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In this world nothing can be said to be certain, except death and taxes 
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ABSTRACT 

This thesis deals with development of complex products via modeling and 

simulation, and especially the use of surrogate models to decrease the 

computational efforts when probabilistic optimizations are performed. Many 

methods that can be used to perform probabilistic optimizations exist and this 

thesis strives to present and demonstrate the capabilities of a few of them. 

Hopefully, this information can be helpful for someone who wants to choose a 

method. 

Knowledge about several different topics is required to perform a 

probabilistic optimization. First, it is necessary to incorporate the probabilistic 

behavior into the analysis by estimating how the uncertainties and variations in 

the model and its parameters are affecting the performance of the system. The 

focus in this thesis is on sampling based methods to estimate these probabilities. 

Secondly, an optimization algorithm should be chosen so that the computer can 

search for and present an optimal solution automatically.  

The probabilistic optimization process can be computationally demanding 

since numerous simulations of the model are performed each time the value of 

the objective function is estimated. It is therefore desirable to speed up the 

process by incorporating computationally effective surrogate models. This is 

especially important if the simulated model is computationally demanding on its 

own, e.g. a finite element model with many nodes. 

Each of these topics is presented in its own chapter of this thesis. A few 

methods are presented and their performances demonstrated for each topic. 

 

Surrogate models can also be used to improve the performances of optimization 

algorithms when the desire is to optimize computationally expensive objective 

functions. With this in mind, efforts have been made to improve the Complex-

RF optimization algorithm. A modified algorithm is presented in this thesis and 

the main difference is that it creates and utilizes surrogate models iteratively 

during the optimization process. The modified algorithm is compared with 

Complex-RF and is demonstrated to be superior for computationally expensive 

models. 
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We make a living by what we get, but we make a life by what we give. 

Winston Churchill 
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1  

INTRODUCTION 

In real life, variations and uncertainties are present almost everywhere and it 

may be important to estimate how these uncertainties and variations affect the 

performance of a product  [1]. Imagine that the curve that is shown in Figure 1 

represents the performance of a product as a function of a design parameter i. 

The point denoted A is the optimal design of the product if it is subject to 

almost no uncertainties. But point B would be a preferable design if the 

uncertainties and/or variations in i are large, since a small variation of i only 

affects the performance marginally. 
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Figure 1. A figure that displays a robust and a deterministic optimum.  

 

During the development of new products it is therefore desirable to investigate 

the variations and uncertainties that affect the product and their impact on the 



Design and Optimization under Uncertainties 

16 

16 

performance of the product. These phenomena may be estimated by performing 

experiments, but it is also possible to create a model of the product and perform 

simulations. 

The product developers must be able to trust the results of a simulation of a 

model for simulations to be useful and therefore a model needs to be verified 

and validated [2],[3]. But modeling and simulations have several advantages 

compared to building and evaluating physical prototypes anyway [4]. Ideally, it 

is both cheaper and faster to perform simulations since a model may be 

simulated several times with different parameter settings once it has been 

developed and its results are deemed credible. Meanwhile, a new physical 

prototype may need to be manufactured for each unique design parameter 

setting which means that precious manufacturing machines are occupied. 

Additionally, some physical experiments may be hazardous or infeasible to 

perform. 

When a model has been verified and validated, it is tempting to perform an 

optimization to let the computer suggest design parameters which lead to a 

product with optimal performance. Consequently the computer will perform 

numerous simulations of the model until an optimal solution or the maximum 

number of model simulations is reached. If the model is computationally 

expensive this may result in unrealistically long wall-clock times. One remedy 

to this problem is to replace the original models with computationally efficient 

surrogate models [5]-[7]. 

To investigate how robust the performance of a product is or the probability 

of success, the computational effort is increased compared to a deterministic 

analysis [8]. This further increases the desire to replace computationally 

demanding models with surrogate models.   

To perform a probabilistic optimization efficiently, knowledge about 

estimating uncertainties, optimization algorithms and surrogate models are 

needed. Many different methods have been proposed and this thesis strives to 

give an idea of the capabilities and performances of several of them. This 

information can hopefully be of some guidance to someone who is interested in 

performing probabilistic optimization of complex products. 

 Complex-RF is an optimization algorithm which has been used for 

optimizing complex system models by several authors [9]-[11]. Another aim 

with this thesis is to investigate whether it is possible to improve the 

performance of Complex-RF by modifying it so it creates and uses surrogate 

models iteratively during the optimization process. 

Additionally, the methods which are presented in this thesis are used to 

analyze two industrial applications. One is a system model of an electric 

motorcycle implemented in Simulink [12] and the other is a dynamic pressure 

regulator model implemented in Dymola [13]. The benefits are twofold; the 

industrial applications are analyzed and the capabilities of the different methods 

presented. A geometric model of another industrial application, an industrial 

robot, is used to demonstrate the performances of different surrogate models. 
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This thesis is divided into three parts, with the introduction constituting the 

first. The second part contains the background and contributions by others that 

this research is based on. The third part presents the contributions found in the 

appended papers and discusses the contributions and possible future work.  
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Surprising what you can dig out of books if you read long enough, isn't it? 

Robert Jordan, The Shadow Rising, 1991 
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There are three kinds of lies: lies, damned lies, and statistics 

Mark Twain 
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2  

HANDLING 

UNCERTAINTIES IN 

PRODUCT DESIGN 

It is desirable to estimate how variations and uncertainties affect the 

performance of a product to limit the risqué of undesirable effects [14]. This 

may be estimated by performing an uncertainty analysis, but first the variations 

and uncertainties need to be estimated. This may be done by carrying out 

experiments, using engineering intuition or experience. It is convenient to 

describe the behavior of the uncertainties with statistical entities so they may be 

described by just a few parameters. This chapter is divided into two parts. The 

first part briefly describes basic statistics that is used in this thesis, whereas the 

second part presents a few methods that can be used to estimate the resulting 

uncertainties and variations in the product performance. 

2.1 STATISTICAL ENTITIES 

When a probabilistic analysis of a product is made, it is desirable to estimate the 

expected value and spread of its performance. These may be estimated as the 

sample mean and standard deviation respectively. 

The mean of a population is calculated as the sum of the values in the whole 

population divided by the number of individuals. However, it is impractical to 

calculate the values of each individual in a large population. Instead, samples of 

the population are drawn and a mean value for the whole population is 

estimated from the samples. An unbiased estimator of the sample mean is 
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calculated according to Eq. (1), where N is the number of samples and yi the 

value of each sample [15]. 
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The standard deviation may be estimated in two different ways, depending on 

the context. Equation (2) may be used to estimate the standard deviation of N 

samples, whereas Eq. (3) may be used as an unbiased estimator of the standard 

deviation of the underlying population by using the N samples. The difference 

between the two estimations is negligible for large number of samples. 
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A similar measure of the spread is the variance, which is the standard deviation 

squared. It is often more convenient to use the standard deviation instead of the 

variance for describing the spread of a population since it has the same unit as 

the mean value. A drawback with using the variance or standard deviation as a 

measure of the spread is that they are sensitive to outliers, since they use the 

difference squared in the calculations. 

2.1.1 Standard Distributions 

Standard distributions are functions which describes the values of a data set 

with just a few parameters. It is therefore desirable to fit a data set gained from 

experiments to a standard distribution.  

A widely used distribution is the Normal or Gaussian distribution. It 

resembles a peak with the center located at the sample mean. The slopes of the 

peak are determined by the standard deviation and are steeper for lower values 

of the standard deviation. Figure 2 displays four different curves for the Normal 

distributions, with different values for the mean value and standard deviation. 
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Figure 2. A plot of four Gaussian distributions with different mean values 

and standard deviations. 

 

There exist numerous other standard distributions and the cumulative 

distributions of a few of them are shown in Figure 3, together with a cumulative 

distribution for a Normal distribution. 
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Figure 3. A plot of the cumulative distributions for a Normal, a Chi-squared, 

a Poisson and a Weibull distribution. 



Design and Optimization under Uncertainties 

24 

24 

It might be difficult beforehand to make an assumption regarding which 

standard distribution that reanimates the data set best. One solution is to fit the 

data to several promising standard distributions and see which distribution that 

results in the best fit. A graphical comparison can be made by drawing a QQ-

plot as shown in Figure 4. The data set is sorted in ascending order and an equal 

amount of samples are drawn from the standard distribution with a probability 

interval of 1/N between each sample. These values are then paired together with 

the data set value on the x-axis and the corresponding standard distribution 

value on the y-axis. If the distributions agree well, the paired values should lie 

on a straight line. 
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Figure 4. A QQ-plot that compares the X and Y distributions. 

 

It is probably more desirable to receive a numerical value for how well the two 

data sets agree. The Mean Squared Error (MSE), whose equation is shown in 

Eq. (4), estimates how well two data sets agree by summarizing the squared 

difference between each pair. A low MSE indicates that the two data sets agree 

well. 
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A drawback with the MSE is that the square makes it sensitive to outliers. It is 

also possible to use the measures which are mentioned in section 4.5.2. 
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2.2 SAMPLING BASED METHODS FOR 

PROPAGATING UNCERTAINTIES 

The methods that are used in this thesis to estimate how uncertainties and 

variations in the model and its parameters affect the results are sampling based 

methods. Others methods exist, e.g. First Order Methods, Polynomial Chaos 

Expansions, but are not presented in this thesis [16],[17].  

2.2.1 Monte Carlo Simulation 

The most intuitive sampling based method is probably the Monte Carlo 

Simulation (MCS). An MCS is carried out by performing experiments with the 

same settings and by the law of large numbers the results will converge as the 

number of experiments increase. One example is a dice where approximately 

one sixth of the throws will be ones if enough throws are made.  

An MCS may unfortunately need thousands of samples to converge, making it 

an unrealistic option for time demanding experiments or computationally 

expensive models [18]. More efficient sampling methods have been developed 

and in this thesis Latin Hypercube Sampling (LHS) has been used. 

2.2.2 Latin Hypercube Sampling  

LHS is an effective sampling based method, where the user begins by 

specifying the desired number of samples, n [19]. Then, LHS divides the 

probability distributions into n intervals of equal probability as shown in Figure 

5 for four samples and two parameters. The first parameter follows a normal 

distribution, whereas the second parameter is uniformly distributed. 
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Figure 5. A picture that shows an LHS consisting of four samples, for two 

variables. The first variable is normally distributed whereas the other is 

uniform. 
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One benefit with using LHS is that it operates in the same manner regardless of 

the number of uncertainty sources. A major drawback with LHS compared to 

MCS is that it is difficult to add new samples to the data set. For MCS it is 

possible to add samples until a desired accuracy is reached. For LHS it is only 

possible to add samples so that the total number of samples in the LHS is a 

multiple of the original sampling scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three roads to ruin; women, gambling and technicians. The most 

pleasant is with women, the quickest is with gambling, but the surest is with 

technicians. 

Georges Pompidou 
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3  

OPTIMIZATION 

ALGORITHMS 

The purpose of an optimization algorithm is to let the computer automatically 

explore the design space of a mathematical problem and present an optimal 

solution to it. The optimization problem may be formulated as in Eq. (5), where 

a mathematical function, f, should be minimized while the p inequality and r 

equality constraints are fulfilled [9].  

 

x
min  xf  

 (5) 

..ts

   pjxg j ,...,1,0 

   rkxhk ,...1,0 

 up

ii

low

i xxx 

  

Numerous optimization algorithms have been proposed and some of them have 

the ability to handle constrained optimization problems. It is possible to use an 

optimization algorithm which is unable to handle constraints even though the 

optimization problem is constrained, for example by adding the constraints to 

the objective function as penalty functions. If a solution violates any of the 

constraints, a penalty is added to the objective function value, which worsens 

the suggested solution drastically. This approach is shown in Eq. (6), where the 

coefficients a, b and c determine how large the penalty should be when the 

constraints are violated. 
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3.1 COMPLEX-RF 

Proposed by Box [20], the Complex algorithm is an optimization algorithm 

developed from the Nealder Mead Simplex algorithm [21]. The algorithm 

converges by iteratively moving k points in the design space. 
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Figure 6. A chart over the workflow of the Complex-RF optimization 

algorithm. 

 

A schematic workflow is shown in Figure 6 and the algorithm begins by 

randomly spreading the k points in the design space [22]. These points are 

spanning the Complex and their corresponding objective function values are 

found by calling the objective function. The point with the worst objective 

function value is moved along an imaginary line between itself and the centroid 

of the other points, to the other side of the Complex. If the point still is the 
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worst, it is moved towards the centroid of the other points until it no longer is 

the point with the worst objective function value. Then, the point which now is 

the worst is moved in a similar fashion along an imaginary line to the other side 

of the centroid of the other points. This process is shown in Figure 7 and 

progresses until the difference in the function values or the distance in the 

design space between the points is small enough. Additionally, the algorithm 

stops if the maximum number of objective function calls is reached, to avoid 

unnecessary long optimization times. 
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d) Iteration number two. 

Figure 7. Four schematic pictures which displays the working operations of 

Complex-RF. 

 

More advanced versions of the Complex algorithm have been suggested by 

adding randomization and forgetting factors [23]. The randomization factor 

enables a moving point to be placed randomly beside the imaginary line 

between itself and the centroid of the other points. This increases the robustness 

of the algorithm by making it improbable that it gets stuck and just repeats its 

moves along a few lines until the maximum number of function evaluations is 

reached. 

The forgetting factor penalizes old points in the Complex by a small factor 

each time a point is moved. Consequently, an optimization with a high 

forgetting factor leads to a Complex which predominantly is spanned by recent 
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points. This is useful for handling problems with plateaus or when the objective 

function varies with time. 

Since the starting points are spread randomly in the design space, different 

optimal solutions may be suggested by the algorithm when several 

optimizations are performed. 

Several authors have chosen Complex-RF for optimizing engineering 

problems and thereby demonstrated its performance [9]-[11]. 

3.2 FMINCON 

Fmincon is a collection of gradient-based optimization methods pre-

implemented in the mathematical software MATLAB [24]. Unlike the Complex 

algorithm, a starting point must be specified by the user. Fmincon then uses the 

gradients at the starting point to choose a specific optimization method and 

move to a better point. If the gradients at the starting point are known, it is 

possible to give them as inputs to the algorithm. Otherwise, fmincon will try to 

approximate the gradients by finite differences. 

Fmincon performs the same operations every time the same problem is 

optimized using the same starting point, meaning that the algorithm always 

suggests the same optimum. The gradient-based optimization method is 

excellent for solving unimodal problems where no local minimums exist, but 

makes fmincon highly starting point dependent for multi-modal problems.   

3.3 GENETIC ALGORITHMS 

A genetic algorithm reanimates the evolution seen in nature by implementation 

of survival of the fittest [25],[26]. A schematic workflow of a GA is shown in 

Figure 8 and it basically generates a predefined number of generations, 

consisting of a constant number of individuals. It starts by spreading an initial 

population randomly in the design space and each individual is given a fitness 

value by calling the objective function. The individuals with the best fitness 

values are selected for mating and a new generation with the same number of 

individuals is created. Since the best individuals are selected as parents, the next 

generation should be slightly better than the current. The GA progresses until a 

predefined number of generations is reached. It is possible to tune the 

optimization by for example changing the number of individuals in the 

population and the number of generations. 
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Figure 8. A schematic workflow for a simple genetic algorithm. 

 

There exist more advanced versions of genetic algorithms which enable 

more options. One example is letting the best individuals survive to the next 

generation, meaning that good individuals may survive for several generations. 

Another example is mutation, where the individuals may change randomly. This 

is a way of avoiding local minimums, but a too high mutation factor prevents 

the algorithm from converging. 

A drawback with genetic algorithms is that they usually converge quite 

slowly and require many objective function evaluations since the fitness values 

of all individuals in each generation needs to be calculated. Consequently, the 

number of objective function evaluations that is required to find the optimal 

solution is the number of individuals in each generation multiplied by the 

number of generations, and this number often tend to be quite high [15]. 

An advantage with genetic algorithms from a computational view is that it is 

possible to calculate the objective function values of all individuals in the 

present generation in parallel. If enough computers are available this means that 

the wall-clock time of an optimization may be reduced to the time it takes to 

evaluate one individual multiplied by the number of generations created. 
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3.4 OPTIMIZATION ALGORITHMS WHICH USES 

SURROGATE MODELS 

The performances of several optimization algorithms for computationally 

expensive models have been improved by incorporating surrogate models in the 

optimization process. One example is the genetic algorithm presented by 

Duvigneau et al. [15], which uses a kriging surrogate model. The algorithm 

operates similar to a normal genetic algorithm with two exceptions. 

1. Whenever the original objective function is called to calculate the 

objective function value, the values of both the variables and the 

objective function are stored in a database. 

2. For generation two and onwards, a kriging model is created from the 

database and used to estimate the objective function values of all new 

individuals. Afterwards, the objective function values of the 30% most 

promising individuals are evaluated by calling the original objective 

function. 

This means that many of the necessary objective function evaluations can be 

made by calling a surrogate model instead of the computationally expensive 

original objective function. 

Another way to use surrogate models together with optimizations is 

described by Forrester et al. [27]. First, a surrogate model of the original model 

is created. Then an optimization algorithm is used to find the optimum. After a 

model call at the optimum, the surrogate model is updated to incorporate this 

point as well. Then a new optimization is performed on the surrogate model and 

the surrogate model updated again. This process continues until a stop criterion 

is met, e.g. that approximately the same point was suggested to be optimal 

consecutive times.   

3.5 REDUCING THE DIMENSIONALITY 

A problem with optimization of complex products is that the performance of the 

product usually depends on numerous variables. Fortunately, the different 

variables affect the performance to different degrees. It is therefore desirable to 

focus the effort on the variables which affect the product performance most and 

neglect the others. This means that it is useful to use a method to identify the 

most important variables, and fortunately a few have been suggested. 

3.5.1 Screening 

A straight forward method to graphically analyze how the objective function 

varies is screening, where two variables at a time are varied between their lower 

and upper bounds. The values of the objective function are then plotted with the 

values of the first variable on the x-axis and the values of the second variable on 

the y-axis. One example of a contour plot of how the objective function varies is 

shown in Figure 9. 
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Figure 9. A contour plot of the Peaks function. 

 

Two drawbacks with this method are that no numerical value for the importance 

of the variables is gained and that numerous plots need to be created if the 

interactions between each possible pair of variables are desired, since only two 

variables at a time can be displayed.   

3.5.2 Local Sensitivity Analysis 

A local sensitivity analysis is performed around a reference design point by 

estimating partial derivatives of how the objective function varies when each 

variable is altered [28]. This is shown in Eq. (7), where yi denotes objective i 

and xj stands for design variable j. 
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The variables which result in partial derivatives close to zero are the ones which 

influence the objective function least and may be disregarded for small design 

changes [29]. The different variables may have different units and therefore be 
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of different orders of magnitude. This affects the partial derivatives and makes a 

direct comparison unfair. To enable a comparison, the partial derivatives need 

to be normalized as shown in Eq. (8). 
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A drawback with this method is that the measures of the importance of the 

variables are local and depend on the chosen step lengths when the partial 

derivatives are estimated. 

3.5.3 Surrogate Model Parameters 

Another method to assess the importance of the variables is to create a surrogate 

model of the mathematical problem. Then the coefficients for the different 

variables can be compared with each other [27]. For a polynomial response 

surface as described in section 4.2, the first order coefficients describe the 

importance of each variable if the design variables are normalized to [-1,1] [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But there's a world beyond what we can see and touch, and that world lives by 

its own laws. What may be impossible in this very ordinary world is very 

possible there, and sometimes the boundaries between the two worlds 

disappear, and then who can say what is possible and impossible? 

David Eddings, Pawn of Prophecy, 1982. 
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4  

SURROGATE MODELS 

Surrogate models are also known as metamodels (MMs) and are numerical 

approximations of how an entity varies when the entities that affect it are varied. 

One application of surrogate models is to create a simplified model of a system 

with unknown behavior and to use the surrogate model to predict the system 

characteristics for a given set of system parameters values instead of performing 

experiments. Another application is to use surrogate models instead of 

computationally demanding models to speed up analyzing processes. 

The main drawback when surrogate models are used is that estimation errors 

are introduced to the problem since a surrogate model is an approximation of 

the original model. But it is often necessary to use surrogate models anyway if a 

model simulation is computationally expensive. 

The next sections describe how to fit a surrogate model to a system and a 

few different types of surrogate models – Polynomial Response Surfaces, 

Kriging and Radial Basis Functions. Even though other surrogate models have 

been tested in this research, they are not presented in the appended papers, and 

are therefore not included here. 

4.1 FITTING OF SURROGATE MODELS  

A surrogate model is created by performing a few experiments or simulations of 

the system which the surrogate model is intended to reanimate. Then the 

surrogate model is fitted to these samples, meaning that the accuracy of the 

estimations of the surrogate models generally is higher closer to the samples 

used to fit the surrogate model. Consequently, the placements of the samples 

used for fitting the surrogate models are of great importance and it has also been 

given a name – design of experiments (DoE) [6]. 

Numerous DoEs have been suggested and the interested reader is 

encouraged to read works by Myers et al. [31] and Simpson et al. [32] where 
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several methods are presented. In this research Latin Hypercube Sampling 

(LHS) has been used as DoE to fit the surrogate models. It has also been used 

by several other authors for similar purposes [4]. A benefit with using LHS as 

DoE is that it operates in the same manner regardless of the number of 

dimensions the surrogate model is intended to handle. 

Another method is described by for example Forrester et al. [27]. It is 

suggested to fit a surrogate model according to a DoE, but to save some 

expensive model simulations for later. An infilling criterion is then used to 

decide which simulations that should be performed to improve the surrogate 

model. The criterion can for example be the optimum of the surrogate model or 

the point where the expected improvement is large. 

4.2 POLYNOMIAL RESPONSE SURFACES 

One of the most intuitive types of surrogate models is probably the polynomial 

response surface which tries to approximate a surrogate model as a polynomial 

of arbitrary degree. Eq. (9) shows an example of a polynomial response surface 

of degree two [6]. 

 

 
  


N

i

N

i

N

j

jiijii xxxy
1 1 1

0
ˆ    (9) 

 

This can also be written in matrix form as seen in Eq. (10). 

 

 βX xy ˆ  (10) 

 

To be able to use this response surface, the coefficients βi needs to be 

determined. Fortunately, it is possible to do this with a least square estimation. 

To perform a least square estimation a matrix system is created as seen in 

Eq. (11). Each row in the matrix system corresponds to Eq. (10) for a certain 

sample. For example, the top row is Eq. (10) for the first sample that was drawn 

to fit the surrogate model. 

 

yXβ   (11) 

 

This equation system is solved in a least square sense by performing the matrix 

operations seen in Eq. (12). A least square estimation finds the coefficients 

which minimize the sum of the errors squared for Eq. (11). 
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At least as many samples as the number of coefficients need to be drawn to fit a 

polynomial, but it is recommended to oversample with 50% [33] or 100% [34]. 

The two major drawbacks with this surrogate model are that the 

characteristics that is reanimated needs to be able to be approximated as a 

polynomial; and the requirement of numerous samples if the interaction terms 

between the different system parameters are included in the response surface 

[6],[32]. 

4.3 KRIGING 

Kriging is a surrogate modeling technique which originates from geostatistics, 

where it is desirable to estimate the appearances of the mineral fields from a few 

drill samples. This technique has been proven to be effective as surrogate model 

for simulation models of complex systems [16],[35]. 

Issaks and Srivastava have written a good introduction to Kriging and its 

capabilities where the mathematics is described in detail [36].  

Kriging is an interpolating stochastic model which estimates global trends. 

When the model is used as a deterministic surrogate model, the expected value 

at the desired point is used as the approximate value at the point [35]. Kriging is 

ideally linear, unbiased and minimizes the model error variance.  

A kriging model is a combination of a polynomial model and local 

deviations of the form seen in Eq. (13) [32],[34].  
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ßi is the i
th
 regression coefficient, whereas fi(x) is a function of the variables x 

and Z(x) a stochastic process with zero mean and a spatial correlation function 

given by Eq. (14). 
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s
2
 is the variance of the process and R(xi,xj) is a correlation function between xi 

and xj. The first term in Eq. (13) is an approximation of the trend of the model 

output, resembling a polynomial response surface, and is modified according to 

the problem [37]. Kriging is a stationary process, which means that it is suitable 

for problems where the function value is somewhat constant throughout the 

design space.  

The correlation function includes unknown parameters and unfortunately it 

is time-consuming to determine the values of the parameters. This is an 

optimization problem in its own right and may be solved by using maximum 

likelihood estimators; see for example works by Martin and Simpson [35]. 
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Unfortunately, the correlation matrix can become singular if the samples are 

placed too close to each other [38]. This needs to be handled if kriging models 

are fitted iteratively during an optimization. 

4.4 RADIAL BASIS FUNCTIONS 

RBFs are surrogate models where the value of a new point is interpolated from 

the values of the known points [15]. If the function values of n samples are 

known, the expression for interpolating the value of a new point is of the form 

seen in Eq. (15). 
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Ø is a function of the Euclidian distance between the new point and the known 

point with index i. Several choices of distance functions have been suggested, 

and here the Gaussian function of the form seen in Eq. (16) is chosen. 
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The reason for choosing the Gaussian function is that Nakayama [39] suggests 

that the parameter s may be approximated according to Eq. (17). 
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dmax is the distance between the two points that are furthest away from each 

other, m is the number of variables and n is the number of samples. 

The second term of Eq. (15) is a polynomial response surface of arbitrary 

degree and might be added if the overall behavior of the function is believed to 

follow a polynomial of a certain degree. 

The weights, ω and β, are determined by solving the equation system seen in 

Eq. (18). 
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Ф is the n x n matrix containing the distance function values between all 

samples. The other matrixes are seen in Eq. 19 [6]. 
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Since s can be approximated with Eq. (17), the Ф–matrix can be approximated 

as well. Fortunately, only the weights, ω and β, remain to be determined. This 

can be done by performing a simple least square estimation. Eq. (12) shows 

how a least square estimation is performed on the equation system seen in Eq. 

(11). 

A slightly lower accuracy of the surrogate model is probably achieved 

compared to when the parameters is obtained by optimization. The gain in 

speed should however make up for it in many cases. 

4.5 DETERMINING THE ACCURACY OF THE 

SURROGATE MODELS 

It is desirable to estimate the accuracy of the predictions from the surrogate 

models to realize how credible they are. This is ideally done by comparing the 

values predicted by the surrogate model with the ones from the original model 

or function. For non-interpolating surrogate models it is possible to use the 

samples that were used to fit the surrogate for the comparison. But these 

samples cannot be used to assess the accuracy of interpolating surrogate models. 

Additional samples, which have not been used to fit the interpolating surrogate 

model, need to be used for the comparison instead. 

4.5.1 Leave-one-out method 

A common situation is that a maximum number of calls of the original function 

can be made to prevent the computational time from being too long. Instead of 

using all samples to fit a surrogate model, it might be more suitable to leave a 

few samples out of the fitting process. These samples can then be used to assess 

the precision of the surrogate model. This process can be made iteratively, 

leaving different samples out each time, and then the surrogate model which 

displays the best precision is used for the analysis. 

4.5.2 Precision measurements 

There exist several measurements of how accurate a surrogate model is. A 

common measure is the Normalized Root Mean Squared Error (NRSME), seen 

in Eq. (20). It is a measure of the overall accuracy and returned in the 
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percentage form since the errors are normalized. Here, yi stands for the true 

value at point i, whereas iŷ  is the corresponding predicted value.  
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Another measure of the global accuracy is R Square, seen in Eq. (21). A high 

value of R Square indicates that the overall accuracy is good. y  stands for the 

mean of the true values [6],[34]. 
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The Relative Average Absolute Error (RAAE) is measure which summarizes 

the errors between all estimations and their corresponding true values as seen in 

Eq. (22). σ stands for the standard deviation of the true values [38]. 
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The Relative Maximum Absolute Error (RMAE) is a measure of the local 

accuracy and returns the maximum error normalized by the standard deviation 

of the true values [34]. This should be as low as possible and the mathematical 

expression for the estimation is shown in Eq. (23) [40]. 
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PROBABILISTIC 

OPTIMIZATION 

Probabilistic optimization can be divided into two categories – Robust Design 

Optimization (RDO) and Reliability Based Design Optimization (RBDO). For 

both of these optimizations, the effects of the uncertainties and variations on the 

performance of the product need to be estimated when two product designs are 

compared. This can be done by using a sampling method as shown in Figure 10. 

This might be extremely time-consuming for computationally expensive 

models, making it desirable to replace the models with faster evaluated 

surrogate models. 

 

Optimization Algorithm

Objective Function

Estimate Statistics

Model
 

Figure 10. A schematic picture of the actions that are performed during a 

probabilistic optimization. 
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5.1 ROBUST DESIGN OPTIMIZATION 

The purpose of RDO is to find a robust optimal design, i.e. an optimal design 

which is insensitive to uncertainties and variations [17],[18]. It is desirable to 

let the computer perform an optimization to find the design automatically and 

therefore the objective function needs to take both into account. This can be 

written as a multi-objective optimization problem as in Eq. (24), where the 

objective function is a linear combination of the mean value and standard 

deviation of the product performance [18],[34]. 
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The two weights, α and β, determine how important the expected performance 

and variation are with respect to each other. A high value of α means that the 

expected performance is of importance, whereas a value of zero turns the 

optimization problem into a problem which focuses on minimizing the standard 

deviation exclusively. 

Both the expected performance and its standard deviation may be 

normalized with the reference values µ0 and σ0 to ensure that the expressions 

standing after α and β are of the same order of magnitude [18]. These reference 

values are often estimated from a reference design point. This design point is 

usually either the initial design or somewhere close to the middle of the design 

space.  

As the expected value of the performance and its variation is used in the 

objective function, they need to be estimated for each suggested design. This 

may be done using any method for estimating uncertainties, for example one of 

the methods presented in 2.2. 

5.2 RELIABILITY BASED DESIGN OPTIMIZATION 

RBDO strives to find a design which minimizes the probability of failure. 

Consequently, the probability of failure needs to be estimated for each 

suggested design. The most intuitive method for estimating the probability of 

failure is probably to estimate the cumulative distribution of the performance by 

using a sampling based method. It makes it possible to calculate how many 

percent of the samples that result in inadequate performances.  
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Figure 11. A plot over the performance of a product as a function of the 

value of design parameter i. The dashed line displays the minimum required 

performance. 

 

RBDO is exemplified in Figure 11 and Figure 12. As shown in Figure 11, 

Product A has a better performance than product B for the best units that are 

manufactured. Variations in the value of design parameter i may however lead 

to units which have inadequate performance. This probability of failure is 

higher for product A than product B since smaller variations from the expected 

design leads to an unsatisfactory unit. 

It is also possible to use the cumulative distribution of the performance to 

optimize the performance of the j
th
 percentile of the product. One example is to 

perform an optimization which returns a design with as good performance as 

possible for the 80
th
 percentile of the product. Ideally, this means that if one 

hundred units are manufactured and sorted in performance order, the 80
th
 unit 

will have a better performance than the 80
th
 unit that is manufactured with any 

other design parameters. This is exemplified in Figure 12, where product A has 

a better performance for most units, whereas product B has a better performance 

for the 21
th
 worst unit. The 21

th
 worst unit corresponds to the 80

th
 best unit if 

100
th
 units are manufactured which means that product A has a better 

performance for its 80
th
 percentile. 
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Figure 12. A plot which displays the cumulative distributions of the 

performance of the manufactured units for Product A and B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You can never know everything, and part of what you know is always wrong. 

Perhaps even the most important part. A portion of wisdom lies in knowing that. 

A portion of courage lies in going anyway.  

Robert Jordan, Winter’s Heart, 2000. 
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RESULTS 
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The Engineering Department – The Oompa-Loompas of science 

The Big Bang Theory 
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6  

INDUSTRIAL 

APPLICATIONS 

Three different industrial applications are analyzed in the frames of this thesis 

and presented in this section. These are models of an aircraft system, an 

industrial robot and an electric motorcycle. 

6.1 DYNAMIC PRESSURE REGULATOR 

The studied aircraft system is a dynamic pressure regulator (DPR) which is 

shown in Figure 13 below.  

  
Figure 13. Two screenshots of the Dynamic Pressure Regulator modeled in 

Dymola. 
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The system is modeled in the Modelica [41] based software Dymola [13] and its 

purpose is to regulate the air pressure that is delivered to an environmental 

control system (ECS). The most important functions of the DPR are to ensure 

that the ECS is filled fast enough and to the correct pressure level. Therefore, 

the most important system characteristics are the times it takes to fill the system 

and the end pressure inside it. First, a sensitivity analysis is performed to 

identify the system parameters that affect these system characteristics most, see 

Table 1. 

 

Table 1. Normalized sensitivities for parameters of the dynamic pressure 

regulator. 
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1.1 0.13 -1.0 0.35 0.055 0.053 0.033 0.15 0.013 

Filling 

time 

1E-4 -6E-5 -8E-10 3E-4 0.008 0.50 5E-4 -0.25 -0.26 

 

The normalized uncertainties for several parameters are estimated according to 

Eq. (8) and shown in Table 1. According to these numbers, the most important 

parameters are the geometries of the main valve as well as the tank pressure. 

Extra care of these parameters should be taken during the design process of the 

DPR since these parameters affect the performance most. Figure 14 shows a 

schematic picture of the main valve where several of the parameters in Table 1 

are displayed. 
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Figure 14. A schematic picture of the main valve inside the DPR. 

6.2 INDUSTRIAL ROBOT 

Paper [II] describes an optimization framework that is used to support the 

development of industrial robots. The details are found in the paper and the 

framework consists of a geometry model, a dynamic model, a finite element 

model and a simple cost model. In this thesis, the focus is on the geometrical 

model, and how it could be represented by different types of surrogate models. 

The robot that is studied is a serial mechanism where a set of links are 

interconnected to form a complete robot structure. Each link is equipped with an 

actuator that performs the motion of the robot. A picture of the robot is shown 

in Figure 15 together with a geometric model of a link. 

 

Base

Link 1

Link 2

Link 4

Link 3

Link 5

Link 6

Base

Stand

Lower Arm

Upper Arm

Tilt House

Arm House

 
a) A modular industrial robot 

 
b) A geometric model of a link 

Figure 15. Two pictures of a) the studied industrial robot and b) a geometric 

model of a link. 
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The geometric model is built up of high-level CAD-templates, which 

ensures that the shape of the model can change both morphologically (e.g. can 

be stretched out) and topologically (e.g. can change actuator). The lengths of the 

links and the discrete choices of which actuators that should be used are the 

inputs which control the shape of the geometric model. The outputs are the 

masses of the links, the moments of inertia and the center of gravities. This 

information is then passed to the dynamic simulation model and the FE-model, 

which are used for performance and lifetime calculations respectively.   

6.3 ELECTRIC MOTORCYCLE 

The final application is an electric motorcycle, modeled in MATLAB Simulink 

[12] as shown in Figure 16.  

The model is built from physical equations and consists of four parts; the 

battery, the electrical motor, the gear box and the chassis. The outputs from the 

model are the speed and distance traveled as functions of the elapsed time. It is 

possible to change the value of any parameter in the model, but for these 

analyses the focus is on the design of the gearbox. The parameters of the 

gearbox are the gear ratios for the first and second gear as well as the speed at 

which the electric motorcycle travels when the gear is shifted from the first to 

the second gear. 

 

 
Figure 16. A screenshot from Simulink that displays an electric motorcycle 

model. 
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The target of the design process is to design a gearbox which enables the 

motorcycle to accelerate as fast as possible. The acceleration is estimated as the 

speed of the motorcycle after five seconds. This optimization problem can be 

expressed with Eq. (25). 

 

x
min   )(xaccxf   

 (25) 

s.t. 
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Several optimizations reveal that the maximum speed after five seconds is 

slightly above 75 km/h and can be reached if the gear ratio of the first gear is 

around 6, the gear ratio of the second gear around 11 and the gears are shifted at 

38 km/h. 
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If a man's wit be wandering, let him study the mathematics. 

Francis Bacon 
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COMPARISON OF 

SAMPLING BASED 

METHODS 

It is desirable to estimate how uncertainties and variations affect the 

performance of a product. This estimation can be done by using a sampling 

based method. Four sampling based methods are presented and compared in this 

section. More information can be found in paper [I]. 

The dynamic pressure regulator model which is described in section 6.1 is 

used to investigate the performance of the sampling based methods when it 

comes to estimating probability distributions of a model output. 

The four compared methods are; 

 A Monte Carlo Simulation with 20 000 samples. 

 A Latin Hypercube Sampling with 50 samples. 

 A Monte Carlo Simulation with 20 000 samples with the original model 

replaced with a second order response surface. 

 A Latin Hypercube Sampling with 50 samples, with the original model 

replaced with a second order response surface. 

The probability distribution of the Monte Carlo Simulation is seen as the 

reference since the original model is called for all samples and numerous 

samples are drawn. This assumption is also used by several other authors [35]. 

The other three methods will therefore be compared with it.  
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Figure 17. Two graphs over how the statistical entities a) mean value and b) 

standard deviation of the end pressure varies for each added Monte Carlo 

sample. 

 

The variation of the values of the standard deviation and mean value of the end 

pressure inside the volume for each sample as the Monte Carlo Simulation 

progresses is shown in Figure 17. It seems like the curves have converged 

which makes it probable that further samples would not affect the values of the 

standard deviation and mean value much. 
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Figure 18. A graph that displays the cumulative distributions for the end 

pressure inside the volume estimated by four different methods.  
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The appearances of the probability distributions of the end pressure for all four 

methods are shown in Figure 18. All four curves agree quite well but the curves 

which represent LHS are a bit jagged. This stems from the fact that only 50 

samples are used to estimate the probability distributions for LHS. 

The resulting values of the mean values and standard deviations for all four 

methods are shown in Table 2. All four methods return approximately the same 

values for both the mean values and standard deviations. The root mean squared 

error (RMSE) is a measure of how much the other three methods deviate from 

the Monte Carlo simulation. 

 

Table 2. The mean values and standard deviations which have been 

estimated using four different methods. 

Entity MC LHS MC + RS LHS + RS 

Simulation Time [s] 25 640 65 351 199 

Number of samples 20 000 50 20 000 50 

Number of Dymola calls 20 000 50 80 80 

Mean end pressure [Pa] 166 944 166 776 166 881 166 763 

Variance of end pressure 5.11E8 5.10E8 5.03E8 4.13E8 

RMSE to MC [Pa] - 2563 429 3 419 

Mean filling time [s] 0.028228 0.028233 0.028218 0.28219 

Variance of filling time 3.03E-6 3.67E-6 3.01E-6 3.14E-6 

RMSE to MC [s] - 2.99E-4 5.35E-5 2.19E-4 

 

According to the graphs and tables in this chapter, it seems appropriate to use 

LHS whenever the mean value or standard deviation needs to be estimated. If 

the probability distribution is of interest, it may be better to create a surrogate 

model of the original model and perform a Monte Carlo Simulation on it 

instead. 
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Your theory is crazy, but it's not crazy enough to be true. 

Niels Bohr 
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COMPARISON OF 

SURROGATE MODELS 

This section compares the performance of a set of surrogate models and how 

applicable they are on some specific engineering models. A detailed description 

of these findings can be found in paper [II].  
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Figure 19. A figure that displays the NRSMEs for each of the compared 

surrogate models. 
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The application that is used for the comparison is the geometric CAD-model of 

a link of the industrial robot presented in section 6.2. The inputs are the 

continuous variable link thickness as well as the discrete choice of actuator. The 

outputs from the model are the mass, inertia and center of gravity of the link. 

All surrogate models which are included in the design environment 

ModeFrontier [42] are used for the comparison. The surrogate models are fitted 

using the same 50 samples and their accuracies are determined with respect to 

20 additional samples, which have not been used to fit the surrogate models. 

The used accuracy measures are the NRSME, RAAE and RMAE as defined in 

section 4.5.2.  

 

Table 3. A table that contains accuracy measures for the compared surrogate 

models when they are compared with the original model. 

Actuator Variation 

Model (no of samples) NRSME RAAE RMAE 

Anisotropic Kriging (50) 0.611 1.223 1.986 

Evolutionary Design (50) 1.449 2.590 3.966 

Gaussian processes (50) 1.699 5.660 10.977 

Kriging (50) 1.009 2.665 4.724 

Neural Networks (50) 0.748 1.968 2.489 

Polynomial Svd (50) 3.324 11.121 12.805 

Radial Basis Functions (50) 0.644 2.230 4.626 

Shepard K-nearest (50) 1.539 6.324 7.157 

Anisotropic Kriging (100) 0.030 0.107 0.218 

Neural Networks (100) 0.062 0.238 0.465 

Radial Basis Functions (100) 0.076 0.196 0.410 

 

Thickness Variation 

Model (no of samples) NRSME RAAE RMAE 

Anisotropic Kriging (50) 0.346 0.095 0.346 

Evolutionary Design (50) 0.989 0.249 0.989 

Gaussian processes (50) 1.226 0.404 1.226 

Kriging (50) 1.161 0.307 1.161 

Neural Networks (50) 0.558 0.144 0.558 

Polynomial Svd (50) 2.828 1.550 2.827 

Radial Basis Functions (50) 0.501 0.176 0.501 

Shepard K-nearest (50) 1.847 0.666 1.847 

Anisotropic Kriging (100) 0.010 0.023 0.067 

Neural Networks (100) 0.011 0.034 0.086 

Radial Basis Functions (100) 0.028 0.025 0.065 

 

The resulting measures from the comparison are seen in Table 3, whereas a 

graph over the NRSMEs is shown in Figure 19. The numbers inside the 
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parentheses are the number of samples that were used to fit the surrogate 

models. It is shown that the surrogate models generally have more problems to 

handle the discrete variable actuator type than the continuous variable thickness. 

The three most promising surrogate model types are Anisotropic Kriging, 

Neural Networks and Radial Basis Functions. Those three model types are fitted 

using 100 samples as well to estimate the impact of the number of samples used 

to fit the surrogate models. As shown both in Table 3 and Figure 20, the 

measures improve dramatically. An improvement is expected since more 

samples generally result in more accurate surrogate models, but it is a bit 

unexpected that this doubling of the number of samples results in such large 

improvements in accuracies. 
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Figure 20. NRSMEs for Radial Basis Functions, Neural Networks and 

Anisotropic Kriging when 50 and 100 samples are used to fit the surrogate 

models. 

 

The result of the comparison is used to choose the surrogate model type to 

be used in an optimization framework for industrial robots. Since anisotropic 

kriging performed best, it is the chosen surrogate model type. Anisotropic 

kriging is a version of kriging where the distance correlation function varies 

with the direction in the design space between two points.  
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The scientific theory I like best is that the rings of Saturn are composed entirely 

of lost airline luggage. 

Mark Russell 
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PERFORMANCE INDEX 

FOR OPTIMIZATIONS 

In order to compare different optimization algorithms, a performance index 

which specifies a numerical value of the performance of an optimization 

algorithm is required. A numerical value enables comparison of the 

performances of two optimization algorithms for a specific problem. The 

performance index can also be used as objective function in an optimization 

with the aim of optimizing the performance of the optimization algorithm itself. 

A few performance indices have been suggested [43],[44], but here the 

performance index which is used in paper [III] and [IV] is presented.  

It is desirable to use an optimization algorithm which finds the optimum 

with as few calls to the objective function as possible. But it is also desirable to 

use an algorithm which has a high probability of finding the global optimum. 

The suggested performance index is therefore a combination of those two 

entities. 

If the probability of finding the global optimum with one optimization is popt, 

then the probability of not finding the optimum is 1-popt. The probability of not 

finding the global optimum with n optimizations can then be described by Eq. 

(26). 

 
n

optpoptnotp )1(__    (26) 

 

Consequently, the probability of finding the global optimum can be calculated 

with Eq. (27). 
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 n
optpfoundoptp  11__   (27) 

 

Since different optimization algorithms require different numbers of objective 

function calls, the performance index needs to take this into account to enable 

fair comparison. Therefore, the variable n in Eq. (27) needs to be replaced with 

the number of optimizations that are possible to perform with our available 

computational time. This can be expressed as the allowed number of function 

evaluations divided by the mean number of function evaluations required to 

perform one optimization, or navailable/nopt. The available computer time varies 

with each problem, but here it is suggested to use a reference value of 100. The 

resulting performance index is shown in Eq. (28) as the probability of finding 

the global optimum if 100 objective function calls are made. 

 

  optn

optppi
/100

11    (28) 

 

A drawback with the performance index is that all optimization algorithms with 

a 100% hit-rate get performance indexes equal to one. But since they have the 

same accuracy, the one which requires the fewest objective function evaluations 

to converge is the most suitable one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Science, my lad, is made up of mistakes, but they are mistakes which it is useful 

to make, because they lead little by little to the truth. 

Jules Verne 
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ROBUST DESIGN 

OPTIMIZATION 

Surrogate models may be applied at different stages of a probabilistic 

optimization. Either before the optimization is started or during it. The main 

benefit with creating a surrogate model before the optimization is started is that 

the surrogate model can be used for other analyzes afterwards. The motivations 

for creating a surrogate model during an optimization are that no unnecessary 

samples are drawn and that the surrogate model will be more accurate in the 

areas where the optimization is operating, i.e. the interesting areas. 

This section strives to compare the performances of a few different 

approaches that can be used to perform Robust Design Optimization. More 

details can be found in paper III. Latin Hypercube Sampling is used to estimate 

the main value and standard deviation for each design, whereas Complex-RF is 

used as optimization algorithm. 

The first approach is shown in Figure 21a). The objective function is a 

combination of the mean value and standard deviation of an output from a 

function or a model. Consequently, an LHS is performed each time the 

optimization algorithm needs to determine the value of the objective function. 

The approach does not involve surrogate models. This means that the required 

number of function calls or model simulations to reach the optimum is the 

number of samples performed by the LHS multiplied by the required number of 

objective function evaluations by the optimization algorithm.  
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b) Approach 2 

Figure 21. Schematic workflows for approach 1 and 2. 

 

The second approach is shown in Figure 21b) and begins by drawing 

samples from the function or model. These samples are used to create a 

surrogate model of the desired entity. When the optimization starts, the 

surrogate model is called instead of the original objective function each time 

LHS estimates the mean value and standard deviation. The only true function 

calls or model simulations made are those that are needed to build the global 

surrogate model in the first place. 
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Figure 22. A Schematic workflow for approach 3. 

 

The third approach is shown in Figure 22 and begins similarly to the first 

approach. This means that it performs an LHS each time the value of the 

objective function needs to be estimated. When a predefined number of samples 

have been drawn, a surrogate model of the function value or model output is 

created. Similar to approach 2, the surrogate model is called by LHS during the 

remainder of the optimization. A somewhat similar approach is named Local 

quasi-random sampling by Aspenberg [18]. 
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Figure 23. A schematic workflow for approach 4. 

 

The workflow of approach 4 is shown in Figure 23. It operates similarly to 

approach 3 in the aspect that it creates surrogate models during the optimization 

process. The difference is that two surrogate models are created in this approach 

– one of the mean value and one of the standard deviation. 

The fifth approach also creates a surrogate model during the optimization. 

But in this approach the surrogate model which is created reanimates the 

objective function value, i.e. an aggregate of both the mean and the standard 

deviation. A schematic picture of its workflow is shown in Figure 24. 
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Figure 24. A schematic workflow of approach 5. 

 

These different approaches are evaluated on two mathematical functions and 

the DPR problem which is presented in section 6.1. Table 4 displays the results 

from the comparison. The numbers represent the value of the performance index 

which was presented in section 9 for the five approaches for these problems. 

Approaches 2 through 5 are allowed to make 50 model simulations or calls of 

the mathematical functions before the surrogate models are created. It is shown 

that approach 1 has a poor performance for all problems even though the hit-

rates are high. This stems from the numerous model simulations and function 

calls that are needed to make the optimization converge. Approach 2, which 

creates a surrogate model before the optimization is started, outperforms the 

other approaches for most of these problems. 
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Table 4. Performance indices for the five approaches for the different 

problems. 

Problem App 1 App 2 App 3 App 4 App 5 

Peaks 0.014 0.428 0.309 0.003 0.001 

Aspenberg 0.410 0.227 0.212 0.053 0.062 

DPR 0.070 0.762 0.719 0.452 0.404 

 

Another benefit with using approach 2 is that a surrogate model of the model 

is received. This model can be used for additional analyzes later. The surrogate 

models which are created in the other approaches can also be used later, but 

they either reanimate other things than the model output and/or are accurate in a 

smaller domain of the design space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any sufficiently advanced technology is indistinguishable from magic. 

Arthur C Clarke 
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MODIFICATION OF THE 

COMPLEX ALGORITHM  

With inspiration from other optimization algorithms, a modified version of the 

Complex-RF optimization algorithm is proposed, Complex-RFM. The aim is to 

increase the effectiveness of the Complex-RF algorithm for computationally 

demanding objective functions by reducing the number of required calls to the 

objective function. The modified algorithm creates and calls a surrogate model, 

a second order response surface, of the objective function during the 

optimization progress. 

The performance of the modified algorithm is compared with a few existing 

algorithms in Table 5. The numbers correspond to the values of the performance 

index that is presented in section 9 for each problem and optimization 

algorithm. More detailed results and definitions of the problems can be found in 

paper [IV]. The compared algorithms are Complex-RF, ComplexRFM, fmincon 

and a genetic algorithm. 1000 optimizations are performed with each algorithm 

to estimate the hit-rates and required number of function calls that are needed 

for the algorithm to converge. For fmincon, the starting point is randomly 

selected within the design space for each optimization. The genetic algorithm 

focuses on precision rather than speed in this comparison but is interrupted 

when the optimum has been found. 

The parameters of Complex-RF and Complex-RFM are optimized for each 

problem, which makes a direct comparison with the other algorithms unfair. But 

the comparison nevertheless gives an idea of the performance of Complex-RFM 

and it can be noted that Complex-RFM performs better than Complex-RF for all 

problems. Even though fmincon excels for two functions it struggles with the 

engineering problem. 
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Table 5. Comparison of the performances of different optimization 

algorithms for a few problems. The numbers represent the performance indices 

for each algorithm and problem. 

Problem fmincon GA Complex-RF Complex-RFM 

Peaks 0.726 0.333 0.647 0.910 

Rosenbrock 0.999 0.086 0.783 0.893 

Hart6 0.624 0.040 0.248 0.412 

EL-MC 0.080 0.380 0.322 0.721 

 

The operations that are performed by the proposed algorithm are shown in 

Figure 25 and a more thorough description is found in paper IV.  
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Figure 25. A schematic workflow for Complex-RFM. 
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It basically operates similar to Complex-RF, however the grey activities are 

different. The original function is called until enough samples have been drawn 

to create a second order response surface with 50% oversampling. From that 

point, the response surface is called each time the value of the objective 

function needs to be determined by the optimization algorithm. The activity 

“SM check” is added to ensure that the response surface is accurate. If the 

differences between the coefficients of the two latest surrogate models are small 

enough, the response surface is deemed accurate and the “SM check” activity is 

omitted for a few iterations. 

The criterion for how large the percentage difference between the 

coefficients of the latest response surfaces are allowed to be is one of the 

parameters of the optimization algorithm and denoted ε. Another parameter is 

the number of iterations for which the activity “SM check” activity is omitted 

when two response surfaces are deemed equal, and it is denoted ζ.  

The values of these two parameters, as well as the randomization and 

forgetting factors, rfak and γ, can be used as variables in an optimization with 

the purpose of optimizing the performance of the optimization algorithm. A 

schematic figure of this process is shown in Figure 26. The performance index 

is used as objective function for the optimization and each time the performance 

index is estimated, 1000 optimizations with the same parameter values are 

performed. 

 

 
Figure 26. A schematic workflow for optimization of the parameters of an 

optimization algorithm.  

 

This optimization returns different optimal parameter values for each function 

and engineering problem respectively. These values are shown in Table 6. 
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Table 6. Optimal parameter values for Complex-RFM for a few problems. 

Problem ε ζ rfak γ 

Peaks 0.01 25 1 0.15 

Rosenbrock 0.12 1 0.15 0.96 

Hart6 0.002 2 0.21 0.05 

EL-MC 0.002 48 0.32 0 

All problems (Eq. (29)) 0.002 2 0.21 0.05 

 

It is desirable to recommend standard settings for the algorithm when it is used 

to optimize an arbitrary function. An optimization which takes the performance 

indices of all functions into account is therefore performed. The used objective 

function is shown in Eq. (29). The performance index of each problem is 

divided by the corresponding utopian performance index, which is shown in the 

“Complex-RFM” column of Table 5.  
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The resulting optimal parameter values are seen in the last row of Table 6. 

These are also the parameters that are recommended to use as standard 

parameters for an arbitrary problem. The difference in performance for 

Complex-RFM when its parameters are optimized and when the suggested 

standard values of the parameters are used is shown in Table 7. The 

performance indices are a bit worse for the optimizations that are performed 

with the standard parameter values than when optimal parameters values are 

used, which was expected. But the overall performance of the algorithm is still 

good. 
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Table 7. Performance indices for Complex-RFM when its parameters are 

optimized for each specific problem and when the standard values are used. 

Problem Optimal Parameters Standard Parameters 

Peaks 0.910 0.807 

Rosenbrock 0.893 0.826 

Hart6 0.412 0.412 

EL-MC 0.721 0.711 

 

The purpose of Complex-RFM is to speed up the optimization for moderately 

heavy simulation models. It might therefore be better to weight the engineering 

problem a bit more in Eq. (29). But it is difficult to say how an arbitrary 

problem behaves beforehand.  
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No amount of experimentation can ever prove me right; a single experiment can 

prove me wrong.  

Albert Einstein 
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DISCUSSION 

The methods that are presented in this thesis may all be used to perform a 

probabilistic optimization. Their performances are demonstrated for several 

mathematical functions and engineering system models. Since 1000 

optimizations are performed to estimate the accuracies of the methods, the 

accuracies are sensitive to the criteria which decide if an optimization is 

successful or not. Even though this affects the results for the comparisons, the 

comparisons should be possible to use as guidelines to choose a method. 

The performance index is a tool which can be used to compare the 

performances of different methods. Since it is a numerical value it enables 

optimization of the parameters of the optimization algorithms, a tool which is 

useful to determine standard values for the parameters of new algorithms are 

suggested. This is demonstrated for the Complex-RFM algorithm. 

In the case of similar performance indices for two different methods, it is 

doubtful which method to choose. The author would probably choose the 

method which requires the least number of model simulations to converge. Then 

several optimizations are performed and the best solution used. 

The choice of performance index may also affect the results from the 

comparisons. This is especially important for the optimization of the Complex-

RFM algorithm where the performance index is used as objective function with 

the aim of optimizing the parameters of Complex-RFM. 

The RDO approaches which create surrogate models during the probability 

optimization process, approach three to five, perform worse than approach two. 

This should not be interpreted as such that all methods which create surrogate 

models during the optimizations are worthless. There probably exist more 

sophisticated methods which perform better, but they have not been 

implemented in the scope of this thesis. 

Since the methods are intended to be used to design products, it might seem 

redundant to compare the performances of the methods for simple numerical 
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problems. But, as Beyer et al. [8] points out; performance comparisons should 

be made with simple test functions in the beginning, since it is easier to 

understand the working principles of the compared methods. It is also easier to 

scale a simple problem by varying the number of parameters.  

In an industrial case, the target is often to find the best design given certain 

conditions. This means that it is desirable to find a solution which is as good as 

possible in as short time as possible. If the optimal design is already known then 

there is no use to perform an optimization. Consequently, one method should be 

chosen and probabilistic optimizations performed until it is believed that the 

best design has been found. 

The author would probably use much of the available computer time to draw 

samples of the model output. This database of samples can then be used to 

create several surrogate models, using the leave-one-out method. Then, 

probabilistic optimizations could be performed on the most promising surrogate 

models. 

Future work includes two main tracks. The first is to implement a framework 

for probabilistic optimizations and apply it to design a product and then 

construct and evaluate physical prototypes. The aim would be to compare 

different design proposals by introducing uncertainties and evaluate their 

performances. Hence, this would ascertain the performance of the methods with 

regards to their intended purpose – to enable development of physical products 

by modeling and simulation. 

The other track is to develop Complex-RFM further and improve its 

performance. It might be possible to replace the second order response surfaces 

with radial basis functions or kriging. However, it is probable that the matrices 

become singular since the surrogate models are fitted increasingly locally and 

close samples leads to singular matrices. This needs to be remedied to be able to 

use kriging or radial basis functions effectively.  
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