe X
fRBrine X
fRMemb X X
fCMemb X X

The primary conclusions from this work are that: (1) analysis
of the diagnosability of a system considering different causal
interpretations can be efficiently done using just the model of
the system; and (2) when computing the monitorable part of
the system using mixed causality, we can always guarantee
that C+

int ⊆ C+
mix and C+

der ⊆ C+
mix, which means that mixed

causality will always provide equal or better isolability results
than the integral or derivative causality approaches. In this
paper we considered all algebraic constraints to be invertible.
However, this work still needs to investigate two important
issues: (1) all nonlinear constraints may not be invertible. Here
the work of [12] may be applied, and we believe that this will
produce superior diagnosability results; (2) implementation of
the numerical derivative of variables. In reality, this will create
a trade-off, especially when measurements are noisy. One will
likely have to trade-off robustness of the approach to obtain
better diagnosability results. This is an open question that we
will investigate in future work.
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